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Abstract In this paper, we give some evidences what cause more limit cycles
for piecewise dynamical systems. We say, the angles or the number of zones are
critical points. We study an example of linear lateral systems and an example
of linear Y-shape systems, and prove that they have five and four crossing
limit cycles by using Newton-Kantorovich Theorem, respectively.
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1. Introduction

In recent years, the research of discontinuous dynamical systems has been developing
rapidly, especially the planar piecewise linear systems with two pieces separated by
a straight line, see [4]- [16], [21] and [22]. They are widely used to model many real
processes in actual projects, see [1] and [9]. An important problem related to their
dynamical behavior is about the number and distribution of limit cycles. However,
it has not been solved even for the planar piecewise linear dynamical systems with
two pieces separated by a straight line. The research of piecewise linear dynamical
systems could go back to [2] and still continues to attract the attention of many
researchers. Lum and Chua in [23] conjectured that a continuous piecewise linear
vector field in the plane with two pieces has at most one limit cycle. In 1998, this
conjecture was proved by Freire el al. in [5], and recently a new and shorter proof
has been done by Llibre el al. in [17] in 2013. At the same time, there are many
researchers trying to study the maximum number of limit cycles for planar piecewise
linear systems with two pieces separated by a straight line. Han and Zhang showed
systems with two limit cycles in [10]. Huan and Yang provided numerical evidence
on the existence of three limit cycles in [11]. Llibre and Ponce proved analytically
in [15] that the systems in [11] have three limit cycles. Freire el al. showed some
other systems with three limit cycles in [7] and [8]. They also claimed in [8] that
the existence of a focus in one zone is sufficient to get three nested limit cycles,
independently on the dynamics of the other linear zone. Llibre el al. summarized
the lower bounds for the maximum number of limit cycles of planar piecewise linear

†the corresponding author. Email address: jiangyu@sjtu.edu.cn (J. Yu)
1School of Mathematical Sciences, Shanghai Jiaotong University, Shanghai
200240, China
∗The Corresponding author is supported by NNSF of China grant number
11431008 and 11771282, NSF of Shanghai grant number 15ZR1423700.

http://jaac.ijournal.cn
http://dx.doi.org/10.11948/20180321


Limit cycles of piecewise linear dynamical systems. . . 1823

systems with two pieces separated by a straight line in [16] (see Table 1), where F,
N and S represent focus type, node type and saddle type, respectively. It shows
that the lower bound is three. Euzébio and Llibre estimated in [4] that the upper
bound is four for the case that one of the singular points of the subsystems is on
the separation line. Later, Llibre el al. proved that the exact upper bound of that
case is two in [19] and [20].

Table 1. Lower bounds for the maximum number of limit cycles of planar piecewise linear dynamical
systems with two pieces separated by a straight line.

F N S

F 3 3 3

N – 2 2

S – – 2

In recent years, there are some conclusions about lateral systems which are
planar piecewise dynamical systems with two pieces separated by two rays starting
from the same point and forming an angle θ ∈ (0, π). Llibre el al. provided in [18]
that the maximum number of limit cycles for linear lateral systems is two when the
origin is a singular point of one of subsystems with associated nonzero eigenvalues.
Using Melnikov Method of higher order, Cardin and Torregrosa showed that there
exist five limit cycles in linear lateral systems with angle π

2 in [3].
From the above, we know that the discontinuousness and the separation lines

may affect dynamical behaviors of piecewise dynamical systems, esp. the number
of limit cycles. But what causes emerging more limit cycles? In [25] we proved
that the angles or the number of pieces of piecewise dynamical systems are critical
factors. And showed that the angles 0 and π of zones are the critical values for
the planar piecewise linear dynamical systems. Most simply, the graph of Poincaré
map (see Definition 3.1) of the subsystem with focus type in the zone with an angle
θ 6= 0 or π has at most one inflection point and can have one. On the other hand,
the graph of the Poincaré map is a straight line or convex or concave if the angle is
equal to π. The compound function of the Poincaré maps from various zones shall
have more intersections in the case with an angle θ 6= 0 or π, which implies that
systems have more limit cycles.

In this paper, we pay more attention to study the crossing limit cycles of planar
piecewise linear dynamical systems, which should go through every zones.

