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Abstract The alternating direction method of multipliers (ADMM) for sep-
arable convex optimization of real functions in complex variables has been
proposed recently [22]. Furthermore, the convergence and O(1/K) conver-
gence rate of ADMM in complex domain have also been derived [23]. In
this paper, a fast linearized ADMM in complex domain has been presented
as the subproblems do not have closed solutions. First, some useful results
in complex domain are developed by using the Wirtinger Calculus technique.
Second, the convergence of the linearized ADMM in complex domain based
on the VI is established. Third, an extended model of least absolute shrinkage
and selectionator operator (LASSO) is solved by using linearized ADMM in
complex domain. Finally, some numerical simulations are provided to show
that linearized ADMM in complex domain has the rapid speed.
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1. Introduction

Many nonlinear optimization problems with complex variables are usually encoun-
tered in the domain of applied mathematics and engineering applications, such as
signal processing and control theory [1, 4, 5, 16, 20, 26, 34]. The usual method ana-
lyzing optimization problem in complex domain is to separate it into the real part
and the imaginary part, and then to recast it into a equivalent real optimization
problem by doubling the size of the constraint conditions, see [18,25,31,32] and ref-
erences therein. But it may lost unknown coupling relationship between the signal
itself [22, 30].
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Recently, Li et al. [22] considered the separable convex optimization problem
of real-valued function in complex domain with linear equality constraints in the
standard form

min
x,y

f(x) + g(y),

s.t. Ax+By = b, (1.1)

x ∈ χ1, z ∈ χ2,

where f : Cn → R∪{+∞} and g : Cm → R∪{+∞} are proper, closed and convex
functions; χ1 ⊂ Cn and χ2 ⊂ Cm are closed convex sets; A ∈ Cp×n and B ∈ Cp×m
are given matrices; b ∈ Cp is a given vector.

The Lagrangian function L0(x, y, λ) and the augmented Lagrangian function
Lρ(x, y, λ) of (1.1) are given by

L0(x, y, λ) = f(x) + g(y) + 2Re{λH(Ax+By − b)} (1.2)

and

Lρ(x, y, λ) = f(x) + g(y) + 2Re{λH(Ax+By − b)}+ ρ‖Ax+By − b‖22, (1.3)

respectively, where λ ∈ Cp is the dual variable and ρ > 0 is the penalty parameter.


xk+1 = arg min

x
(f(x) + ρ||Ax+Byk − b+

1

ρ
λk||22), (1.4a)

yk+1 = arg min
y

(g(y) + ρ||Axk+1 +By − b+
1

ρ
λk||22), (1.4b)

λk+1 = λk + ρ(Axk+1 +Byk+1 − b). (1.4c)

Under the assumption that L0(x, y, λ) has a saddle point, the ADMM iterations
In some convex optimization, matrix A or B may not be a scalar matrix. For

example, the solution of the subproblem x-update does not have the closed form
solution as well as the structure of the matrix A is general. If we used the iteration
method to resolved the subproblem x-update, the complexity of the algorithm will
greatly improve. In real domain, we can linearize the quadratic term of the ||Ax+

Byk − b+
1

ρ
λk||22 by the classic calculus.

He [13] propose a new alternating direction method (ADM) method which needs
to solve two strongly monotone sub-VI problems in each iteration approximately
and allows the parameters to vary from iteration to iteration. Osher [27] proposed
a fast linearized Bregman method which was applied to the problem of denoising of
undersampled signals in compressive sensing. Yang and Yuan [35] propose linearized
ADMM to solve the subproblems of some nuclear norm optimization problems.
Li [24] proposed a linearized ADMM to solve two general LASSO models: Sparse
Group LASSO and Fused LASSO. In [36], an implementable numerical algorithm
which called fast linearized ADMM is proposed to solve a signal reconstruction
algorithm for solving the augmented l1-regularized problem. Ouyang [28] presented
a novel framework for acceleration of linearized ADMM which the basic idea is
to incorporate a multi-step acceleration scheme into linearized ADMM. The rate
of convergence of ADMM is demonstrated that it is better than that of linearized
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ADMM. Li and Sun [21] presents a majorized ADMM with indefinite proximal terms
for solving linearly constrained 2-block convex composite optimization problems
with each block in the objective being the sum of a non-smooth convex function and
a smooth convex function. By choosing the indefinite proximal terms properly, the
global convergence and the iteration-complexity were established in the non-ergodic
sense. In [14], a new linearized ADMM is proposed via choosing a positive-indefinite
proximal regularization term. The global convergence of the new linearized ADMM
is proved and its worst-case convergence rate measured by the iteration complexity
is also established. He [15] gave a unified approach to show the O(1/K) convergence
rate for both the original ADMM and its linearized variant based on a VI approach
in real domain.

