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Abstract In this paper , characterizations of symmetric and symplectic Runge-
Kutta methods based on the W-transformation of Hairer and Wanner are
presented. Using these characterizations, we construct two families symplec-
tic (symmetric and algebraically stable or algebraically stable) Runge-Kutta
methods of high order. Methods constructed in this way and presented in this
paper include and extend the known classes of high order implicit Runge-Kutta
methods.
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1. Introduction

One of Stetter’s significant contributions to the study of the numerical solution for
ordinary differential equations concerns the existence of asymptotic error expansions
in the stepsize for discretization methods (see Gragg [5], Hairer and Lubich [9] and
Stetter [15]). This result iterated defect correction techniques for accelerating con-
vergence and laid the foundations for the development of extrapolation. Symmetric
methods are of special interest because the asymptotic error expansions occur in
even powers of the stepsize h. Stetter [16] first presented an algebraic characteriza-
tion of symmetry for Runge-Kutta methods. He showed that an s-stage symmetric
Runge-Kutta method is generated by a triple (A, b, c) satisfying

A+ PAP
T

= eBT , P b = b, Pc = e− c, (1.1)

for some s × s permutation matrix P̄ , where A is an s × s matrix, b, c are s × 1
vectors of weights and abscissae respectively and e = (1, 1, . . . , 1)T .

The design and construction of Symplectic Runge-Kutta methods has been con-
sidered by several authors [2–4, 10–12, 17, 18, 20, 21]. In this paper we construct
implicit Runge-Kutta methods of high order which are based on certain combina-
tions of the normalized shifted Legendre polynomials. Of particular interest is the
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symplectic property of these methods as well as their order, symmetry and stability
properties. These methods are defined in terms of certain simplifying assumptions
introduced by Butcher[2]:

B(p) : bT ck−1 =
1

k
, k = 1, · · · , p,

C(η) : Ack−1 =
1

k
ck, k = 1, · · · , η,

D(ζ) : (bck−1)TA =
1

k
(bT − (bck)T ), k = 1, · · · , ζ.

Butcher [1] proved the following fundamental theorem:

Theorem 1.1. If the coefficients A, b, c of an Runge-Kutta method satisfy B(p),
C(η), D(ζ) with p ≤ η + ζ + 1 and p ≤ 2η + 2, then the Runge-Kutta method is of
order p.

On the other hand it will be seen that the construction of implicit Runge-
Kutta methods also relies heavily on the W-transformation proposed by Hairer and
Wanner [6, 8]. In particular, the W-transformation facilitates the construction of
high order sympletic Runge-Kutta methods.The symplecticness is a characteristic
property of geometry possessed by the solution of Hamiltonian systems. A numerical
method is called symplectic if, when applied to Hamiltonian problems, it generates
numerical solutions that inherit the symplecticness property of the Hamiltonian
problems. Sanz-Serna [14] obtained the following result : if the coefficients of an
Runge-Kutta method satisfy

M = BA+ATB − bbT = 0,

where
B = diag(b1, b2, · · · , bs),

then the method is symplectic. In fact, for an irreducible Runge-Kutta method this
condition also is necessary [4].

The paper is organised as follows: In section 2 we recall the W-transformation
of Hairer and Wanner and introduce characterizations of symmetric and symplectic
methods based on the W-transformation. The properties of the known Gauss and
Lobatto IIIA, IIIB, IIIC, IIIE, and IIIS methods are immediately obtained from
these characterizations. In section 3 we first construct a four-parameter family of
symmetric and symplectic methods based on the combination

P (x) = P ∗s (x) +

√
2s+ 1√
2s− 3

ωP ∗s−2(x),

where P ∗s (x), P ∗s−2(x) are the normalized shifted polynomials of degrees s and s-2
respectively. We give the known symmetric and symplectic implicit RK methods
with special choice of parameters and examples of these new methods for 2, 3
and 4 stages, particularly diagonally implicit Runge-Kutta methods for 2 and 3
stages. Secondly, we construct another four-parameters family of symplectic and
algebraically stable but non-symmetric methods based on the combination

P (x) = P ∗s (x) +

√
2s+ 1√
2s− 1

ωP ∗s−1(x),

where P ∗s (x), P ∗s−1(x) are the normalized shifted polynomials of degrees s and s-1
respectively. Example of the methods for 2 and 3 stages are given.
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2. Characterization of symmetric and symplectic
methods

In their study of the algebraic stability of implicit Runge-Kutta methods of high
order, Hairer and Wanner [6] introduced a generalized Vandermonde matrix W
defined by

W = (P ∗0 (c), P ∗1 (c), · · · , P ∗s−1(c)), (2.1)

where the normalized shifted Legendre polynomials are defined by

P ∗m(x) =
√

2m+ 1

m∑
i=0

(−1)m+i

m

i

m+ i

i

xi, m = 0, 1, 2, · · · .