The main results of this paper are shown in the following.

Theorem 1.1. The linear lateral systems (3.1) with focus-focus type possess at
least five crossing limit cycles.

Remark 1.1. Cardin and Torregrosa showed that there exist five limit cycles in
lateral systems with the angle π

2 in [3]. The five limit cycles come from the per-
turbation of a linear center under piecewise linear perturbation of higher order by
studying Melnikov functions of up to sixth order. We also found the lateral systems
with at least five limit cycles in Theorem 1.1 in a different way by studying the
graphs of Poincaré maps, and they cross the two separated rays.
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Theorem 1.2. The linear Y-shape systems (4.1) with focus-focus-focus type possess
at least four crossing limit cycles.

Remark 1.2. Notice that the origin is the singular point of one of three subsys-
tems of systems (4.1), so the graph of the Poincaré map of one subsystem has one
inflection point, and the graph of the compound Poincaré maps of the other two
subsystems has no inflection point, see [25]. On the other hand, both graphs of
Poincaré maps of two subsystems of lateral systems (3.1) have one inflection point.
Therefore, systems (3.1) may have more limit cycles than systems (4.1). In fact,
if we do not limit that the singular point of one subsystem of Y -shape systems is
the origin, then the lateral systems can be considered as a special case of Y -shape
systems. Hence, it is easy from Theorem 1.1 to find a linear Y -shape system with
five limit cycles.

The paper is organized as follows. We shall give some preliminaries in the second
section. In the third section, we study the linear lateral systems (3.1) with focus-
focus type. The graphs of Poincaré maps of both subsystems have one inflection
point. Five limit cycles are found firstly using Poincaré map and then their existence
is proved by Newton-Kantorovich Theorem. Similarly, in the forth section, we study
the linear Y -shape systems (4.1) with focus-focus-focus type which are given in [25].
We shall prove that the systems have four crossing limit cycles, which could support
the Theorem 1.2. Some precise proof which is similar to Theorem 1.1 is omitted.

2. Preliminaries

We list the following Theorem and Lemmas that shall be used to prove Theorem
1.2, and refer to Theorem 2.1 and Lemma 2.2 of [24] and Lemma 2.1 of [15] in
detail.

Let Br(x0) be the set of points x ∈ Rn such that |x − x0| < r, and denote the
closure of Br(x0) as Br(x0).

Theorem 2.1 (Newton-Kantorovich Theorem). Given a function f : C ⊂ Rn →
Rn and a convex C0 ⊂ C, assume that f is C1 in C0 and that the following assump-
tions hold:

(a) |Df(z)−Df(z′)| ≤ γ|z − z′| for all z, z′ ∈ C0,
(b) |Df(z0)−1f(z0)| ≤ α,
(c) |Df(z0)−1| ≤ β,

for some z0 ∈ C0. Consider

h = αβγ, r1,2 =
1±
√

1− 2h

h
α.

If h ≤ 1
2 and Br1(z0) ⊂ C0, then the sequence {zk} defined by

zk+1 = zk −Df(zk)−1f(zk) for k = 0, 1, 2, · · ·

is contained in Br1(z0) and converges to the unique zero of f(z) contained in C0 ∩
Br2(z0).

We shall take the norm | · |∞ in this paper, that is

|z|∞ = max
i
|zi|, for z = (z1, z2, · · · , zn)T ,
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|A|∞ = max
i
{
∑
j

|aij |}, for A = (aij).

In order to estimate the values α, β and γ in Theorem 2.1, we need the following
two Lemmas.

Lemma 2.1. Given a function g = (g1, g2, g3)T : C ⊂ R3 → R3 and a convex
C0 ⊂ C, if g is C1 in C0 and z, z′ ∈ C0, then

|Dg(z)−Dg(z′)|∞ ≤ 9 max
1≤i,j,k≤3

[
∂2gi
∂zj∂zk

]|z − z′|∞,

where z = (z1, z2, z3)T , z′ = (z′1, z
′
2, z
′
3)T and [ ∂2gi

∂zj∂zk
] denotes the maximum of

| ∂
2gi

∂zj∂zk
| on C0.

Lemma 2.2. Let A be an n×n real matrix and B an approximation of A−1. Then

|A−1|∞ ≤
|B|∞

1− |Id−AB|∞
.

