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MINIMIZERS FOR THE EMBEDDING OF
BESOV SPACES

Mingjuan Chen

Abstract Using the profile decomposition, we will show the relatively com-
pactness of the minimizing sequence to the critical embeddings between Besov
spaces, which implies the existence of minimizer of the critical embeddings of
Besov spaces Ḃs1

p1,q1 ↪→ Ḃs2
p2,q2 in d dimensions with s1 − d/p1 = s2 − d/p2,

s1 > s2 and 1 ≤ q1 < q2 ≤ ∞. Moreover, we establish the nonexistence of the
minimizer in the case Ḃs1

p1,q ↪→ Ḃs2
p2,q.

Keywords Profile decomposition, Besov embedding, minimizer, compact-
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1. Introduction

Let X and Y be two Banach spaces. We say that X ↪→ Y if X is a subset of Y
and there exists a constant R > 0 such that R‖u‖Y ≤ ‖u‖X holds for all u ∈ X.
Obviously, the constant R > 0 is not unique, but it has a maximal one, which is
denoted by S. It is easy to see that

S = inf
{
‖u‖X ; u ∈ X, ‖u‖Y = 1

}
.

If there exists u0 ∈ X and ‖u0‖Y = 1 such that,

‖u0‖X = inf
{
‖u‖X ; u ∈ X, ‖u‖Y = 1

}
,

then u0 is said to be a minimizer of the embedding X ↪→ Y . In view of the definition
of S, one easily sees that there exists a sequence of {un} satisfying the following
properties:

un ∈ X, ‖un‖Y = 1, ‖un‖X ≥ S and lim
n→∞

‖un‖X = S,

which is said to be a minimizing sequence. If {un} is compact in X, which means
that it has a subsequence converging to u0 ∈ X, then we see that u0 is a minimizer
of the embedding X ↪→ Y .

In the present work we are mainly interested in the existence of the minimizer
in the embeddings of Besov spaces Ḃsp,q and we consider the following question:

Question. Let Ḃs1p1,q1(Rd) ↪→ Ḃs2p2,q2(Rd). Does the minimizer exist or not?

Email address:mjchenhappy@pku.edu.cn(M. Chen)
School of Mathematical Sciences, Peking University, Beijing, 100871, China

http://dx.doi.org/10.11948/2017100


1638 M. Chen

The existence of the minimizer for the classical Sobolev’s embeddings was es-
tablished in Lions [17] in the 1980s using the concentration-compactness principle
(see also Struwe [20]). In this paper we will use the profile decomposition to solve
this problem in the Besov’s embeddings. Similarly, the conclusion in the Sobolev’s
embeddings can also be obtained by using the profile decomposition, which is much
easier than the concentration-compactness principle (see [11]).

It is known that we have the critical embedding (cf. [21])

Ḃs1p1,q1(Rd) ↪→ Ḃs2p2,q2(Rd), s1 −
d

p1
= s2 −

d

p2
, s1 > s2, q1 ≤ q2.

These two spaces have the same scaling properties, which means that for any func-
tion f and λ > 0, we have

‖f(λ·)‖Ḃs1p1,q1 = λr‖f‖Ḃs1p1,q1 , ‖f(λ·)‖Ḃs2p2,q2 = λr‖f‖Ḃs2p2,q2 , r = s1 −
d

p1
= s2 −

d

p2
.

This inclusion lacks compactness: there exists a bounded sequence in Ḃs1p1,q1 , whose

any subsequence is not strongly convergent in Ḃs2p2,q2 . However, one can rewrite a
bounded sequence which is known as profile decomposition, and the “profile” is the
typical obstacle to compactness [11,12,16]. A profile decomposition shows that the
lack of compactness of such embeddings generally comes from linear combinations
of the profiles which are norm-invariant transformations of some non-zero elements.
Firstly, the profiles can be isolated to recover some aspects of compactness. Then the
orthogonal inequalities are established due to the orthogonality of each two profiles.
As a result, we can see that at most one profile in the decomposition is different
from zero, leading to the relatively compactness of the minimizing sequence.