Although the convergence and linear convergence rate of ADMM in complex
domain has been obtained in [22], and many linearized ADMM methods have been
presented in real domain, the convergence for linearized ADMM in complex domain
is not given. The purpose of the paper is to present a fast linearized ADMM for
separable convex optimization of real functions in complex variables. By using the
Wirtinger Calculus technique, we develop some new results in complex domain that
are needed in this paper. The convergence of the proposed linearized ADMM is
established under some mild assumptions. For the applications, we apply new lin-
earized ADMM in complex domain for an extended model of LASSO. The numerical
simulation results are provided to show that the proposed algorithm is indeed more
efficient and more robust.

The outline of the paper is as follows. In Section 2, we develop some new results
in complex domain by using Wirtinger Calculus technique. In Section 3, the form
of VI in complex domain is given by using the Wirtinger Calculus technique. The
linearized ADMM in complex domain based on a VI approach and its convergence
are presented in Section 4, In Section 5, an extended LASSO model in complex
domain is solved by using linearized ADMM. In Section 6, the numerical simulations
are reported. Finally, some conclusions are drawn in Section 7.

2. Preliminaries of Wirtinger Calculus

In this section, we recall and develop some well-known results in complex domain by
using Wirtinger Calculus technique. For a comprehensive treatment of Wirtinger
Calculus, we refer to [2, 3, 29].

2.1. Complex-to-Real and Complex-to-Complex Mappings

Let z = u+ jv ∈ Cn, where u ∈ Rn, v ∈ Rn are the real part and imaginary part of
z, respectively. The most commonly used mapping Cn 7→ R2n takes a very simple
form and is written such that

z ∈ Cn 7→ zr , (u, v) ∈ R2n,

which is obtained by stacking the real part u on the top of imagery part v, e.g.,

(u, v) denotes vector [u
T

v
T

]
T

.
The second mapping is defined by simple concatenation of the complex vector

and its complex conjugate as

z ∈ Cn 7→ zc , (z, z̄) ∈ C = {(z, z̄)|z ∈ Cn} ⊆ C2n,
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which is obtained by stacking z on the top of its complex conjugate z̄. Similarly,
we also have the mapping z ∈ Cn 7→ z̄c = (z̄, z) ∈ C.

The complex vector zc ∈ C2n is related to the real vector zr ∈ R2n as

zc = Jnzr and zr =
1

2
JHn zc,

where the superscripts (·)H is used for the Hermitian conjugate, the transformation

Jn =

 In jIn

In −jIn

 ∈ C2n×2n (2.1)

satisfy JnJn
H = Jn

HJn = 2I2n. The linear map Jn is an isomorphism map from

R2n to C2n and its inverse is given by
1

2
JHn .

2.2. Wirtinger’s Derivatives

Let f(z) be a complex function defined on Cn, where z = u+ jv. The function f(z)
may be regarded as either defined on R2n or Cn. The functions may take different
forms, but they are equally valued. For convenience, we use the same function f to
denote them as follows [3].

f(z) = f(u+ jv) = f(u, v) = f(zr) = f(zc) = f(z, z̄). (2.2)

Definition 2.1. A function f(u, v) = Re{f(u, v)} + jIm{f(u, v)} is called real
differentiable when the real part Re{f(u, v)} and the imagine part Im{f(u, v)} of
f(u, v) are differentiable as real-valued functions of real-valued variables u and v.

Definition 2.2. Let f(z), z = u + jv. The Wirtinger’s derivative
∂f

∂z
and the

conjugate Wirtinger’s derivative
∂f

∂z
are defined as

∂f

∂z
=

1

2

(
∂f

∂u
− j ∂f

∂v

)
,

∂f

∂z
=

1

2

(
∂f

∂u
+ j

∂f

∂v

)
. (2.3)

Although Definition (2.2) often allow the partial derivatives to be expressed
elegantly in terms of z and z̄, neither contains enough information by itself to
express the change in a function with respect to a change in z. This motivates the
following definition of the real gradient and the complex gradient [2].

Definition 2.3 ( [29]). Let f(z, z̄) : C2n 7→ R, z = u + jv. The Wirtinger’s real

gradient
∂f

∂zr
, the complex gradient

∂f

∂zc
and the conjugate complex gradient

∂f

∂z̄c
are defined as

∂f

∂zr
=

(
∂f

∂u
,
∂f

∂v

)
, (2.4)

∂f

∂zc
=

(
∂f

∂z
,
∂f

∂z̄

)
(2.5)

and
∂f

∂z̄c
=

(
∂f

∂z̄
,
∂f

∂z

)
, (2.6)

respectively.
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The linear map Jn (2.1) also defines a one-to-one correspondence between
∂f

∂zr

and
∂f

∂zc
,
∂f

∂zr
and

∂f

∂z̄c
, namely [2]

∂f

∂zr
= JT

∂f

∂zc
,

∂f

∂zr
= JH

∂f

∂z̄c
. (2.7)

Similarly, we can define the Hessian matrix in complex domain.