3. Proof of Theorem 1.1

We consider the following systems

Ẋ =


MX +m, if X ∈ Σ−,

NX + n, if X ∈ Σ+,
(3.1)

where

M =

−2 −1

2 0

 , N =

 −202 −1

40402 200

 , m =

 − 1
4

−400

 , n =

 1
10

1
5

 ,

and

Σ− = {(x, y) : x < 0, y > 0},
Σ+ = {(x, y) : x > 0, y ≥ 0} ∪ {(x, y) : x ≥ 0, y < 0} ∪ {(x, y) : x < 0, y < 0}.

The two separation rays are

Γ1 = {(x, y) : x = 0, y ≥ 0},
Γ2 = {(x, y) : y = 0, x ≤ 0}.

We use XH and XL to represent subsystems in the zone Σ− and Σ+, respectively.
See Figure 1. According to [14], we define the crossing sets Γc1 and Γc2 as

Γc1 = {(0, y) : H+(0, y)H−(0, y) > 0, y ≥ 0},
Γc2 = {(x, 0) : H+(x, 0)H−(x, 0) > 0, x ≤ 0}.

and the sliding sets Γs1 and Γs2 as the complements to Γc1 and Γc2, i.e.

Γs1 = {(0, y) : H+(0, y)H−(0, y) ≤ 0, y ≥ 0},
Γs2 = {(x, 0) : H+(x, 0)H−(x, 0) ≤ 0, x ≤ 0}.

(3.2)
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It is clear that the systems (3.1) are focus-focus type.
We first use Poincaré map to find the limit cycles and then prove rigorously

their existence. The definition of Poincaré map is shown for better understanding.

Definition 3.1. Poincaré map of system XH is a function x1 = PH(y0), where
(0, y0) ∈ Γ1 and (x1, 0) ∈ Γ2 are the two points connected by one orbit of system
XH . Similarly, Poincaré map of system XL is a function y1 = PL(x1), where
(x1, 0) ∈ Γ2 and (0, y1) ∈ Γ1 are the two points connected by one orbit of system
XL. See Figure 1.

x

y

Σ
-

Σ
+

x1

y1

y0

Figure 1. The illustration of Poincaré maps y1 = PH(x1) and x1 = PL(y0) .

Obviously, if there exists a crossing limit cycles of systems (3.1), then there exists
y0 such that PH(y0) = PL

−1(y0). In another word, we can determine the number
of limit cycles by determining the number of intersections of curves x1 = PH(y0)
and x1 = PL

−1(y0).
By calculation, we get that the Poincaré map x1 = PH(y0) is

y0 =
400 sin th + 1601

4 eth [1− e−th(cos th + sin th)]

cos th + sin th
,

x1 =
− 1

4 sin th − 200e−th [1− eth(cos th − sin th)]

cos th + sin th
,

and the Poincaré map y1 = PL(x1) is

x1 =
1
10 sin tr + 101

10 e
−tr [1− etr (cos th − sin th)]

cos th + 201 sin th
,

y1 =
− 1

5 sin th − 20403
10 etr [1− e−tr (cos th + sin th)]

cos th + 201 sin th
.

The graphs of x1 = PH(y0) and x1 = PL
−1(y0) have 5 intersections A1, A1, A3,

A4 and A5, see Figure 2, where the red curve is the graph of x1 = PH(y0) and the
black curve is the graph of x1 = PL

−1(y0). In order to see more clearly, we enlarged
some of five intersections. The five limit cycles of systems (3.1) corresponding the
points Ai (i = 1, 2, · · · , 5) are showed in Figure 3 and 4, respectively.

Next, We rigorously prove the existence of 5 limit cycles. First, we change the
problem of finding the limit cycles of systems (3.1) into the problem of finding the
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1 2 3 4
, , ,A A A A

5
A

(a) The intersections A1, A1,
A3, A4, A5.

1 2 3
, ,A A A

4

(b) The intersections A1, A1,
A3, A4.

1
A

2
A

3
A

(c) The intersections A1, A1,
A3.

1
A

(d) The intersection A1.

Figure 2. The intersections of x1 = PH(y0) and x1 = P−1
L (y1).

A
1

(a) The crossing limit cycle of
systems (3.1) corresponding A1.

