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PROXIMAL AND SYNDETICAL PROPERTIES
IN NONAUTONOMOUS DISCRETE SYSTEMS∗

Tianxiu Lu1,3 and Guanrong Chen2,†

Abstract This paper is mainly concerned with a class of nonautonomous
discrete systems (X, f1,∞). New definitions of proximity relations and sensi-
tivity in nonautonomous discrete systems are given. Some relations among
P (f1,∞), L(f1,∞), R(f1,∞), S(f1,∞) and P (f1,∞)(x) are derived. And some
chaotic properties of f1,∞ are proved.
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1. Introduction

The proximal relation in a group of transformations was first studied by Ellis and
Gottschalk in [6]. The syndetically proximal relation was then introduced by Clay
in [3]. In [12], Shoenfeld introduced the notion of regular homomorphisms which
are defined by extending regular minimal sets to homomorphisms with a minimal
range. And Yu in [17] introduced the concepts regular relation and syndetically
regular relation. For more resent results on proximal and syndetically proximal
properties, we refer to [7, 10,13–16] and others.

Most of papers studied complexity in autonomous discrete systems (X, f). How-
ever, if various perturbations of a system are described as different functions, then
there are a sequence of maps to map the points in the system. This means that
many systems in engineering applications are nonautonomous systems. The aim
of this paper is to investigate some proximity relations and chaotic properties in
nonautonomous systems. Nonautonomous discrete systems were precisely intro-
duced in [8], in connection with nonautonomous difference equations (see [5,11] and
some references therein).

Let X be a compact metric space and consider a sequence of continuous maps
fn : X → X,n ∈ N (where N is the set of nonzero natural numbers), denoted
by f1,∞ = (f1, f2, · · · ). This sequence defines a nonautonomous discrete system
(X, f1,∞). Denote fki = fi+k−1 ◦ · · · ◦ fi+1 ◦ fi and the orbit of any point x ∈ X
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is given by the sequence (fn1 (x)) = Orb(x, f1,∞), n ∈ N. In this paper, it is always
assumed that all the maps fn, n ∈ N, are surjective. It should be noted that
this condition is needed by most papers dealing with this kind of systems (for
example, [1, 4, 9]).

Write

N(U, V ) = {n ∈ N : fn1 (U) ∩ V 6= φ} and N(x, U) = {n ∈ N : fn1 (x) ∈ U}.

A dynamical system (X, f1,∞) is transitive if for each pair of nonempty open
sets U, V of X, N(U, V ) is nonempty. A point x ∈ X is transitive if the orbit
Orb(x, f1,∞) is dense in X. A set S is a minimal set if every x ∈ S is transitive.
The set

ω(x, f1,∞) ={y : there exists an increasing sequence {ni}∞i=1 such that

y = lim
i→∞

fni
1 (x)}

is said to be the ω-limit set of x. A point x ∈ X is a minimal point if the ω-limit
set of x is a minimal set.

2. Proximal relation and syndetically proximal re-
lation

A set F ⊂ N is called (i) syndetic if there exists a positive integer a such that
{i, i + 1, . . . , i + a} ∩ F 6= φ for any i ∈ N; (ii) thick if N − F is not syndetic,
i.e., F contains arbitrarily long runs of positive integers; (iii) thickly syndetic if
{n ∈ N : n+ j ∈ F for 0 ≤ j ≤ k} is syndetic for each k ∈ N.

A pair of points (x, y) ∈ X × X is proximal if lim inf
n→∞

ρ(fn1 (x), fn1 (y)) = 0 and

distal if it is not proximal. A pair of points (x, y) ∈ X ×X is syndetically proximal
if for every ε > 0 the set

Aεxy = {j ∈ N : ρ(f j1 (x), f j1 (y)) < ε}

is syndetic.
The proximal relation and the syndetically proximal relation on X × X are

defined respectively by

P (f1,∞) = {(x, y) ∈ X ×X : (x, y) is proximal};
L(f1,∞) = {(x, y) ∈ X ×X : (x, y) is syndetically proximal}.