Definition 2.4 ( [29]). The real Hessian Hrr can be defined as

Hrr =
∂

∂zr

(
∂f

∂zr

)T

=

 ∂

∂u
(
∂f

∂u
)
T ∂

∂u
(
∂f

∂v
)
T

∂

∂v
(
∂f

∂u
)
T ∂

∂v
(
∂f

∂v
)
T

 ,

Huu Huv

Hvu Hvv

 . (2.8)

If real-valued function f(zr) with respect to the components of zr has the second
partial derivatives, it is well known that a real Hessian Hrr is symmetric.

Definition 2.5. The complex Hessian H
C

cc can be defined as

H
C

cc =
∂

∂z̄c

(
∂f

∂zc

)T

=
∂

∂zc

(
∂f

∂zc

)H

. (2.9)

It is convenient to define the quantities

Hzz ,
∂

∂z

(
∂f

∂z

)H

, Hzz̄ ,
∂

∂z

(
∂f

∂z̄

)H

, Hz̄z ,
∂

∂z̄

(
∂f

∂z

)H

, Hz̄z̄ ,
∂

∂z̄

(
∂f

∂z̄

)H

.

With the above definitions, we also have that

H
C

cc =

Hzz Hzz̄

Hz̄z Hz̄z̄

 . (2.10)

From (2.7), the real Hessian Hrr can be transformed into complex Hessian which
as

Hrr = JHH
C

ccJ and H
C

cc =
1

4
JHrrJ

H . (2.11)

The complex Hessian have many good features, for example

Theorem 2.1 ( [29]). H
C

cc is Hermitian if and only if Hrr is symmetric.

Theorem 2.2 ( [29]). The H
C

zz has same condition number with the Hrr.

Theorem 2.3 ( [2]). The eigenvalues of H
C

cc are the half of the Hrr.

Theorem 2.3 implies that if the real Hessian Hrr is positive definite (posi-

tive semi-definite), then the complex Hessian H
C

cc is also positive definite (positive
semidefinite).
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2.3. Taylor Series in Complex Domain

2.3.1. First-order complex Taylor series expansion

The function f(zr) : R2n → R may be regarded as either defined on R2n, so its
Taylor series expansion is

f(zr +4zr) ≈ f(zr) +

(
∂f

∂zr

)T

4zr. (2.12)

As set R2n is isomorphism to set C, by (2.7), (2.12) and
∂f

∂z̄
= (

∂f

∂z
), the function

f(zc) has the complex Taylor series expansion as

f(zc +4zc) ≈ f(zc) +

(
∂f

∂zr

)T

JJ−14zr

= f(zc) +

(
∂f

∂zc

)T

4zc (2.13)

= f(z) + 2Re

{(
∂f

∂z

)T

4z

}
(2.14)

= f(z) + 2Re

{(
∂f

∂z̄

)H

4z

}
. (2.15)

This means that the first-order complex Taylor series expansion of a real-valued
function is real-valued.

2.3.2. Second-order Series of real-valued function in Complex Domain

The functions f(zr) : R2n → R has the second-order real Taylor series expansion

f(zr +4zr) ≈ f(zr) +

(
∂f

∂zr

)T

4zr +
1

2
(4zr)

T

Hrr4zr. (2.16)

By (2.11), the second-order term of (2.16) can be represented equivalently as

1

2
(4zr)

T

Hrr4zr =
1

2
(4zr)

H

Hrr4zr

=
1

2
(4zr)H(JHH

C

ccJ)4zr =
1

2
(4zc)

H

H
C

cc4zc. (2.17)

From (2.16) and (2.17), the second-order complex Taylor series expansion of
f(z) is given by

f (zc +4zc) ≈ f(zc) +

(
∂f

∂zc

)T
4zc +

1

2
(4zc)HH

C

cc4zc

= f(z) + 2Re

{(
∂f

∂z

)T
4z

}
+ Re{(4z)HHzz4z +4zHHzz̄4z̄}. (2.18)

Note that all of the terms in (2.18) are real valued.
As for the Taylor series, we consider the following example, which will be used

in the subsequent analysis.
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Example 2.1. Consider the real-valued function

f(z) = ||Az − b||22, (2.19)

where z ∈ Cn, b ∈ Cp and A ∈ Cp×n.

It follows from (2.19) that

f(z) = (Az − b)H(Az − b).