A
2

(b) The crossing limit cycle of
systems (3.1) corresponding A2

Figure 3. The crossing limit cycles of systems (3.1) corresponding A1 and A2.

isolated solutions of system (3.3). Secondly, we estimate the values α, β and γ
in Theorem 2.1, respectively, and lastly we prove Theorem 1.1 by using Newton-
Kantorovich Theorem.

We from (3.2) get that the sliding set of systems (3.1) in Γ1 is the segment
{(0, y) : 0 ≤ y ≤ 1

10}. The orbit of systems (3.1) starting from (0, y0) with y0 >
1
10 enters into Σ− caused by the direction of vector field at (0, y0), and exits Σ−

through Γ2 and enters into Σ+, and finally reach (0, y1) with y1 >
1
10 . Therefore,
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(a) The crossing limit cycle of
systems (3.1) corresponding A3.

A
3

(b) The enlarge graph of cross-
ing limit cycle of systems (3.1)
corresponding A3 near the ori-
gin.

(c) The crossing limit cycle of
systems (3.1) corresponding A4.

A
4

(d) The enlarge graph of cross-
ing limit cycle of systems (3.1)
corresponding A4 near the ori-
gin.

(e) The crossing limit cycle of
systems (3.1) corresponding A5.

A
5

(f) The enlarge graph of cross-
ing limit cycle of systems (3.1)
corresponding A5 near the ori-
gin.

Figure 4. The crossing limit cycles of systems (3.1) corresponding A3, A4 and A5.

if systems (3.1) have crossing limit cycles, then they must surround the segment
{(0, y) : 0 ≤ y ≤ 1

10}.

We get from (3.1) that the solution of system XH passing through the point



Limit cycles of piecewise linear dynamical systems. . . 1829

(0, Y ) with Y > 1
10 at the time t = 0 is

xh(th) = 200 + e−th [−200 cos th + 200 sin th − sin th(Y +
1601

4
)],

yh(th) = −1601

4
+ e−th [−400 sin th + (cos th + sin th)(Y +

1601

4
)],

and the solution of system XL passing through the point (0, Y ) with Y > 1
10 at the

time t = 0 is

xl(tr) = −101

10
+ e−tr [

101

10
cos tr −

20301

10
sin tr − sin tr(Y −

20403

10
)],

yl(tr) =
20403

10
+ e−tr [

2040301

5
sin tr + (cos th + 201 sin th)(y0 −

20403

10
)].

In the zone Σ−, the solution of systems (3.1) starting at the point (0, Y ) with
Y > 1

10 reaches Γ2 anticlockwise at first time after the time th > 0. In the zone
Σ+, the solution of systems (3.1) starting at the point (0, Y ) with Y > 1

10 reaches
Γ2 clockwise at first time after the time tr < 0, see Figure 1. Thus, the periodic
solutions of systems (3.1) are characterized by the solutions of system

f1(th, tr, Y ) := yh(th) = 0,

f2(th, tr, Y ) := xr(tr) = 0,

f3(th, tr, Y ) := Y0(xh(th))− yr(tr) = 0,

(3.3)

where th > 0, tr < 0 and Y > 1
10 .

It is easy to get the five isolated numerical solutions of system (3.3) by the
software Maple. We denote them by z1

0 = (t1h, t
1
r, Y

1), z2
0 = (t2h, t

2
r, Y

2), z3
0 =

(t3h, t
3
r, Y

3), z4
0 = (t4h, t

4
r, Y

4) and z5
0 = (t5h, t

5
r, Y

5), where

t1h = 0.000513290373638641697454460782 · · · ,
t1r = −0.11955221783175832815893090222 · · · ,
Y 1 = 0.205316251348505754951839443786 · · · ,

t2h = 0.014675552793706057903441902056 · · · ,
t2r = −0.688127444068533526392903994451 · · · ,
Y 2 = 5.871108237677659838212061270152 · · · ,

t3h = 0.029348756191102401394123551060 · · · ,
t3r = −1.505392075875461173587800519945 · · · ,
Y 3 = 11.746313370382026370282077467858 · · · ,

t4h = 0.261492966943715224144155680486 · · · ,
t4r = −3.039531323800416571394230522282 · · · ,
Y 4 = 108.746926757392770008325179115844 · · · .