And the set

P (f1,∞)(x) = {y ∈ X : (x, y) is proximal}

is called the proximal cell of x.
f1,∞ is said proximal if P (f1,∞) = X×X and syndetically proximal if L(f1,∞) =

X ×X.
A continuous, equivariant map is called a homomorphism. A one-one homomor-

phism of X onto X is called an automorphism of X. Denote the set of automor-
phisms of X by H(X) and the following concepts are given.
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Two points x, y ∈ X are said to be regular if there exists h ∈ H(X) such that
(h(x), y) ∈ P (f1,∞). The set of regular pairs in X is called the regular relation and
is denoted by R(f1,∞). Two points x, y ∈ X are said to be syndetically regular if
there exists h ∈ H(X) such that (h(x), y) ∈ L(f1,∞). The set of syndetically regular
pairs in X is called the syndetically regular relation and is denoted by S(f1,∞).

The following shows some relations among P (f1,∞), L(f1,∞), R(f1,∞), S(f1,∞)
and P (f1,∞)(x) in nonautonomous systems.

Theorem 2.1. Given a nonautonomous discrete system (X, f1,∞), the following
statements are true:

(i) 4X ⊂ L(f1,∞) (where 4X = {(x, x) : x ∈ X} is the diagonal of X ×X);

(ii) L(f1,∞) ⊂ P (f1,∞) ⊂ R(f1,∞);

(iii) L(f1,∞) ⊂ S(f1,∞) ⊂ R(f1,∞);

(iv) If P (f1,∞) = L(f1,∞), then R(f1,∞) = S(f1,∞);

(v) If P (f1,∞) is closed, then P (f1,∞) = L(f1,∞).

Proof. (i) Because ρ(f j1 (x), f j1 (x)) = 0 < ε for every (x, x) ∈ X × X, one has
4X ⊂ L(f1,∞).

(ii) Since the identity map is an automorphism of X, P (f1,∞) ⊂ R(f1,∞) is
obvious. The following shows that L(f1,∞) ⊂ P (f1,∞).

Assume (x, y) ∈ L(f1,∞). Then, ∀ε > 0, there exists a ∈ N such that, ∀i ∈ N,
one has

{j ∈ N : ρ(f j1 (x), f j1 (y)) < ε} ∩ {i, i+ 1, . . . , i+ a} 6= φ.

Then, for ε = 1
2 , ∃a1 ∈ N, put i1 = 1, ∃j1 ∈ {1, 2, . . . , a1 + 1} such that

ρ(f j11 (x), f j11 (y)) <
1

2
.

For ε = 1
22 , ∃a2 ∈ N, put i2 = a1 + 2, ∃j2 ∈ {a1 + 2, a1 + 3, . . . , a1 + 2 + a2} such

that

ρ(f j21 (x), f j21 (y)) <
1

22
.

For ε = 1
23 , ∃a3 ∈ N, put i3 = a1 + a2 + 3, ∃j3 ∈ {a1 + a2 + 3, a1 + a2 + 4, . . . , a1 +

a2 + 3 + a3} such that

ρ(f j31 (x), f j31 (y)) <
1

23
.

Continuing this process, one can obtain an increasing sequence {jk}∞k=1 such that

ρ(f jk1 (x), f jk1 (y)) <
1

2k
(k = 1, 2, . . .).

Then

lim inf
n→∞

ρ(fn1 (x), fn1 (y)) = 0.

So, (x, y) ∈ P (f1,∞). Hence, L(f1,∞) ⊂ P (f1,∞).
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(iii) First, let h be the identity map. Then h ∈ H(x). So, L(f1,∞) ⊂ S(f1,∞)
holds.

And by (2), L(f1,∞) ⊂ P (f1,∞). Assume (x, y) ∈ S(f1,∞). Then, ∃h ∈ H(x)
such that (h(x), y) ∈ L(f1,∞). So, (h(x), y) ∈ P (f1,∞). One can obtain that
(x, y) ∈ R(f1,∞).

Hence, S(f1,∞) ⊂ R(f1,∞) is hold.
(iv) By the definitions of R(f1,∞) and S(f1,∞), the conclusion is true.
(v) For any (x, y) ∈ P (f1,∞), i.e.,

lim inf
n→∞

ρ(fn1 (x), fn1 (y)) = 0,

there exists an increasing sequence {ns}+∞s=1 ⊂ N such that

lim
s→∞

ρ(fns
◦ · · · ◦ fn1

(x), fns
◦ · · · ◦ fn1

(y)) = 0.