With respect to integration on [0,1], these polynomials form an orthonormal set,
that is, ∫ 1

0

P ∗m(x)P ∗n(x)dx = δmn, m, n = 0, 1, 2, · · · .

For an s-stages Runge-Kutta method generated by (A, b, c) with distinct abscis-
sae they considered the transformation

X = WTBAW,

where B = diag(b1, b2, · · · , bs); thus the (m,n)− th element of X is given by

Xmn =

s∑
i,j=1

biP
∗
m−1(ci)aijP

∗
n−1(cj), m, n = 1, 2, . . . , s.

The matrix X, besides giving a characterization of high-order methods and a con-
venient way of studying algebraic stability, is also very useful for constructing sym-
metric, algebraically stable and symplectic methods. For example, for the Gauss
method of order 2s they proved that the transformation matrix X has a special
simple form given by

X = WTBAW =



1
2 −ξ1
ξ1 0 −ξ2

. . .
. . .

. . .

ξs−2 0 −ξs−1
ξs−1 0


=: XG, (2.2)

where ξl = 1
2
√
4l2−1 . For other known high order implicit Runge-Kutta methods,

the transformation X-matrix is easy to obtain and also has a similar simple form.
For example, for the Gauss-Lobatto method[4] obtained by the X-matrix given by
(2.2) with the following exception:

Xs,s−1 = −Xs−1,s = ξs−1σµ,

where µ = bTP ∗2s−1(c), σ is a parameter. In order to give the properties of high order
implicit Runge-Kutta methods here we quote some result of [4, 8].
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Definition 2.1. Let η, ζ be given integers between 0 and s − 1. We say that an
s× s matrix W satisfies T (η, ζ) for the quadrature formula (b, c) if

1) W is nonsingular,

2) wij = P ∗j−1(ci), i = 1, 2, · · · , s, j = 1, 2, · · · ,max(η, ζ) + 1,

3) WTBW =

 I 0

0 R

 where I is the (ζ + 1)× (ζ + 1) identity matrix; R is an

arbitrary matrix of (s− ζ − 1)× (s− ζ − 1).

Lemma 2.1. If the quadrature formula has distinct nodes ci and is of order p ≥
s+ ζ, then W defined by (2.1) has property T (η, ζ).

Theorem 2.1. Let W satisfy T (η, ζ) for the quadrature formula (b, c), then for an
Runge-Kutta method based on (b, c) we have, for the transformation matrix X =
WTBAW ,

a) the first η columns of X are those of XG ⇔ C(η),

b) the first ζ rows of X are those of XG ⇔ D(η).

From [7, Theorem 8.7](see also [16,20]), we obtain another criterion for symmetry
based on the W -transformation. That theorem says that if the coefficients of an
s-stage Runge-Kutta method for some permutation matrix P̄ satisfy

A+ PAP
T

= ebT

and

Pb = b,

where e = (1, 1, · · · , 1)T , then the Runge-Kutta method is symmetric. In fact, if the
abscissae of an Runge-Kutta are ordered in an increasing order, that is, there exist
a permutation matrix P̄ whose (i, j)-th element is the Kronecker δi,s+1−j such that
the above condition are satisfied, then, by the definition of the symmetric method
and [7, Theorem 8.2], such conditions are also necessary.

Theorem 2.2. An s-stage Runge-Kutta method with distinct nodes ci and bi 6= 0
satisfying B(p), C(η) and D(ζ) with p ≥ s+ ζ is symmetric if and only if

a) P̄ c = e− c for the permutation matrix P̄ ,

b) the transformation matrix X of the method takes the following form

X = WTBAW =



1
2 −ξ1
ξ1 0 −ξ2

. . .
. . .

. . .

. . . 0 −ξν
ξν |Rν


, where ν = min(η, ζ) (2.3)

having the residue matrix Rν whose (m,n)-th element rmn = 0 if m+n is even. (If
B is singular the Theorem is still true).
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Proof. [4] Since Lemma 2.1 and Theorem 2.1, the transformation matrix X of
the method possesses the form of (2.3). By the symmetric property of Legendre
polynomials and P̄ c = e− c we have

PP ∗m(c) = (−1)P ∗m(c) for m = 0, 1, · · · , s− 1.

Let X = (PW )TBA(PW )(the technique of the proof is borrowed from [3]). It
then follows that

Xmn = (−1)m+nXmn.

On the other hand, since B(s) holds and Pc = e−c, we have Pb = b or P
T
BP = B.