t5h = 1.720874199275308820298191960149 · · · ,
t5r = −3.142702665184348910894824498210 · · · ,
Y 5 = 2736.698490214051925132348730921498 · · · .
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In the following, using Theorem 2.1 (Newton-Kantorovich Theorem), we shall prove
analytically that there are five isolated solutions of system (3.3) near z1

0 , z2
0 , z3

0 , z4
0

and z5
0 . Obviously, These five solutions correspond to five limit cycles of systems

(3.1).
Here f = (f1, f2, f3)T , n = 3 and C = R3. Let C0 take Ci0, respectively, where

C1
0 = [0.0005, 0.0006]× [−0.1196,−0.1195]× [0.2053, 0.2054],

C2
0 = [0.0146, 0.0147]× [−0.6882,−0.6881]× [5.8711, 5.8712],

C3
0 = [0.0293, 0.0294]× [−1.5054,−1.5053]× [11.7463, 11.7464],

C4
0 = [0.2614, 0.2615]× [−3.0394,−3.0395]× [108.7469, 108.7470],

C5
0 = [1.7208, 1.7209]× [−3.1428,−3.1427]× [2736.6984, 2736.6985],

and zi0 is the interior point of Ci0. We apply Theorem 2.1 to function f = (f1, f2, f3)T .
Next, we estimate the values γ, α and β of Theorem 2.1 in Ci0, respectively.
According to Theorem 2.1 and Lemma 2.1, we need compute the second partial

derivative of the functions fi in Ci0 for estimating the value γ. The second partial
derivative of the functions fi are shown as follows,

∂2f1

(∂th)2
=

1

2
e−th(4Y sin th − 4Y cos th + 1601 sin th − cos th),

∂2f1

∂th∂Y
= −2e−th sin th,

∂2f2

(∂tr)2
=

1

5
e−tr (10Y sin tr − 2010Y cos tr − 20403 sin tr + 20401 cos tr),

∂2f2

∂tr∂Y
= −2e−tr (101 sin tr − 100 cos tr),

∂2f3

(∂th)2
=

1

2
e−th(4Y cos th − 800 sin th + 801 cos th),

∂2f3

∂th∂Y
= −e−th(cos th − sin th),

∂2f3

(∂tr)2
= −1

5
e−tr (10Y cos tr + 101 sin tr − 102 cos tr),

∂2f3

∂tr∂Y
= e−tr (cos tr − sin tr).

Other second partial derivatives of fi are equal to zero. Since | sin t| ≤ 1, | cos t| ≤ 1
and Y ≥ 1

10 , we deduce that

| ∂
2f1

(∂th)2
| ≤ e−th(4Y + 801),

| ∂
2f1

∂th∂Y
| ≤ 2e−th ,

| ∂
2f2

(∂tr)2
| ≤ 1

5
e−tr (2020Y + 40804),

| ∂
2f2

∂tr∂Y
| ≤ 402e−tr , (3.4)
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| ∂
2f3

(∂th)2
| ≤ 1

2
e−th(4Y + 1601),

| ∂
2f3

∂th∂Y
| ≤ 2e−th ,

| ∂
2f3

(∂tr)2
| ≤ 1

5
e−tr (10Y + 203),

| ∂
2f3

∂tr∂Y
| ≤ 2e−tr .

We shall apply Theorem 2.1 to prove that there is an unique solution sufficiently
close to z2

0 of system (3.3) in C2
0 . Noticing that the upper bound functions of second

partial derivative of the functions fi (see the right functions of (3.4)) are decreasing
in the variable th and increasing in the variables tr and Y , we obtain that they reach
their maximum values at (th, tr, Y ) = (0.0146,−0.6881, 5.8712) on the boundary of
C2

0 , that is,

| ∂
2f1

(∂th)2
| ≤ 813, | ∂

2f1

∂th∂Y
| ≤ 2,

| ∂
2f2

(∂tr)2
| ≤ 20979, | ∂

2f2

∂tr∂Y
| ≤ 801,

| ∂
2f3

(∂th)2
| ≤ 1618, | ∂

2f3

∂th∂Y
| ≤ 2,

| ∂
2f3

(∂tr)2
| ≤ 105, | ∂

2f3

∂tr∂Y
| ≤ 4.