Then, we have
∂f

∂z
= AT (Az − b), ∂f

∂z̄
= AH(Az − b), (2.20)

and

Hzz =
∂f

∂z̄

(
∂f

∂z

)T
= AHA, Hzz̄ =

∂f

∂z̄

(
∂f

∂z

)H
=
∂f

∂z̄

(
∂f

∂z̄

)T
= 0. (2.21)

So the augmented complex gradient and the augmented complex Hessian matrix
of f(z) are given by

∂f

∂zc
=

AT (Az − b)

AH(Az − b)

 , (2.22)

and

Hc
zz =

∂f

∂zc

(
∂f

∂zc

)H
=

Hzz Hzz̄

Hz̄z Hz̄z̄

 =

AHA 0

0 AHA

 , (2.23)

respectively.

From (2.14) and (2.18), we have the first-order Taylor series and the second-order
Taylor series of the function (2.19) on z0 as

f(z +4z) ≈ f(z) +

AT (Az − b)

AH(Az − b)

T 4z
4z̄


= f(z) + 2Re{(Az − b)HA4z}, (2.24)

and

f(z +4z) = f(z)+

AT (Az−b)

AH(Az−b)

T 4z
4z̄

+
1

2

4z
4z̄

H AHA 0

0 AHA

4z
4z̄


= f(z) + 2Re{(Az − b)

H

A4z}+ Re{(4z)
H

A
H

A4z}

≈ f(z) + 2Re{(A
H

(Az − b))
H

4z}+ ξ||4z||22. (2.25)
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3. VI in Complex Domain

VI is an inequality involving a functional, which has to be solved for all possible
values of a given variable, belonging usually to a convex set [9, 19]. The math-
ematical theory of VI was initially developed to deal with equilibrium problems,
precisely the Signorini problem [10]. The applicability of the theory has since been
expanded to include problems from economics, finance, optimization and game the-
ory [6,11,17,37]. In this section, the form of VI in complex domain will be presented.

3.1. VI of Linear Constrained Convex Optimization in Com-
plex Domain

We consider the linearly constrained convex optimization problem

min
x
{f(x) : Ax = b}, (3.1)

where f is the real-valued convex functions in complex variables x ∈ Cn, A ∈ Cp×n
is given matrices and b ∈ Cp is a given vector. An equivalent form of (3.1) is [22]

min
x
{f(x) : Acxc = bc}, (3.2)

where

Ac =

A 0

0 A

 ∈ C2p×2n, xc =

x

x̄

 ∈ C2n and bc =

 b

b̄

 ∈ C2p.

The Lagrangian function of the optimization problem (3.2) is

L0(x, λ) = f(x) + (λc)H(Acxc − bc) = f(x) + 2Re{λH(Ax− b)}. (3.3)

Assumption 2. The Lagrangian function L0 (3.3) has a saddle point, i.e., there
exists (x∗, λ∗), for which

L0(x∗, λ) ≤ L0(x∗, λ∗) ≤ L0(x, λ∗)

holds for all x and λ.
This can be expressed asL0(x, λ∗)− L0(x∗, λ∗) ≥ 0,

L0(x∗, λ∗)− L0(x∗, λ) ≥ 0.
(3.4)

An equivalent expression of (3.4) is the following VI, namely, x∗ ∈ Cn, f(x)− f(x∗) + 2Re{(x− x∗)H(AHλ∗)} ≥ 0, ∀x ∈ Cn,

λ∗ ∈ Cm, 2Re{(λ− λ∗)H [−(Ax∗ − b)]} ≥ 0, ∀λ ∈ Cm.
(3.5)

The optimal condition of (3.5) can be characterized as finding µ∗ that satisfies

f(x)− f(x∗) + 2Re{(µ− µ∗)HΨ(µ∗)} ≥ 0, ∀µ ∈ Ω, (3.6)

where

µ =

x

λ

 , Ψ(µ) =

 AHλ

−(Ax− b)

 and Ω = Cn × Cp.
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3.2. VI of Separable Convex Optimization with Linear Con-
straints in Complex Domain

By the Assumption 1 of the Lagrangian function L0 (1.2) has a saddle point, i.e.,
there exists (x∗, y∗, λ∗), for which

L0(x∗, y∗, λ) ≤ L0(x∗, y∗, λ∗) ≤ L0(x, y, λ∗) (3.7)

holds for all x, y, λ.
An equivalent expression of (3.7) is the following VIs

L0(x, y∗, λ∗)− L0(x∗, y∗, λ∗) ≥ 0, ∀x ∈ Cn,

L0(x∗, y, λ∗)− L0(x∗, y∗, λ∗) ≥ 0, ∀y ∈ Cm,

L0(x∗, y∗, λ∗)− L0(x∗, y∗, λ) ≥ 0, ∀λ ∈ Cp.

(3.8)

To simplify (3.8), we can get
f(x)− f(x∗) + 2Re{(x− x∗)H(AHλ∗)} ≥ 0, ∀x ∈ Cn,

g(y)− g(y∗) + 2Re{(y − y∗)H(BHλ∗)} ≥ 0, ∀y ∈ Cm,

2Re{(λ− λ∗)H [−(Ax∗ +By∗ − b)]} ≥ 0, ∀λ ∈ Cp.