In 1998, the profile decomposition was established by Gérard in [11] for the
embedding of the homogeneous Sobolev space X = Ḣs into the Lebesgue space
Y = Lp with 0 < s = d/2 − d/p. Jaffard [12] used the wavelet expansions to
generalize the profile decomposition to the case where X is a Riesz potential space.
Until 2010, such a profile decomposition for Lebesgue and Besov space embeddings
was obtained by Koch in [16] by use of wavelet bases. Such a profile decomposition
has particular applications to the regularity theory of nonlinear partial differential
equations (cf. [2, 4, 5, 7–10, 13–15]). In our paper, we present that it has another
application to recover the existence of the minimizer for critical space embeddings.
That is to say, the profile decomposition can be used to recover the existence of the
minimizer in the following cases:

(1) Ḣs(Rd) ↪→ Lp(Rd) where 0 < s < d/2 and p = 2d/(d− 2s);

(2) Ḣs,p(Rd) ↪→ Lq(Rd) where s > 0, s− d/p = −d/q;
(3) Lp(Rd) ↪→ Ḃ

sp,r
r,q (Rd) where 2 ≤ p < q, r ≤ ∞, sp,r := d(1/r − 1/p) < 0;

(4) Ḃs1p1,q1(Rd) ↪→ Ḃs2p2,q2(Rd) where s1 − d/p1 = s2 − d/p2, 1 ≤ p1 < p2 ≤ ∞, 1 ≤
q1 < q2 ≤ ∞.

In the first case, the orthogonal property and the corresponding result can be ob-
tained easily because Ḣs has Hilbert structure. And in the other three cases, we
can get the results in a similar way by using wavelet bases. Therefore, in our paper
we only consider the last case.

We list the main results of this paper as follows.
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Theorem 1.1. (i) Let X = Ḃs1p1,q, Y = Ḃs2p2,q where 1 ≤ p1 < p2 ≤ ∞, 1 ≤ q <
∞, s1 − d/p1 = s2 − d/p2. Then the minimizer does not exist.

(ii) Let X = Ḃs1p1,q1 , Y = Ḃs2p2,q2 where 1 < p1 < p2 ≤ ∞, 1 < q1 < q2 ≤ ∞,
s1−d/p1 = s2−d/p2. Suppose max(p1, q1) ≤ min(p2, q2), then the minimizer
exists.

It is easy to note that these two results in Theorem 1.1 are the corollaries of
the main theorems in Section 4 and Section 5. The profile decompositions for the
embeddings of Tribel-Lizorkin, Lorentz, Hölder and BMO spaces were established
by Bahouri etc [1]. If the relevant orthogonal results can be recovered, we believe
that the questions in these spaces’ embeddings can also be solved.

In order to more clearly express that why the same sequence index q leads to
the nonexistence of minimizer. Let us introduce the relatively compactness of the
minimizing sequence of frequency-localized operator. From Bernstein’s inequality,
we know that for 1 ≤ p1 < p2 ≤ ∞, ‖f‖p2 . ‖f‖p1 if suppf̂ is compact. Therefore,
we consider the existence of the minimizer for

Sj‖∆ju‖p2 ≤ ‖∆ju‖p1 , 1 ≤ p1 < p2 ≤ ∞, j ∈ Z, (1.1)

where Sj is the maximal constant of the frequency-localized operator ∆j (the defi-
nition is in next section). Suppose {∆jun} is a minimizing sequence, that is

∆jun ∈ Lp1 , ‖∆jun‖p2 = 1, lim
n→∞

‖∆jun‖p1 = Sj . (1.2)

If the minimizing sequence is compact in Lp1 , the minimizer exists. We have the
following theorem:

Theorem 1.2. Let 1 < p1 < p2 <∞, Sj‖∆ju‖p2 ≤ ‖∆ju‖p1 . Then the minimizer
exists for any fixed j ∈ Z. In particular, Sj = 2jd(1/p2−1/p1)S0.

The proof of Theorem 1.2 is in Section 3. We find that the difference between
p1 and p2 ensures the relatively compactness of the minimizing sequence at every
frequency torus, but the same q shall lead to the non-compactness.

2. Preliminaries

First, we introduce the dyadic decomposition and homogeneous Besov spaces, see
[21]. Let ψ : Rd → [0, 1] be a smooth radial cut-off function which is supported in
{ξ ∈ Rd; |ξ| ≤ 2} and equals 1 on {ξ ∈ Rd; |ξ| ≤ 1}. Denote ϕ(ξ) = ψ(ξ) − ψ(2ξ),
then supp ϕ ⊂ {ξ : 2−1 ≤ |ξ| ≤ 2}. Next we introduce the function sequence
{ϕj}+∞−∞:

ϕj(ξ) = ϕ(2−jξ), j ∈ Z. (2.1)

It is easy to see that supp ϕj ⊂ {ξ : 2j−1 ≤ |ξ| ≤ 2j+1} and∑
j∈Z

ϕj(ξ) = 1, ξ ∈ Rd \ {0}. (2.2)

Define the homogeneous dyadic decomposition operators as following:

∆j = F−1ϕjF , j ∈ Z. (2.3)
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Noticing that in (2.1)-(2.3), there is no restriction on ξ = 0, and so one needs to
modify the Schwartz space S and its dual S ′. Denote

Ṡ (Rd) = {f ∈ S (Rd) : (Dαf̂)(0) = 0, ∀α}.