Hence, we get

max
1≤i,j,k≤3

[
∂2fi
∂zj∂zk

] ≤ 20979,

where z1 = th, z2 = tr and z3 = Y . Thus, we deduce from Theorem 2.1 that

|Df(z)−Df(z′)|∞ ≤ 9× 20979|z − z′|∞ = 188811|z − z′|∞,

which means γ = 188811.
Next, we compute Df(z2

0)−1 and f(z2
0) to estimate α and β in C2

0 . We directly
compute Df(z2

0) and f(z2
0) as follows

Df(z2
0) =


−400.091728 · · · 0 0.9997867 · · ·

0 −1852.80913 · · · −252.49142 · · ·

−.158271 · · · −9.36458 · · · −1.278284 · · ·

 ,

and

f(z2
0) =


−4.567× 10−29

−3.574× 10−28

−1.84× 10−30

 .
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The approximation of inverse of Df(z2
0) is

Df(z2
0)−1 ≈ B =


−0.002107 · · · 0.005007 · · · −.990821 · · ·

−0.021375 · · · −0.273639 · · · 54.033562 · · ·

0.156852 · · · 2.004036 · · · −396.504065 · · ·

 .

Using Lemma 2.2, we estimate |Df(z2
0)−1|∞ as follows

|Df(z2
0)−1|∞ ≤

|B|∞
1− |Id−BDf(z1

0)|∞

≤ 400

1− 2× 10−32

≤ 401.

Hence,

|Df(z2
0)−1f(z2

0)|∞ ≤ |Df(z2
0)−1|∞|f(z2

0)|∞
≤ 401× 4× 10−28

= 1.604× 10−25.

Take α = 1.604× 10−25 and β = 401, then

h = αβγ = 1.21443 · · · × 10−17,

r1 =
1 +
√

1− 2h

h
α = 2.6415 · · · × 10−8,

r2 =
1−
√

1− 2h

h
α = 1.6040 · · · × 10−25.

Obviously, h ≤ 1
2 and Br1(z0) ⊂ C2

0 . Therefore, we from Theorem 2.1 get that the
function f(z) has an unique zero z2

0 in C2
0 ∩ Br2(z0), so systems (3.1) have a limit

cycle to be approximation z2
0.

Similarly, we can prove that there is unique solution of system (3.3) in C1
0 , C3

0 ,
C4

0 and C5
0 sufficiently close to z1

0 , z3
0 , z4

0 and z5
0 , respectively. Here, we only provide

the values (α, β, γ) in C1
0 , C3

0 , C4
0 and C5

0 as follows:

C1
0 : (9× 10−26, 402, 83619),

C3
0 : (4× 10−25, 181, 523350),

C4
0 : (6× 10−24, 29, 1.8× 107)

C5
0 : (4× 10−23, 55, 2.7× 108).

Thus, Theorem 1.1 holds.

4. Proof of Theorem 1.2

The linear Y -shape systems showed in [25] are

Ẋ =


(H1(X), H2(X))T = AX + h, if X ∈ SH ,

(L1(X), L2(X))T = BX, if X ∈ SL,

(R1(X), R2(X))T = CX + r, if X ∈ SR,

(4.1)



Limit cycles of piecewise linear dynamical systems. . . 1833

where

A =

−3 −1

5 1

 , B =

 7
5 −1

26
25 1

 , C =

 7
5 −1

149
100 0

 ,

h =

 0

−50

 , r =

 1

500

 ,

and

SH = {(x, y) : x < 0, y > 0},
SL = {(x, y) : x < 0, y < 0},
SR = {(x, y) : x > 0}.

The three separation rays are

Σ = {(x, y) : x = 0, y ≥ 0},
Π = {(x, y) : x = 0, y ≤ 0},
Γ = {(x, y) : y = 0, x ≤ 0}.

See Figure 5.

1

Y

X

Y
0

Figure 5. The illustration of the systems (4.1).

The sliding set of systems (4.1) is the segment {(0, y) : 0 ≤ y ≤ 1}. The orbit
starting from (0, y0) with y0 > 1 enters into SH caused by the direction of vector
field at (0, y0) and exits SH through Γ and enters into SL, then exits SL through Π
and enters SR, and finally reach (0, y1) with y1 > 1. Therefore, if systems (4.1) have
crossing limit cycles, then they must surround the segment {(0, y) : 0 ≤ y ≤ 1}.