(3.9)

It is similar to see that the VI reformulation of (3.9) is to find w∗ = (x∗, y∗, λ∗)
such that

Φ(µ)− Φ(µ∗) + 2Re{(w − w∗)HΨ(w∗)} ≥ 0, ∀w ∈ Ω, (3.10)

where

µ =

x

y

 , ω =


x

y

λ

 , Ψ(ω) =


AHλ

BHλ

−(Ax+By − b)

 ,

Φ(µ) = f(x) + g(y), Ω = Cn × Cm × Cp.

We use Ω∗ to denote the solution set of the variational inequality (3.10), namely

w∗ = (x∗, y∗, λ∗) ∈ Ω∗. (3.11)

4. Linearized ADMM in Complex Domain

In this section, we present the linearized ADMM for separable convex optimization
in complex domain based on the VI approach.

4.1. Linearized ADMM for Separable Convex Optimization in
Complex Domain

From Example (2.1), we can give the Taylor series of the quadratic term in (1.4a)

||Ax+Byk − b+
1

ρ
λk||22 ≈ ||Axk +Byk − b+

1

ρ
λk||22
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+ 2Re{(Axk +Byk − b+
1

ρ
λk)

H

A(x− xk)}+ ξ||x− xk||22. (4.1)

So the subproblem x-update become

xk+1 = arg min
x

{f(x) + 2ρRe{(Axk +Byk − b+
1

ρ
λk)

H

A(x− xk)}+ ξ||x− xk||22}.

The linearized ADMM iterations of optimal problem (1.1) is given by
xk+1 =arg min

x
{f(x)+2ρRe{(Axk+Byk−b+ 1

ρ
λk)

H

A(x)}+ξ||x− xk||22}, (4.2a)

yk+1 =arg min
y

(g(y) + ρ||Axk+1 +By − b+
1

ρ
λk||22), (4.2b)

λk+1 =λk + ρ(Axk+1 +Byk+1 − b). (4.2c)

4.2. VI of Linearized ADMM in Complex Domain

Lemma 4.1. Let wk+1 = (xk+1, yk+1, λk+1) refer to (4.2). Then the corresponding
VI is

Φ(u)− Φ(uk+1) + 2Re{(w − wk+1)H [Ψ(wk+1) + Γ(yk, yk+1)

+ P (wk+1 − wk)]} ≥ 0, ∀w ∈ Ω, (4.3)

where

Γ(yk, yk+1) = ρ


AH

BH

0

B(yk − yk+1), P =


ξI − ρAHA 0 0

0 ρBHB 0

0 0
1

ρ
Ip

 . (4.4)

Proof. By (4.2), the xk+1 and yk+1 satisfy

f(x)−f(xk+1)+2ρRe{(x−xk+1)H [AH(Axk+1+Byk−b+λ
k

ρ
)+ξ(xk+1−xk)]} ≥ 0 (4.5)

and

g(y)− g(yk+1) + 2ρRe{(y − yk+1)HBH(Axk+1 +Byk+1 − b+
λk

ρ
)} ≥ 0, (4.6)

respectively.
Substituting

λk+1 = λk + ρ(Axk+1 +Byk+1 − b)

into (4.5) and (4.6), we get

f(x)− f(xk+1) + 2Re{(x− xk+1)H [AHλk+1 + ρAHB(yk − yk+1)

+ (ξI − ρAHA)(xk+1 − xk)]} ≥ 0, (4.7)

and
g(y)− g(yk+1) + 2Re{(y − yk+1)HBHλk+1} ≥ 0, (4.8)
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respectively.
Reforming (4.7) and (4.8), we have

Φ(u)− Φ(u)k+1 + 2Re

{x− xk+1

y − yk+1

H [AHλk+1

BHλk+1

+ ρ

AH

BH

B(yk − yk+1)

+

 ξI − ρAHA 0

0 ρBHB

xk+1 − xk

yk+1 − yk

]} ≥ 0. (4.9)

Combining the third formula of (1.4), we have

Φ(u)− Φ(u)k+1 + 2Re




x− xk+1

y − yk+1

λ− λk+1


H 


AHλk+1

BHλk+1

−(Axk+1 +Byk+1 − b)



+ρ


AH

BH

0

B(yk − yk+1) +


ξI − ρAHA 0 0

0 ρBHB 0

0 0
1

ρ
I



xk+1 − xk

yk+1 − yk

λk+1 − λk



 ≥ 0.

(4.10)

This completes the proof.