Furthermore, since

bTP ∗m(c) =

∫ 1

0

P ∗m(x)dx = δm0, m = 0, 1, · · · , s− 1.

and condition b), then bTW = (bTP ∗0 (c), bTP ∗1 (c), · · · , bTP ∗s−1(c)) = (1, 0, · · · , 0) =
eT1 . We have

X +X = e1e
T
1 ⇔WTBAW +WTP

T
BPP

T
APW = (bTW )T bTW

⇔WTBAW +WTBP
T
APW = WTBebTW

⇔ A+ P
T
AP = ebT

⇔ A+ PAP
T

= ebT ,

since W and B are nonsingular.

Since that A + PAP
T

= ebT and Pb = b imply Pc = e − c, then the reverse is
true.

Now we recall the definition[1] that an irreducible Runge-Kutta method is called
algebraically stable if B > 0 and

M = BA+ATB − bbT ≥ 0.

If we consider the W -transformation of Hairer and Wanner, an equivalent condition

WTBW > 0

and

WTMW = WTBAW +WTATBW −WT bbTW = X +XT − e1eT1 ≥ 0 (2.4)

is obtained.
Since Theorem 2.2 and condition (2.4) holds, it is easy to show that an irreducible

symmetric and algebraically stable method is symplectic (see [8, IV. 13] for details).
Hence, the s-stage Gauss, Lobatto IIIE, Lobatto IIIS and Lobatto IIISX (which will
be given in next section) methods are symplectic. The Gauss, Lobatto IIIE, Lobatto
IIIS and Lobatto IIISX methods have stronger stability properties which appear to
be unnecessary for the computation of Hamiltonian systems, because an s-stage
irreducible Runge-Kutta method is symplectic if and only if

WTMW = X +XT − e1eT1 = 0. (2.5)

Combining Lemma 2.1 and Theorem 2.2 with condition (2.5), we immediately ob-
tain:
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Theorem 2.3. An s-stage Runge-Kutta method with distinct nodes ci satisfying
B(p), C(η) and D(ζ) with p ≥ s+ ζ is symplectic if and only if the transformation
matrix X of the method takes the following form:

X = WTBAW =



1
2 −ξ1
ξ1 0 −ξ2

. . .
. . .

. . .

. . . 0 −ξν
ξν |Rν


, where ν = min(η, ζ) (2.6)

having the residue matrix Rν satisfying

Rν +RTν = 0, (2.7)

namely, Rν is a skew-symmetric matrix.

Therefore, the coefficients of symplectic Runge-Kutta methods with high order
can easily be generated by

A = WXWTB = A∗B,

and all the weights bi 6= 0; otherwise the symplectic Runge-Kutta method is degen-
erative. Since A = A∗B, we obtain still further

Proposition 2.1. An s-stage irreducible Runge-Kutta method is symplectic if and
only if the matrix A∗ = AB−1 satisfies

A∗ +A∗T − eeT = 0.

Furthermore, if the method is symmetric, then there are still

A∗ − PA∗TPT = 0 and Pb = b.

Proof. [4] Insert A = A∗B into the conditions

BA+ATB − bbT = 0

and

A+ PAP
T

= ebT ,

respectively.
For the known implicit Runge-Kutta methods with high order (including Lobat-

to IIISX which will be given in the next section), their transformation matrix X is
the same matrix as XG with the exceptions given by Table 1.

The properties (including symmetry, symplecticness and algebraic stability) of
known high order implicit Runge-Kutta methods can immediately be obtained by
Theorem 2.2 and Theorem 2.3 from Table 1. Although Radau IB and Radau IIB
are non-symmetric, they are symplectic and algebraically stable of order 2s−1 from
Table 1.
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Table 1. Exceptions of transformation matrix X

Method Xs,s−1 Xs−1,s Xs,s Pc = e− c
Gauss ξs−1 −ξs−1 0 =

Lobatto IIIA ξs−1µ 0 0 =

Lobatto IIIB 0 −ξs−1µ 0 =

Lobatto IIIC ξs−1µ −ξs−1µ µ2

2(2s−1) =

Lobatto IIIE ξs−1µ −ξs−1µ 0 =

Lobatto IIIS ξs−1σµ −ξs−1σµ 0 =

Lobatto IIISX ξs−1αµ −ξs−1βµ µ2αβγ
2(2s−1) =

Radau IA ξs−1 −ξs−1 1
4s−1 6=

Radau IIA ξs−1 −ξs−1 1
4s−1 6=

Radau IB ξs−1 −ξs−1 0 6=
Radau IIB ξs−1 −ξs−1 0 6=

3. Construction of high order implicit symplectic
methods

3.1. The Gauss-Lobatto methods

In this section, we construct a family of s-stage Implicit Runge-Kutta methods,
which are called the Gauss-Lobatto methods, satisfying B(2s − 2), C(s − 2) and
D(s− 2), based on the combination

P (x) = P ∗s (x) +

√
2s+ 1√
2s− 3

ωP ∗s−2(x),

which is symmetric and symplectic, where P ∗s (x) and P ∗s−2(x) are the normalized
shifted polynomials of degrees s and s− 2 respectively. If ω < s−1

s , then P (x) has
distinct real roots and the roots satisfy P̄ c = e − c (see [8, IV.5] for details). The
weights of the Butcher Table are determined by B(2s−2) and satisfy P̄ b = b. From
Lemma 2.1 we can compute a matrix W . Since Theorem 2.1 and Theorem 2.3, we
may choose the transformation matrix X as

X =



1
2 −ξ1
ξ1 0 −ξ2

. . .
. . .