As a subspace of S , Ṡ (Rd) is equipped with the same topology as S . we denote
by Ṡ ′(Rd) the dual space of Ṡ (Rd). We now introduce the homogeneous Besov
space Ḃsp,q:

Ḃsp,q = {f ∈ Ṡ ′(Rd) : ‖f‖Ḃsp,q <∞}, −∞ < s <∞, 1 ≤ p, q ≤ ∞;

‖f‖Ḃsp,q :=

(∑
j∈Z

2jsq‖∆jf‖qp
)1/q

.

Using the dilation, we have the scaling property

‖f(2l·)‖Ḃsp,q = 2l(s−d/p)‖f‖Ḃsp,q .

Next, we introduce the wavelet bases and the equivalent norm of Besov spaces,
see [16]. Fix any m ∈ N, denote λ = (i, j, k) ∈ {1, 2, · · · , 2d − 1} × Z × Zd := Λ.
There exists a real-valued set of functions {ϕ(i)}1≤i≤2d−1 ⊂ Cm(Rd)∪(∩p>1L

p(Rd))
such that ϕλ = ϕ

(i)
j,k defined by ϕλ(x) = 2jd/2ϕ(i)(2jx− k) is an orthonormal basis

of L2:

f ∈ L2(Rd) ⇐⇒ f =
∑
λ∈Λ

cλϕλ, where cλ = c
(i)
j,k :=

∫
Rd
ϕλ · f.

Moreover, the equivalent norm of Besov spaces is defined by:

‖f‖Ḃsp,q ' ‖f ‖̃Ḃsp,q :=
∥∥∥2j(s+d(1/2−1/p))‖c(i)j,k‖`pi,k

∥∥∥
`qj

, 1 ≤ p, q ≤ ∞, |s| < m.

(2.4)

By calculating, one has the scaling property

‖f(2l·)‖̃Ḃsp,q = 2l(s−d/p)‖f ‖̃Ḃsp,q .

Finally, we recall some known lemmas which would be used.

Lemma 2.1 (Compactness in Lp, [19]). Fix 1 ≤ p < ∞. A family of functions
F ⊂ Lp(Rd) is precompact in this topology if and only if it obeys the following three
conditions:

(i) There exists A > 0 so that ‖f‖p ≤ A for all f ∈ F .

(ii) For any ε > 0 there exists δ > 0 so that
∫
Rd |f(x) − f(x + y)|pdx < ε for all

f ∈ F and all |y| < δ.

(iii) For any ε > 0 there exists R so that
∫
|x|≥R |f |

pdx < ε for all f ∈ F .

Remark 2.1. It is easy to note that when we consider a compact set K ⊂ Rd, the
third condition of Lemma 2.1 is trivial.

Lemma 2.2 (Bernstein multiplier theorem, [21]). Let L > d/2 be an integer, ∂αxiρ ∈
L2, i = 1, · · · , d and 0 ≤ α ≤ L. Then we have ρ ∈Mp, 1 ≤ p ≤ ∞ and

‖ρ‖Mp
. ‖ρ‖1−d/2L2

( d∑
i=1

‖∂Lxiρ‖2
)d/2L

.
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3. Minimizers for the frequency-localized operator

First, we consider the minimizer of the frequency-localized operator ∆0. The main
result of this section is as follows.

Theorem 3.1. Let 1 < p1 < p2 <∞, S0‖∆0u‖p2 ≤ ‖∆0u‖p1 . Then the minimizing
sequence {∆0un} is relatively compact in Lp1 . Moreover, ∆0un is convergence to
∆0u strongly in Lp1 .

Before proving Theorem 3.1, we introduce the following lemma.

Lemma 3.1. Let 1 ≤ p1 < p2 < ∞, K be any compact set in Rd. Then the
restriction of the minimizing sequence {∆0un} on K, which is denoted by ∆0un|K ,
is relatively compact in Lpi(K), i ∈ {1, 2}.

Proof. In the next proceeding, i = 1 or 2. It is easy to see that ∆0un|K is
uniformly bounded in Lpi(K). In fact from (1.2), we know that there exists Ci such
that

‖∆0un‖Lpi (K) ≤ ‖∆0un‖Lpi (Rd) ≤ Ci.