For any ε > 0, there exists Nε ∈ N such that

ρ(fnk
◦ · · · ◦ fn1(x), fnk

◦ · · · ◦ fn1(y)) < ε

for every nk ∈ {ns}+∞s=1 : nk > Nε.
Put a = max{Nε + 1, sups∈N |ns+1 − ns|}. Then, for every i ∈ N, one has

Aεxy ∩ {i, i+ 1, . . . , i+ a}

={j ∈ N : ρ(f j1 (x), f j1 (y)) < ε} ∩ {i, i+ 1, . . . , i+ a}
6=φ.

So, (x, y) ∈ L(f1,∞).
This completes the proof.

Theorem 2.2. Suppose (X, f1,∞) is minimal and proximal. Then

L(f1,∞) = S(f1,∞) ⊂ P (f1,∞) = R(f1,∞).

To prove this theorem, three lemmas are established first.

Lemma 2.1. If (X, f1,∞) is a minimal system, then X is closed and invariant for
every fi (i = 1, 2, . . .).

Proof. First, ∀x ∈ X, Orb(x, f1,∞) = X, namely X is closed.
For every fi (i = 1, 2, . . .), put x0 ∈ X and

fi(X) = fi(Orb(x0, f1,∞)) ⊂ fi(Orb(x0, f1,∞)) ⊂ X.

Then, X is invariant for every fi (i = 1, 2, . . .).
This completes the proof.

Lemma 2.2. If (X, f1,∞) is proximal and (Y, f1,∞) is a minimal system, then there
is a unique minimal set in X ×Y (where X and Y are two compact metric spaces).

Proof. Suppose M1,M2 are two minimal sets in X × Y , and ΠX and Πy are
projections in X and Y respectively.

Since (Y, f1,∞) is a minimal system, one has Πy(Mi) = Y (i = 1, 2). Let y is an
arbitrary point in Y . Then, there exist x1, x2 ∈ X such that (xi, y) ∈Mi (i = 1, 2).
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And, because (X, f1,∞) is proximal, one has

lim inf
j→∞

ρ(f j1 (x1), f j1 (x2)) = 0.

One can find a sequence {fik}∞k=1 ∈ {fi}∞i=1 such that, for some z in X,

lim
k→∞

fik ◦ · · · ◦ fi1(x1) = lim
k→∞

fik ◦ · · · ◦ fi1(x2) = z.

And, there exists y1 ∈ Y such that

lim
k→∞

fik ◦ · · · ◦ fi1(y) = y1.

By Lemma 2.1, M1,M2 are closed and invariant, hence (z, y1) ∈ M1 ∩M2, which
means that M1 = M2.

This completes the proof.

Lemma 2.3. Let X and Y be two compact metric spaces. If (X, f1,∞) is proximal
and (Y, f1,∞) is a minimal system, then there is a unique homomorphism from
(Y, f1,∞) to (X, f1,∞). Specifically, the homomorphism is the identity.

Proof. Suppose ϕ1 : (Y, f1,∞) → (X, f1,∞) and ϕ2 : (Y, f1,∞) → (X, f1,∞) are
two arbitrary homomorphism maps. Then Wi = {(ϕi(y), y) : y ∈ Y } (i = 1, 2) are
two minimal sets in X × Y . By Lemma 2.2, W1 = W2, hence ϕ1 = ϕ2.

Notice that the identity is a homomorphism from Y to X, hence ϕ1 is the
identity.

This completes the proof.

Now, the proof of Theorem 2.2 is given.

Proof. (1) L(f1,∞) ⊂ S(f1,∞) is obtained in Theorem 2.1 (iii). S(f1,∞) ⊂
L(f1,∞) is shown next.

For every (x, y) ∈ S(f1,∞), there exists h ∈ H(x) such that (h(x), y) ∈ L(f1,∞).
However, (X, f1,∞) is minimal and proximal. By Lemma 2.3, h is the identity. So,
(x, y) ∈ L(f1,∞).