. . .

ξs−2 0 −ξs−1µβ

ξs−1µα
µ2αβγ
2(2s−1)


,

where ξl = 1
2
√
4l2−1 , µ = bTP ∗2s−1(c) and α, β, γ ∈ R. Now since B(2s − 2) holds,

WTBW = diag(1, 1, · · · , µ) = J and µ 6= 0, hence

A = WX̃WTB, X̃ = J−1XJ−1,
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where X is the same matrix as XG with the exception that

xs,s−1 = ξs−1α, xs−1,s = −ξs−1β, xs,s =
αβγ

2(2s− 1)
.

Then the four-parameter family of Implicit Runge-Kutta methods with coefficients
A = WX̃WTB is symmetric (by Thoerem 2.2), symplectic (by Theorem 2.3) and
of order at least 2s − 2 (by Theorem 1.1 and Theorem 2.2). In addition, it is also
algebraically stable if WTBW > 0. Besides such results with the special chioce of
parameters (α, β, γ, and ω), we can obtain:

a) ω = 0 corresponding to s-stage Gauss-type method;

1) order 2s if α = β = 1 and γ = 0,

2) order 2s−2 with B(2s), C(s−2), and D(s−2) if α = β 6= 1, γ = 0 and s ≥ 3,

b) ω = −1 corresponding to s-stage Lobatto-type method with order 2s-2;

1) Lobatto IIIA method with B(2s − 2), C(s − 1) and D(s − 1) if α = 1 and
β = γ = 0,

2) Lobatto IIIB method with B(2s − 2), C(s − 1) and D(s − 1) if β = 1 and
α = γ = 0,

3) Lobatto IIIC method with B(2s− 2), C(s− 1) and D(s− 1) if α = β = γ = 1,

4) Lobatto IIIE method with B(2s− 2), C(s− 1) and D(s− 1) if α = β = 1 and
γ = 0,

5) Lobatto IIIS method with B(2s − 2), C(s − 2) and D(s − 2) if α = β 6= 1,
γ = 0 and s ≥ 3,

6) Lobatto IIISX method with B(2s− 2), C(s− 2) and D(s− 2) if α 6= β, γ 6= 0
and s ≥ 3.

Therefore, we also call this family Implicit Runge-Kutta method the Gauss-
Lobatto method as [4]. Its members with 2, 3 and 4 stages are given by the following
Butcher Tables 2–4:

Table 2. Butcher Table of 2-stages Gauss-Lobatto method

1−a
2

1−a(α−β−αβγ)
4

1−a(α+β+αβγ)
4

1+a
2

1+a(α+β−αβγ)
4

1+a(α−β−αβγ)
4

1
2

1
2

where a =

√
3(1−2ω)

3 .

Table 3. Butcher Table of 3-stages Gauss-Lobatto method

1
2 − a

1−a(12a2−1)(α−β)+ 1
4 (12a

2−1)2αβγ
48a2 (1− 1

12a2 ) 4−8a−4aβ−(12a2−1)αβγ
8

1−4a+a(12a2−1)(α+β)+ 1
4 (12a

2−1)2αβγ
48a2

1
2

1+2a+aα− 1
4 (12a

2−1)αβγ
48a2 (1− 1

12a2 ) 4+αβγ
8

1−2a−aα− 1
4 (12a

2−1)αβγ
48a2

1
2 + a

1+4a−a(12a2−1)(α+β)+ 1
4 (12a

2−1)2αβγ
48a2 (1− 1

12a2 ) 4+8a+4aβ−(12a2−1)αβγ
8

1+a(12a2−1)(α−β)+ 1
4 (12a

2−1)2αβγ
48a2

1
24a2 1− 1

12a2
1

24a2

where a =

√
5(3−2ω)
10 .
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Table 4. Butcher Table of 4-stages Gauss-Lobatto method