Lemma 4.2. Let wk+1 = (xk+1, yk+1, λk+1) refer to (1.4). Then

Re{(wk+1 − w∗)HP (wk − wk+1)} ≥ Re{(λk+1 − λk)HB(yk − yk+1)}, ∀w∗ ∈ Ω∗.
(4.11)

Proof. Substituting w = w∗ in (4.3) and rewriting it, we get

Re{(wk+1 − w∗)HP (wk − wk+1)}
≥2Re{(wk+1 − w∗)HΓ(yk, yk+1)}+ Φ(uk+1)− Φ(u∗)

+ 2Re{(wk+1 − w∗)HΨ(wk+1)}. (4.12)

Since Ψ is a monotone mapping, the last two terms of (4.12) can be written as

Φ(uk+1)− Φ(u∗) + 2Re{wk+1 − w∗)HΨ(wk+1)}
≥ Φ(uk+1)− Φ(u∗) + 2Re{wk+1 − w∗)HΨ(w∗)} ≥ 0. (4.13)

Substitute (4.13) into (4.12), we can get

Re{(wk+1 − w∗)HP (wk − wk+1)} ≥ Re{(wk+1 − w∗)HΓ(yk, yk+1)}. (4.14)

By Ax∗ + By∗ = b and λk+1 = λk + ρ(Axk+1 + Byk+1 − b), the right hand of
(4.11) is equivalent to

Re{(wk+1 − w∗)HΓ(yk, yk+1)}
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= Re{[(wk+1 − w∗)HΓ(yk, yk+1)]H}
= Re{[B(yk − yk+1)]Hρ[(Axk+1 +Byk+1)− (Ax∗ +By∗)]}
= Re{(λk+1 − λk)HB(yk − yk+1)}. (4.15)

From (4.14) and (4.15), we can get (4.11). This completes the proof.

Lemma 4.3. Let wk+1 = (xk+1, yk+1, λk+1) refer to (1.4). Then

Re{(λk − λk+1)HB(yk − yk+1)} ≥ 0. (4.16)

Proof. Since (4.8) is true for the k-th iteration and the previous iteration, we
have

g(y)− g(yk+1) + 2ρRe{(y − yk+1)HBHλ(k+1)} ≥ 0 (4.17)

and

g(y)− g(yk) + 2ρRe{(y − yk)HBHλ(k)} ≥ 0. (4.18)

For (4.8) is true for the k-th iterations and (k − 1)-th iterations, we get

g(y)− g(yk+1) + 2ρRe{(y − yk+1)BHλk+1} ≥ 0 (4.19)

and

g(y)− g(yk) + 2ρRe{(y − yk)BHλk} ≥ 0. (4.20)

Setting y be yk in (4.19) and yk+1 in (4.20), then adding the two resulting
inequalities, we can get the conclusion.

This completes the proof.

Assumption ξ − ρAHA � 0, matrix P is positive semi-definite. We can define
P-norm of vectors as

||w − w∗||2P = (w − w∗)HP (w − w∗).

Theorem 4.1. Let wk+1 = (xk+1, yk+1, λk+1) refer to (1.4). Then

||wk+1 − w∗||2P ≤ ||wk − w∗||2P − ||wk − wk+1||2P , ∀ w∗ ∈ Ω∗. (4.21)

Proof. It follows from the (4.11) and (4.16) that

Re{(wk+1 − w∗)HP (wk − wk+1)} ≥ 0. (4.22)

Then, we have

||wk − w∗||2P = ||(wk+1 − w∗) + (wk − wk+1)||2P
= ||wk+1−w∗||2P +2Re{(wk+1−w∗)HP (wk−wk+1)}+||wk−wk+1||2P
≥ ||wk+1 − w∗||2P + ||wk − wk+1||2P . (4.23)

Rewriting it, we can get the conclusion. This completes the proof.
The inequality (4.21) is essential for the convergence of the alternating direction

method. Note that P is positive semi-definite.

||wk − wk+1||2P = 0 ⇔ P (wk − wk+1) = 0.
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The inequality (4.21) can be written as

||wk+1 − w∗||2(ξI−ρAHA) + ρ||B(yk+1 − y∗)||2 +
1

ρ
||λk+1 − λ∗||2

≤||wk − w∗||2(ξI−ρAHA) + ρ||B(yk − y∗)||2 +
1

ρ
||λk − λ∗||2

− (||wk − wk+1||2(ξI−ρAHA) + ρ||B(yk − yk+1)||2 +
1

ρ
||λk − λk+1||2). (4.24)

It leads to that

lim
k→∞

xk = x∗, lim
k→∞

Byk = By∗, lim
k→∞

λk = λ∗. (4.25)

5. Extended LASSO with Linearized ADMM in com-
plex domain

Statistics is the study of the collection, analysis, interpretation, presentation, and
organization in huge amounts of data. At the beginning, in order to minimize
deviation, due to the lack of independent variables and the model will usually choose
the independent variables as many as possible. Modeling process, however, need to
find has explanatory power of the independent variable on the dependent variable
is the most collection, through the choice of the independent variable is required to
improve the explanatory and predictive precision of the model. Index selection is
extremely important in the process of statistical modeling problem. LASSO is an
effective estimation method to realize index set to streamline.