We get from (4.1) that the solution of system XH passing through the point
(0, Y ) with Y > 1 at the time t = 0 is

xh(t) = 25− e−t[25 cos t+ (Y + 25) sin t],

yh(t) = −75 + e−t[(Y + 75) cos t+ (2Y + 25) sin t],
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the solution of system XL passing through the point (X, 0) with X < 0 at the time
t = 0 is

xl(t) = e
6
5 tX(cos t+ 1

5 sin t),

yl(t) = 26
25e

6
5 tX sin t,

and the solution of system XR passing through the point (0, Y ) with Y > 1 at the
time t = 0 is

xr(t) = − 50000
149 + e

7
10 t[ 50000

149 cos t− (Y + 34851
149 ) sin t],

yr(t) = − 69851
149 + e

7
10 t[(Y + 69851

149 ) cos t− ( 7
10Y −

256043
1490 ) sin t].

When the solution of system XL starting the point (X, 0) reaches (0, Y0) in Π at
first time after the time tl, we have

xl(tl) = e
6
5 tlX(cos tl + 1

5 sin tl) = 0,

yl(tl) = 26
25e

6
5 tlX sin tl = Y0,

where (0, Y0) with Y0 < 0 is the intersection of the solution and Π. Noticing that

e
6
5 tlX < 0, we get

cos tl +
1

5
sin tl =

√
26

5
sin(tl + φ) = 0,

where

sinφ =
5√
26
, cosφ =

1√
26
,

which implies that tl + φ = π. Thus,

Y0(X) =
26

25
e

6
5 tlX sin tl =

√
26

5
e

6
5 (π−φ)X.

Hence, in the left half plane, the solution of systems (4.1) starting from the point
(0, Y ) with Y > 1 reaches Γ anticlockwise at first time after the time th > 0, then it
reaches Π at first time after the time tl = π−φ. In the right half plane, the solution
of systems (4.1) starting from the point (0, Y ) with Y > 1 reaches Π clockwise at
first time after the time tr < 0, see Figure 5. Thus, the periodic solutions of systems
(4.1) are characterized by the solutions of system

f1(th, tr, Y ) := yh(th) = 0,

f2(th, tr, Y ) := xr(tr) = 0,

f3(th, tr, Y ) := Y0(xh(th))− yr(tr) = 0,

(4.2)

where th > 0, tr < 0 and Y > 1.
It is easy to get the four isolated numerical solutions of system (4.2) by the

software Maple denoted by z1
0 = (t1h, t

1
r, Y

1), z2
0 = (t2h, t

2
r, Y

2), z3
0 = (t3h, t

3
r, Y

3) and
z4

0 = (t4h, t
4
r, Y

4), where

t1h = 0.051082485537090654027478391699 · · · ,
t1r = −0.005991641144842323606659692949 · · · ,
Y 1 = 2.500011126744488998265267149580 · · · ,
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t2h = 0.366352369760846977711095707901 · · · ,
t2r = −0.065755878802056887120229960471 · · · ,
Y 2 = 17.700177606150772018324516693546 · · · ,

t3h = 1.626000830767912176084155886824 · · · ,
t3r = −0.615075468396652934815516392986 · · · ,
Y 3 = 185.623364172831585830597833605051 · · · ,

t4h = 2.278351664758820050509738185822 · · · ,
t4r = −1.662276099415349659753656001746 · · · ,
Y 4 = 875.696131205034226078862459530872 · · · .

The precise proof of the existence of four crossing limit cycles is similar to the
proof of Theorem 1.1, so we omitted.

The four limit cycles of system (4.1) are showed in Figure 6. We enlarged the
two limit cycles nearest to the origin in Figure 6 (b) and (c), so we could see them
more clearly.

(a) Four crossing limit cycles of
systems (4.1)

(b) The crossing limit cycle n-
earest the origin.

(c) The crossing limit cycle sec-
ondly nearest the origin.

Figure 6. Crossing limit cycles of systems (4.1).

Thus, Theorem 1.2 holds.
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