1
2 − a

12b2−1
24(b2−a2)A11

12a2−1
24(a2−b2)A12

12a2−1
24(a2−b2)A13

12b2−1
24(b2−a2)A14

1
2 − b

12b2−1
24(b2−a2)A21

12a2−1
24(a2−b2)A22

12a2−1
24(a2−b2)A23

12b2−1
24(b2−a2)A24

1
2 + b 12b2−1

24(b2−a2)A31
12a2−1

24(a2−b2)A32
12a2−1

24(a2−b2)A33
12b2−1

24(b2−a2)A34

1
2 + a 12b2−1

24(b2−a2)A41
12a2−1

24(a2−b2)A42
12a2−1

24(a2−b2)A43
12b2−1

24(b2−a2)A44

12b2−1
24(b2−a2)

12a2−1
24(a2−b2)

12a2−1
24(a2−b2)

12b2−1
24(b2−a2)

where a =

√
525+70

√
9ω2−10ω+30−210ω

70 , b =

√
525−70

√
9ω2−10ω+30−210ω

70 and

A11 = 1
2 −

(α−β)(12a2−1)(20a3−3a)
4 + (20a3−3a)2αβγ

2 ,

A12 = 1
2 − a+ b+ a(12b2−1)−b(12a2−1)

2 − α(12b2−1)(20a3−3a)−β(12a2−1)(20b3−3b)
4

+ (20a3−3a)(20b3−3b)αβγ
2 ,

A13 = 1
2 − a− b+ a(12b2−1)+b(12a2−1)

2 − α(12b2−1)(20a3−3a)+β(12a2−1)(20b3−3b)
4

− (20a3−3a)(20b3−3b)αβγ
2 ,

A14 = 1
2 − 2a+ a(12a2 − 1)− (α+β)(12a2−1)(20a3−3a)

4 − (20a3−3a)2αβγ
2 ,

A21 = 1
2 + a− b− a(12b2−1)−b(12a2−1)

2 − α(12a2−1)(20b3−3b)−β(12b2−1)(20a3−3a)
4

+ (20a3−3a)(20b3−3b)αβγ
2 ,

A22 = 1
2 −

(α−β)(12b2−1)(20b3−3b)
4 + (20b3−3b)2αβγ

2 ,

A23 = 1
2 − 2b+ b(12b2 − 1)− (α+β)(12b2−1)(20b3−3b)

4 − (20b3−3b)2αβγ
2 ,

A24 = 1
2 − a− b+ a(12b2−1)+b(12a2−1)

2 − α(12a2−1)(20b3−3b)+β(12b2−1)(20a3−3a)
4

− (20a3−3a)(20b3−3b)αβγ
2 ,

A31 = 1
2 + a+ b− a(12b2−1)+b(12a2−1)

2 + α(12a2−1)(20b3−3b)+β(12b2−1)(20a3−3a)
4

− (20a3−3a)(20b3−3b)αβγ
2 ,

A32 = 1
2 + 2b− b(12b2 − 1) + (α+β)(12b2−1)(20b3−3b)

4 − (20b3−3b)2αβγ
2 ,

A33 = 1
2 + (α−β)(12b2−1)(20b3−3b)

4 + (20b3−3b)2αβγ
2 ,

A34 = 1
2 − a+ b+ a(12b2−1)−b(12a2−1)

2 + α(12a2−1)(20b3−3b)−β(12b2−1)(20a3−3a)
4

+ (20a3−3a)(20b3−3b)αβγ
2 ,

A41 = 1
2 + 2a− a(12a2 − 1) + (α+β)(12a2−1)(20a3−3a)

4 − (20a3−3a)2αβγ
2 ,

A42 = 1
2 + a+ b− a(12b2−1)+b(12a2−1)

2 + α(12a2−1)(20b3−3b)+β(12b2−1)(20a3−3a)
4

− (20a3−3a)(20b3−3b)αβγ
2 ,

A43 = 1
2 + a− b− a(12b2−1)−b(12a2−1)

2 + α(12b2−1)(20a3−3a)−β(12a2−1)(20b3−3b)
4

+ (20a3−3a)(20b3−3b)αβγ
2 ,

A44 = 1
2 + (α−β)(12a2−1)(20a3−3a)

4 + (20a3−3a)2αβγ
2 .

c) With the special choice of parameters, we can obtain the known implicit Runge-
Kutta methods:

1) Gauss methods of order 4 and 6 respectively:



1194 K.F. Xia , Y.H. Cong & G. Sun

1
2 −

√
3
6

1
4

1
4 −

√
3
6

1
2 +

√
3
6

1
4 +

√
3
6

1
4

1
2

1
2

1
2 −

√
15
10

5
36

2
9 −

√
15
15

5
36 −

√
15
30

1
2

5
36 +

√
15
24

2
9

5
36 −

√
15
24

1
2 +

√
15
10

5
36 +

√
15
30

2
9 +

√
15
15

5
36

5
18

4
9

5
18

as ω = 0 and α = β = 1, γ = 0.