In typical applications, there are many more features than training examples,
and the goal is to find a parsimonious model for the data. For general background
on the LASSO, see [33]. The LASSO has been widely applied, particularly in
the analysis of biological data, where only a small fraction of a huge number of
possible factors are actually predictive of some outcome of interest; see [12] for a
representative case study.

Consider the extended LASSO problem in complex domain as follows

min
x,y

||Ax− b||22 + α||y||1,

s.t. Fx− c = Gy, (5.1)

where x ∈ Cn, y ∈ Cm, A ∈ Cp1×n is a given row full-rank matrix with Rank(A) =
p1, b ∈ Cp1 , α > 0 is a scalar regularization parameter, F ∈ Cp2×n, G ∈ Cp2×m
and c ∈ Cp2×1.

By (1.4), ADMM in complex domain iterations of (5.1) are
xk+1 = arg min

x
{||Ax− b||22 + ρ||Fx− (Gyk + c− 1

ρ
λ
k

)||22}, (5.2a)

yk+1 = arg min
y

{||y||1 +
ρ

α
||Gy − (Fxk+1 +

1

ρ
λ
k

− c)||22}, (5.2b)

λk+1 = λk + ρ(Fxk+1 −Gyk+1 − c), (5.2c)

where ρ > 0 is a penalty parameter and u =
1

ρ
λ is a regular dual variable.
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The analytic solution of x-update sub-problem of (5.2a) is

xk+1 = (A
H

A+ ρF
H

F )−1(A
H

b+ ρF
H

(Gyk + c− 1

ρ
λk)). (5.3)

As matrix G is not identity matrix, y-update subproblem of (5.2b) do not have
closed-form solutions. Then, it is not possible to obtain the exact solution of yk+1.
If inner iterative procedures are required to pursuit approximate solutions of sub-
problems, the complexity of the algorithm will greatly increase.

A success in this regard is the split inexact Uzawa method proposed in [38, 39]

which suggested to linearize the quadratic term ||Gy − (Fxk+1 +
1

ρ
λ
k

− c)||22 and

solve the following approximate problem. Let q = Fxk+1 +
1

ρ
λ
k

− c, by Example

(2.1), we have

ρ

α
||Gy−q||22 ≈

ρ

α
||Gyk−q||22+

2ρ

α
Re{(G

H

(Gyk − q))
H

(y−yk)}+ ρ

α
ξ||y−yk||22, (5.4)

where parameter ξ satisfy ξ > 2||GH

G|| [15].
Then, the subproblem of y is transferred to follow optimization problem

min
y
{||y||1 + 2Re{p

H

y}+ ξ̃||y − yk||22}, (5.5)

where p = ρ
αG

H

(Gyk − q), q = Fxk+1 + 1
ρλ

k − c and ξ̃ = ρ
αξ.

Theorem 5.1. The analytic solution of (5.5) is

yk+1 = S1/(2ξ̃)

(
yk −

p̄

ξ̃

)
. (5.6)

Proof. Let y = u+ jv, p = pre + jpim, yk = a+ jb. Then

f(y) = ||y||1 + 2Re{p
H

y}+ ξ̃||y − yk||22
= ||y||1 + 2(preu− pimv) + ξ̃[(u− a)2 + (v − b)2]

= ||y||1 + ξ̃[(u− (a− pre

ξ̃
))2 + (v − (b+

pim

ξ̃
))2] + 2p

H

yk −
1

ρ
||p||2

= ||y||1 + ξ̃||y − (yk −
p̄

ξ̃
)||22 + constant. (5.7)

(5.5) is equal to

min
y
{||y||1 + ξ̃||y − (yk −

p̄

ξ̃
)||22}. (5.8)

By the soft-threshold in complex domain [22], we can get the result (5.6). This
completes the proof.

By (5.3) and (5.6), the ADMM in complex domain iterations of further gener-
alized LASSO (5.1) as follows

xk+1 = (A
H

A+ ρF
H

F )−1(A
H

b+ ρF
H

(Gyk + c− uk)), (5.9a)

yk+1 = S1/(2ξ̃)(yk −
p̄

ξ̃
), (5.9b)

uk+1 = uk + Fxk+1 −Gyk+1 − c, (5.9c)

where q = Fxk+1 + uk − c, p =
ρ

α
G

H

(Gyk − q), ξ > 2||GH

G|| and ξ̃ =
ρ

α
ξ.
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6. Numerical Simulation

All our numerical experiments are carried out on a PC with Intel(R) Core(TM)
i7-4710MQ CPU at 2.50GHz and 8GB of physical memory. The PC runs MATLAB
Version: R2013a on Window 7 Enterprise 64-bit operating system.