(2) Since P (f1,∞) = X ×X, one has S(f1,∞) ⊂ P (f1,∞).

(3) For every pair (x, y) ∈ X ×X and arbitrary h ∈ H(X), one has (h(x), y) ∈
X × X. Since P (f1,∞) = X × X, one has (h(x), y) ∈ P (f1,∞). This implies that
(x, y) ∈ R(f1,∞). So, R(f1,∞) = X ×X = P (f1,∞).

This completes the proof.

Corollary 2.1. Suppose H(X) = {1X}, where {1X} is the identity homomorphism
of X. Then

L(f1,∞) = S(f1,∞) ⊂ P (f1,∞) = R(f1,∞).

Theorem 2.3. For a minimal dynamical system (X, f1,∞), the following are equiv-
alent.

(i) For every x ∈ X, the proximal cell P (f1,∞)(x) is dense in X;

(ii) For some x ∈ X, the proximal cell P (f1,∞)(x) is dense in X;

(iii) P (f1,∞) is dense in X ×X.
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Proof. (i) ⇒ (ii) It is clearly.
(ii)⇒ (iii) Minimal dynamical systems are transitive. The following shows that,

for any transitive system, the fact that P (f1,∞)(x) is dense for some x ∈ Trans(f1,∞)
implies that P (f1,∞) is dense in X ×X.

Let (z, w) ∈ X × X and ε > 0. Since x is a transitive point, there exists a
positive integer nε such that ρ(fnε

1 (x), z) < ε. Since fi(∀i = 1, 2, . . .) are surjective,
there exists u ∈ X such that fnε

1 (u) = w. Let δ > 0 be an ε modulus of continuity
for fnε

1 at u, and because P (f1,∞)(x) is dense in X, one can choose y ∈ P (f1,∞)(x)
such that ρ(u, y) < δ. Then

ρ(fnε
1 (u), fnε

1 (y)) = ρ(f(w), fnε
1 (y)) < ε.

So, (fnε
1 (x), fnε

1 (y)) ∈ B((z, w), ε).
Since (x, y) ∈ P (f1,∞), i.e., lim inf

k→∞
ρ(fk1 (x), fk1 (y)) = 0, one has (fnε

1 (x), fnε
1 (y)) ∈

P (f1,∞). So, P (f1,∞) is dense in X ×X.

(iii) ⇒ (i) Since P (f1,∞) = X, one has that for any (x, y) ∈ X × X and any
ε > 0, there exists (z, w) ∈ B((x, y), ε) such that lim inf

n→∞
ρ(fn1 (z), fn1 (w)) = 0.

For any fixed x0 ∈ X, ∀y ∈ X, ∀ε > 0, there exists (x0, w) ∈ B((x0, y), ε), i.e.,
w ∈ B(y, ε), such that lim inf

n→∞
ρ(fn1 (x0), fn1 (w)) = 0.

Then, for every open set U ∈ X,

{w ∈ X : lim inf
n→∞

ρ(fn1 (x0), fn1 (w)) = 0} ∩ U 6= φ.

By the arbitrariness of (x, y), changing x0, one can obtain that

{w ∈ X : lim inf
n→∞

ρ(fn1 (x), fn1 (w)) = 0} ∩ U 6= φ

for every x ∈ X and every open set U in X.
So, P (f1,∞)(x) is dense in X.
This completes the proof.

3. Chaotic properties

Let (X, f1,∞) be a nonautonomous system. For x, y ∈ X and δ > 0, (x, y) is called
a Li-Yorke pair of modulus δ if

lim sup
k→∞

ρ(fk1 (x), fk1 (y)) > δ and lim inf
k→∞

ρ(fk1 (x), fk1 (y)) = 0.

Specially, if δ = 0, (x, y) is called a Li-Yorke pair. The set of Li-Yorke pairs of
modulus δ and the set of Li-Yorke pairs are denoted by LYρ(f1,∞, δ) and LYρ(f1,∞),
respectively.

The sequence f1,∞ is densely chaotic if LYρ(f1,∞) is dense in X×X and densely
δ-chaotic if LYρ(f1,∞, δ) is dense in X ×X.