2) Lobatto IIIA methods of order 4 and 6 respectively:

0 0 0 0

1
2

5
24

1
3 − 1

24

1 1
6

2
3

1
6

1
6

2
3

1
6

0 0 0 0 0

5−
√
5

10
11+
√
5

120
25−
√
5

120
25−13

√
5

120
−1+

√
5

120

5+
√
5

10
11−
√
5

120
25+13

√
5

120
25+
√
5

120
−1−

√
5

120

1 1
12

5
12

5
12

1
12

1
12

5
12

5
12

1
12

as ω = −1 and α = 1, β = γ = 0.

3) Lobatto IIIB methods of order 4 and 6 respectively:

0 1
6 − 1

6 0

1
2

1
6

1
3 0

1 1
6

5
6 0

1
6

2
3

1
6

0 1
12

−1−
√
5

24
−1+

√
5

24 0

5−
√
5

10
1
12

25+
√
5

120
25−13

√
5

120 0

5+
√
5

10
1
12

25+13
√
5

120
25−
√
5

120 0

1 1
12

11−
√
5

24
11+
√
5

24 0

1
12

5
12

5
12

1
12

as ω = −1 and β = 1, α = γ = 0.

4) Lobatto IIIC methods of order 4 and 6 respectively:

0 1
6 − 1

3
1
6

1
2

1
6

5
12 − 1

12

1 1
6

2
3

1
6

1
6

2
3

1
6

0 1
12 −

√
5

12

√
5

12 − 1
12

5−
√
5

10
1
12

1
4

10−7
√
5

60

√
5

60

5+
√
5

10
1
12

10+7
√
5

60
1
4 −

√
5

60

1 1
12

5
12

5
12

1
12

1
12

5
12

5
12

1
12

as ω = −1 and α = β = γ = 1.

5) Lobatto IIIE methods of order 4 and 6 respectively:

0 1
12 − 1

6
1
12

1
2

5
24

1
3 − 1

24

1 1
12

5
6

1
12

1
6

2
3

1
6

0 1
24 −

√
5

24

√
5

24 − 1
24

5−
√
5

10
10+
√
5

120
5
24

25−14
√
5

120

√
5

120

5+
√
5

10
10−
√
5

120
25+14

√
5

120
5
24 −

√
5

120

1 1
8

10−
√
5

24
10+
√
5

24
1
24

1
12

5
12

5
12

1
12

as ω = −1 and α = β = 1, γ = 0.

6) Lobatto IIIS methods of order 4 and 6 respectively:
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0 1
12 −σ6

−1+2σ
12

1
2

4+σ
24

1
3 − σ

24

1 3−2σ
12

4+σ
6

1
12

1
6

2
3

1
6

0 1
24

−1+σ−
√
5σ

24
−1+σ+

√
5σ

24
1−2σ
24

5−
√
5

10
11+
√
5σ−σ

120
5
24

25−12
√
5−2
√
5σ

120
−1+σ+

√
5σ

120

5+
√
5

10
11−
√
5σ−σ

120
25+12

√
5+2
√
5σ

120
5
24

−1+σ−
√
5σ

120

1 1+2σ
24

11−
√
5σ−σ

24
11+
√
5σ−σ

24
1
24

1
12

5
12

5
12

1
12

as ω = −1 and α = β = σ 6= 1, γ = 0.

d) Lobatto IIISX methods of order 4 and 6 respectively:

0 1−α+β+αβγ
12 −β+αβγ6

−1+α+β+αβγ
12

1
2

4+α−αβγ
24

4+αβγ
12 −α+αβγ24

1 3−α−β+αβγ
12

4+β−αβγ
6

1+α−β+αβγ
12

1
6

2
3

1
6

0 1−α+β+αβγ
24 − 1+α−

√
5β−
√
5αβγ

24 − 1+α+
√
5β+
√
5αβγ

24
1−α−β−αβγ

24

5−
√
5

10
11+
√
5α−β−

√
5αβγ

120
25−
√
5α+
√
5β+5αβγ

120
25−12

√
5−
√
5α−
√
5β−5αβγ

120 − 1−
√
5α−β−

√
5αβγ

120

5+
√
5

10
11−
√
5α−β+

√
5αβγ

120
25+12

√
5+
√
5α+
√
5β−5αβγ

120
25+
√
5α−
√
5β+5αβγ

120 − 1+
√
5α−β+

√
5αβγ

120

1 1+α+β−αβγ
24

11−α−
√
5β+
√
5αβγ

24
11−α+

√
5β−
√
5αβγ

24
1+α−β+αβγ

24

1
12

5
12

5
12

1
12

as ω = −1 and α 6= β, γ 6= 0.

e) Particularly, we can obtain the known diagonally implicit Runge-Kutta (DIRK)
methods of order 2 and 4 with some special parameters:

1) DIRK method of order 2:

1
4

1
4 0

3
4

1
2

1
4

1
2

1
2

as ω = 1
8 , α = β = 1 and γ = 0.