In model (5.1), x ∈ Cn is a discrete complex signal generated by random N(0, 1)
with the length n = 500 and y ∈ Cm is a discrete r-sparse complex signal generated
by random N(0, 1) with the length m = 600 and contains (at most) r = 50 nonzero
entries. Select p = 8r (p < n) measurements uniformly at random matrix Ap×n via
Ap×nx = b. Signal x and y have the inner relation by the equation Fl×nx − b =
Ql×my with l = 8r.

0 100 200 300 400 500 600
0

200

400

600

800

1000

f(
xk ) 

+
 g

(y
k )

iteration  k

Figure 1. The function value by iteration k

Hence reconstructing signal x and y from measurement b and relation equation
Fx − b = Qy is generally an ill-posed problem which is an undetermined system
of linear equations [7, 8]. As y is sparse, the sparsest solution can be obtained by
solving the Lasso model (5.1). The subproblem x-update can be resolved by the
iteration formula (5.2a). The subproblem y-update do not has closed revolution, so
we can resolve it by the formula (5.9b).
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10
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||s
k || 2

iteration  k

Figure 2. The residual of real part and imaginary part by iteration k
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In Figure 1, the change of the objective function values in the process of itera-
tion is shown, seen in figure as the objective function value decrease monotonously
through the iterations.

In Figure 2 (top), the full red line describe the changes of the primal residuals
rk and the dotted lines in represent the original residual tolerance εpri. In Figure 2
(bottom), the full blue line describes the changes of the dual residuals sk and the
dotted lines represent the dual residuals tolerance εdual.

50 100 150 200 250 300 350 400 450 500
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0

5

(a) Comparison of real part of signal x 

50 100 150 200 250 300 350 400 450 500
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(b) Comparison of  imaginary part of signal x 

Figure 3. The real part and imaginary part of signal x
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Figure 4. The real part and imaginary part of sparse signal y

In Figure 3 and Figure 4, the comparisons of the original signal(blue dots) and
reconstructed signal (red circles) about x and y are displayed, respectively. In line
with the degree of visible from the figure in the circle and point reconstruction
signal to restore the original signal very well.

Keeping the parameters fixed, we repeat the experiment 100 times with different
random signal, recording the maximum, minimum and average value of relative
errors(including 4 types: real part of signal x, imaginary part of signal x, real part
of signal y and imaginary part of signal y), the iteration numbers and running
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time. The results are shown in Table 1. From the Table 1, it can be seen that the
linearized ADMM have either the quick convergence speed and robustness.

Table 1. The 100 times experimental results of Extended Lasso model

Indexs Max Min Average

Error(real x) 3.1068× 10−4 1.9909× 10−4 2.4354× 10−4

Error(imag x) 3.0782× 10−4 1.9903× 10−4 2.4139× 10−4

Error(real y) 9.7576× 10−4 4.0766× 10−4 5.9536× 10−4

Error(imag y) 9.0566× 10−4 4.3648× 10−4 6.1418× 10−4

Run Time(s) 10.3911 6.5449 8.7026

Iteraion number 664 421 562.83

Table 2. Comparison of linearized ADMM and ADMM using CVX

Indexs Linearized ADMM ADMM using CVX

Error(real x) 2.5311× 10−3 2.0421× 10−3

Error(imag x) 2.5465× 10−3 2.0520× 10−3

Error(real y) 7.7772× 10−3 6.2780× 10−3

Error(imag y) 8.0498× 10−3 5.5476× 10−3

Run Time(s) 0.0371496 63.7351

Iteraion number 168.7 189.8

We compare the algorithm (5.9) of linearized ADMM and the (5.2) of ADMM
using CVX about the relative error, iteration numbers and run time. Here, the
length of signal x and y is n = 50,m = 60. The sparse rate of y is r = n/10. Select
p = 8r (p < n) measurements uniformly at random matrix Ap×n via Ap×nx = b.
Signal x and y have the inner relation by the equation Fp×nx − b = Qp×my. The
results are shown in Table 2. From the Table 2, it can be seen that the linearized
ADMM has the more quick convergence speed than CVX resolving ADMM.

7. Conclusions

In this paper, the linearized ADMM for separable convex optimization of real func-
tions in complex domain has been explored. First of all, based on the theory of
the complex analysis, Taylor series of real-valued function is presented in complex
domain by using the Wirtinger Calculus. After that, the convergence of linearized
ADMM in complex domain based on the VI approach has been established. In ad-
dition, the closed solution of extended LASSO subproblem is got by the linearized
ADMM. Eventually, the numerical simulations are provided to show that linearized
ADMM has the quick convergence speed and robustness compared with the CVX
in complex domain.
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