Denote

ξ(x, y, t, n) = |{i : ρ(f i1(x), f i1(y)) < t, 0 < i < n}|,

where |A| is the cardinality of the set A. By means of ξ, the following two functions
are defined:

Fxy(t, f1,∞) = lim inf
n→∞

1

n
ξ(x, y, t, n) and F ∗xy(t, f1,∞) = lim sup

n→∞

1

n
ξ(x, y, t, n).



98 T. Lu & G. Chen

They are called lower and upper distribution functions, respectively. It is easy to
see that

Fxy(t, f1,∞) = F ∗xy(t, f1,∞) = 0 for t < 0

and

Fxy(t, f1,∞) = F ∗xy(t, f1,∞) = 1 for t > diamX,

(where diamX is the diameter of X). The sequence f1,∞ is said to be distributional
chaotic if there is an uncountable subset S ⊂ X such that for any x, y ∈ S, x 6= y,
one has that

(i) F ∗xy(t, f1,∞) = 1 for all t > 0;

(ii) Fxy(s, f1,∞) = 0 for some s > 0.

If there exists s > 0 such that f1,∞ is distributional chaotic, f1,∞ is said to be
uniformly distributionally chaotic.

The sequence f1,∞ has sensitive dependence on initial conditions (briefly, is
sensitive) if there exists a δ > 0 such that for all x ∈ X, all ε > 0, and some
positive integer n, there is some y which is within a distance ε of x such that
ρ(fn1 (x), fn1 (y)) ≥ δ.

Write

N(U, ε) = {n ∈ N : diam(fn1 (U)) > ε}.

It is easy to see that (X, f1,∞) is sensitive if and only if N(U, ε) 6= φ for some ε > 0
and every nonempty open set U ⊂ X.

The sequence f1,∞ is thickly sensitive if N(U, ε) is thick for some ε > 0 and every
nonempty open set U ⊂ X. The sequence f1,∞ is thickly syndetically sensitive if
N(U, ε) is thickly syndetic for some ε > 0 and every nonempty open set U ⊂ X.

By the above definitions, the following conclusions are obtained.

Theorem 3.1. If f1,∞ is densely chaotic or densely δ-chaotic, then P (f1,∞) is
dense in X ×X.

Proof. It is obvious.

Theorem 3.2. If (X, f1,∞) is syndetically proximal, then the lower distribution
Fxy(t, f1,∞) > 0 for any t > 0.

Proof. Since f1,∞ is syndetically proximal, for any (x, y) ∈ X × X : x 6= y and
any t > 0, there exists at ∈ N such that

Atxy ∩ {i, i+ 1, . . . , i+ at}

={j ∈ N : ρ(f j1 (x), f j1 (y)) < t} ∩ {i, i+ 1, . . . , i+ at}
6=φ

for every i ∈ N.
Noticing that at[

n
at

] ≤ n ≤ (at + 1)[ nat ] for any n ∈ N, one has 1
n [ nat ] ≥ 1

at+1 .

1

n
[
n

at
] ≤ 1

n
ξ(x, y, t, n) =

1

n
|{j ∈ N : ρ(f j1 (x), f j1 (y)) < t, 0 ≤ i < n}|,



Proximal and syndetical properties in NDS 99

thus 1
nξ(x, y, t, n) ≥ 1

at+1 . So Fxy(t, f1,∞) > 0 for any t > 0.
This completes the proof.
According to Theorem 3.2, the following conclusion holds.

Theorem 3.3. If (X, f1,∞) is syndetically proximal, then f1,∞ is not distributional
chaotic nor uniform distributional chaotic.

Now, some results of sensitivity are established.

Theorem 3.4. If (X, f1,∞) is minimal and sensitive, then f1,∞ is syndetically
sensitive.

Proof. For sensitive constant ε > 0 and any open set U ⊂ X, there exist x, y ∈ U
and n ∈ N such that ρ(fn1 (x), fn1 (y)) > ε. So, there exists an open subset U1 ⊂ U
such that ρ(fn1 (x), fn1 (U1)) > ε.