2) DIRK method of order 4:

1
2 + a 1

2 + a 0 0

1
2 1 + 2a −( 1

2 + 2a) 0

1
2 − a 1 + 2a −(1 + 4a) 1

2 + a

1 + 2a −(1 + 4a) 1 + 2a

as ω = 8+5·2
1
3

12 , that is, a = 2
1
3 +2−

1
3−1

6 , α = β = −( 1
a + 2) and γ = 0.

However, it is impossible that the implicit Runge-Kutta method with B(6), C(2)
and D(2) is diagonally by choosing the parameters of ω, α, β and γ. In fact, it



1196 K.F. Xia , Y.H. Cong & G. Sun

is easily shown by satisfying the order condition C(2) or D(2) that symplectic
implicit Runge-Kutta methods with B(p), C(η) and D(ζ), when η or ζ > 1, cannot
be diagonally [4]. Therefore, we cannot find out symplectic diagonally implicit
Runge-Kutta methods of order greater than 4.

3.2. The Gauss-Radau methods

In this section, we construct another family of s-stage Implicit Runge-Kutta meth-
ods, which are called the Gauss-Radau methods, satisfying B(2s− 1), C(s− 1) and
D(s− 1), based on the combination

P (x) = P ∗s (x) +

√
2s+ 1√
2s− 1

ωP ∗s−1(x),

which is symplectic but non-symmetric, where P ∗s (x) and P ∗s−1(x) are the normal-
ized shifted polynomials of degrees s and s − 1 respectively. Now the roots of the
P (x) are real and distinct, but P̄ c = e− c is not satisfied if ω 6= 0. The weights of
the Butcher Table are determined by B(2s − 1). For the same reasons of section
3.1, we can also choose the transformation matrix X, which is the same matrix as
XG with the exception that xs,s−1 = ξs−1α, xs−1,s = −ξs−1β, xs,s = αβγ

4s−1 . By the
Theorem 12.7 of ([8], IV.12.), if p ≥ 2s − 1, b > 0, the four-parameters family of
Implicit Runge-Kutta methods with coefficients

A = WXWTB

is symplectic and algebraically stable, and has at least order 2s − 1. Besides such
results, with the special chioce of parameters ω, α, β, γ, we can obtain:

a) s-stage Gauss methods of order 2s with ω = 0, α = β = 1, γ = 0;

b) s-stage symplectic and algebraically stable Implicit Runge-Kutta methods of
order 2s− 1, which satisfy B(2s− 1), C(s− 1) and D(s− 1) and is called Radau IB
with ω = 1, α = β = 1, γ = 0;

c) s-stage symplectic and algebraically stable Implicit Runge-Kutta methods of
order 2s − 1, which satisfy B(2s − 1), C(s − 1) and D(s − 1) and is called Radau
IIB with ω = −1, α = β = 1, γ = 0.

Therefore, we also call this family Implicit Runge-Kutta method the Gauss-
Radau method as [4]. Its members with 2 and 3 stages are given by the following
Butcher Tables 5–6:

Table 5. Butcher Table of 2-stages Gauss-Radau method
3−a−ω

6
a−ω
2a ( 1

2 −
α(a+ω)

6 + β(a+ω)
6 + αβγ(a+ω)2

21 ) a+ω
2a ( 1

2 −
α(a+ω)

6 − β(a−ω)
6 − αβγ(a2−ω2)

21 )
3+a−ω

6
a−ω
2a ( 1

2 + α(a−ω)
6 + β(a+ω)

6 − αβγ(a+ω)2

21 ) a+ω
2a ( 1

2 + α(a−ω)
6 − β(a−ω)

6 + αβγ(a2−ω2)
21 )

a−ω
2a

a+ω
2a

where a =
√

3 + ω2.



Symplectic RK methods based on W-transformation 1197

Table 6. Butcher Table of 3-stages Gauss-Radau method

c1 b1A11 b2A12 b3A13

c2 b1A21 b2A22 b3A23

c3 b1A31 b2A32 b3A33

b1 b2 b3

where

c1 = −M1 +
5− ω

10
, c2 = −M2 +

5− ω
10

, c3 = M3 +
5− ω

10
;

M1 =

√
ω2 + 5

5
sin(

θ

3
− π

6
), M2 =

√
ω2 + 5

5
cos(

θ

3
), M3 =

√
ω2 + 5

5
sin(

θ

3
+
π

6
);

cos θ =
ω(5− ω2)

M
, sin θ =

5
√
ω4 + 2ω2 + 5

M
, M =

√
ω6 + 15ω4 + 75ω2 + 125,

b1 =
M2M3 + ω

10 (M3 −M2)− 1
300 (25 + 3ω2)

(M1 +M3)(M2 −M1)
,

b2 =
M1M3 + ω

10 (M3 −M1)− 1
300 (25 + 3ω2)

(M2 +M3)(M1 −M2)
, b3 = 1− b1 − b2;

and

A11 =
1

2
− 1

4
(α− β)(2M1 +

ω

5
)[3(2M1 +

ω

5
)2 − 1] +

5

44
αβγ[3(2M1 +

ω

5
)2 − 1]2;

A12 =
1

2
− (M1 −M2)− 1

4
α(2M2 +

ω

5
)[3(2M1 +

ω

5
)2 − 1]

+
1

4
β(2M1+

ω

5
)[3(2M2+

ω

5
)2 − 1]+

5

44
αβγ[3(2M1+

ω

5
)2−1][3(2M2+

ω

5
)2−1];

A13 =
1

2
− (M1 +M3) +

1

4
α(2M3 −

ω

5
)[3(2M1 +

ω

5
)2 − 1]

+
1

4
β(2M1+

ω

5
)[3(2M3−

ω

5
)2−1]+

5

44
αβγ[3(2M1+

ω

5
)2−1][3(2M3−

ω

5
)2−1];

A21 =
1

2
+ (M1 −M2)− 1

4
α(2M1 +

ω

5
)[3(2M2 +

ω

5
)2 − 1]

+
1

4
β(2M2+

ω

5
)[3(2M1+

ω

5
)2−1]+

5

44
αβγ[3(2M1+

ω

5
)2−1][3(2M2+

ω

5
)2−1];

A22 =
1

2
− 1

4
(α− β)(2M2 +

ω

5
)[3(2M2 +

ω

5
)2 − 1] +

5

44
αβγ[3(2M2 +

ω

5
)2 − 1]2;

A23 =
1

2
− (M2 +M3)− 1

4
α(2M3 −

ω

5
)[3(2M2 +

ω

5
)2 − 1]

+
1

4
β(2M2+

ω

5
)[3(2M3−

ω

5
)2−1]+

5

44
αβγ[3(2M2+

ω

5
)2−1][3(2M3−

ω

5
)2−1];

A31 =
1

2
+ (M1 +M3)− 1

4
α(2M1 +

ω

5
)[3(2M3 −

ω

5
)2 − 1]

− 1

4
β(2M3−

ω

5
)[3(2M1+

ω

5
)2−1]+

5

44
αβγ[3(2M1+

ω

5
)2−1][3(2M3−

ω

5
)2−1];

A32 =
1

2
+ (M2 +M3)− 1

4
α(2M2 +

ω

5
)[3(2M3 −

ω

5
)2 − 1]

− 1

4
β(2M3−

ω

5
)[3(2M2+

ω

5
)2−1]+

5

44
αβγ[3(2M2+

ω

5
)2−1][3(2M3−

ω

5
)2−1];
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A33 =
1

2
+

1

4
(α− β)(2M3 −

ω

5
)[3(2M3 −

ω

5
)2 − 1] +

5

44
αβγ[3(2M3 −

ω

5
)2 − 1]2.

d) The special members of Gauss-Radau methods with 2 and 3 stages, Radau IB
and Radau IIB methods, are given by

1) 2-stages Radau IB and Radau IIB methods:

0 1
8 − 1

8

2
3

7
24

3
8

1
4

3
4

1
3

3
8 − 1

24

1 7
8

1
8

3
4

1
4

2) 3-stages Radau IB and Radau IIB methods:

0 1
18

−1−
√
6

36
−1+

√
6

36

6−
√
6

10
52+3

√
6

450
16+
√
6

72
472−217

√
6

1800

6+
√
6

10
52−3

√
6

450
472+217

√
6

1800
16−
√
6

72

1
9

16+
√
6

36
16−
√
6

36

4−
√
6

10
16−
√
6

72
328−167

√
6

1800
−2+3

√
6

450

4+
√
6

10
328+167

√
6

1800
16+
√
6

72
−2−3

√
6

450

1 17−2
√
6

36
17+2

√
6

36
1
18

16−
√
6

36
16+
√
6

36
1
9

Corollary 3.1 ( [4]). For ω = 1 or ω = −1, assume the transformation matrix X
be the same matrix as XG with the difference that

Xs,s−1 = αξs−1, Xs−1,s = −βξs−1, Xs,s =
1

4s− 1
αβγ, α, β, γ(6= 0, 1) ∈ R,

we can obtain s−stage (s ≥ 3) symplectic and algebraically stable Implicit Runge-
Kutta methods of order 2s− 3 satisfying B(2s− 1), C(s− 2) and D(s− 2), called
Radau-type I and II methods respectively.
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