Since (X, f1,∞) is minimal, there exists k ∈ N such that fkn+1(fn1 (x)) ∈ U1 ∈ U .
So,

ρ(fn1 (x), fk+n1 (x)) ≥ ρ(fn1 (x), fn1 (U1)) > ε.

For any i ∈ N, fi is uniformly continuous. So, there exists δ ∈ (0, ε4 ) such that for

∀x1, x2 ∈ X : ρ(x1, x2) < δ, ρ(f jt (x), f jt (x)) < ε
4 (j = 1, 2, . . . , k),∀t ∈ N.

Also, fn1 (x) is a minimal point, hence N(fn1 (x), B(fn1 (x), δ)) is syndetic. For
any m ∈ N(fn1 (x), B(fn1 (x), δ)), fm+n

1 (x) = fmn+1(fn1 (x)) ∈ B(fn1 (x), δ), one has

ρ(fn1 (x), fm+n
1 (x)) < δ and ρ(fk+n1 (x), fk+m+n

1 (x)) <
ε

4
.

So

ρ(fm+n
1 (x), fk+m+n

1 (x))

≥ρ(fn1 (x), fk+n1 (x))− ρ(fn1 (x), fm+n
1 (x))− ρ(fk+n1 (x), fk+m+n

1 (x))

>
ε

2
.

This implies that

N(U,
ε

2
) = {n ∈ N : diam(fnt (U)) >

ε

2
,∀t ∈ N}

is syndetic.
This completes the proof.

Theorem 3.5. If (X, f1,∞) is transitive, and the minimal points are dense in X,
then f1,∞ is thickly syndetically sensitive.

Proof. Let V be a nonempty open set of X and S, T be minimal sets of f1,∞ with
ρ(S, T ) = a.

Since fi(∀i ∈ N) is uniformly continuous, for any k ∈ N, there exists δ > 0 such
that, for any x1, x2 ∈ X : ρ(x1, x2) < δ,

ρ(f it (x1), f it (x2)) <
a

4
(i = 1, 2, . . . , k;∀t ∈ N).

For any transitive point x ∈ V and minimal set S, ∃m ∈ N such that ρ(fm1 (x), S) <
δ
2 . Thus there exists minimal point x′ ∈ V with ρ(fm1 (x′), S) < δ

2 .
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Since x′ is a minimal point, there exists a syndetic set {nj}∞j=1 satisfying

ρ(f
nj

1 (x′), S) < δ. Thus,

ρ(f
nj+i
1 (x′), S) <

a

4
(i = 1, 2, . . . , k; j = 1, 2, . . .).

So N(V,B(S, a4 )) is thickly syndetic.
In the same way one can show that N(V,B(T, a4 )) is thickly syndetic. Then,

N(V,B(S, a4 ))∩N(V,B(T, a4 )) is syndetic. Thus, ∀m ∈ N(V,B(S, a4 ))∩N(V,B(T, a4 )),
one has

{m,m+ 1, . . . ,m+ k} ⊂ N(V,B(S,
a

4
)) ∩N(V,B(T,

a

4
)).

By the arbitrariness of k, N(V,B(S, a4 )) ∩N(V,B(T, a4 )) is thickly syndetic. That
is, N(V, a2 ) is thickly syndetic.

We thus conclude that f1,∞ is thickly syndetically sensitive.
This completes the proof.

Remark 3.1. Considering that fi(i ∈ N) converges uniformly to a map f , what is
the relationship between the complexity of f1,∞ and the complexity of f? Canovas
[2] points that, on compact metric spaces, the chaotic of f1,∞ will not always imply
the chaotic of f . Li-Yorke chaotic is an example for negative. However, by [2], an
ω-limit set of f1,∞ is also an ω-limit set of f . Moreover, Kolyada [8] proved that,
on compact metric spaces, htop(f1,∞) ≤ htop(f) if fi(i ∈ N) converges uniformly
to a map f (where htop(·) is topological entropy). A natural question arises. How
about proximal and syndetical properties in this case?

Remark 3.2. There are some other problems for further research. In autonomous
dynamical systems, distributional (p, q)-chaos, DC1, DC2, and DC3 are defined.
These definitions can be extended to nonautonomous dynamical systems. What are
the properties of them?
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