Next we claim that for any ε > 0, there exists δ > 0 such that ‖(∆0un)(x + h) −
(∆0un)(x)‖Lpi (K) < ε for all |h| < δ. Indeed,

‖(∆0un)(x+ h)− (∆0un)(x)‖Lpi (K) ≤ ‖(F−1(eihξ − 1)ϕ0(ξ)Fun)(x)‖Lpi (Rd).

From the construction of ϕj , one has the almost orthogonality ϕj =
∑
|l|≤1 ϕjϕj+l.

Then we have

‖(∆0un)(x+ h)− (∆0un)(x)‖Lpi (K)

≤‖(F−1(eihξ − 1)(ϕ−1(ξ) + ϕ0(ξ) + ϕ1(ξ))FF−1ϕ0(ξ)Fun)(x)‖Lpi (Rd)

≤‖(eihξ − 1)(ϕ−1(ξ) + ϕ0(ξ) + ϕ1(ξ))‖Mpi
‖∆0un‖Lpi (Rd)

≤Ci‖(eihξ − 1)(ϕ−1(ξ) + ϕ0(ξ) + ϕ1(ξ))‖Mpi
.

By using Bernstein multiplier theorem, we can get that there exists δ > 0 so that
‖(eihξ − 1)(ϕ−1(ξ) + ϕ0(ξ) + ϕ1(ξ))‖Mpi

< ε/Ci for all |h| < δ. Thus from Lemma
2.1, the conclusion is obtained.

Proof of Theorem 3.1. From Lemma 3.1, we know that there exists g(x) such
that (∆0un)(x) → g(x) in Lp1(K). Then there is a subsequence {un} such that
(∆0un)(x) → g(x) pointwise almost everywhere on K. We may assume that
∆0un ⇀ ∆0u weakly in Lp1(1 < p1 <∞) since ∆0un is uniformly bounded. By the
arbitrariness of compact set K, we obtain (∆0un)(x) → ∆0u(x) pointwise almost
everywhere on Rd. Moreover, if the family (|∆0un − θ∆0u|p1−1∆0u) is uniformly
integrable and tight over Rd for all θ ∈ [0, 1], by Vitali’s convergence theorem we
can get that

lim
n→∞

∫
|∆0un|p1dx−

∫
|∆0un −∆0u|p1dx

= lim
n→∞

−
∫ ∫ 1

0

d

dθ
|∆0un − θ∆0u|p1dθdx

= lim
n→∞

p1

∫ ∫ 1

0

|∆0un − θ∆0u|p1−2(∆0un − θ∆0u)∆0udθdx
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=p1

∫ ∫ 1

0

|∆0u− θ∆0u|p1−2(∆0u− θ∆0u)∆0udθdx =

∫
|∆0u|p1dx. (3.1)

Indeed, it is well known that ∀ ε > 0, there exist δ > 0 and E ⊂ Rd such that(∫
e

|∆0u|p1dx
)1/p1

< ε, if m(e) < δ;(∫
Ec
|∆0u|p1dx

)1/p1

< ε, if m(E) <∞.

Thus from Hölder’s inequality, we have∫
e

|∆0un − θ∆0u|p1−1|∆0u|dx ≤ ‖∆0u‖Lp1 (e)‖∆0un − θ∆0u‖p1−1
Lp1

< ε(‖∆0un‖Lp1 + ‖∆0u‖Lp1 )p1−1 ≤ Cε,

and ∫
Ec
|∆0un − θ∆0u|p1−1|∆0u|dx ≤ ‖∆0u‖Lp1 (Ec)‖∆0un − θ∆0u‖p1−1

Lp1

< ε(‖∆0un‖Lp1 + ‖∆0u‖Lp1 )p1−1 ≤ Cε.

Hence we get the conclusion from (3.1) that∫
|∆0un|p1dx−

∫
|∆0un −∆0u|p1dx→

∫
|∆0u|p1dx. (3.2)

It is easy to see that this result is also true if p1 is replaced by p2, that is∫
|∆0un|p2dx−

∫
|∆0un −∆0u|p2dx→

∫
|∆0u|p2dx. (3.3)

We denote λ :=
∫
|∆0u|p2dx. From (1.2) and (3.3), we have

∫
|∆0un−∆0u|p2dx→

1− λ. Then from (3.2) we see that

Sp10 = lim
n→∞

∫
|∆0un|p1dx = lim

n→∞

∫
|∆0un −∆0u|p1dx+

∫
|∆0u|p1dx

≥ Sp10 lim
n→∞

(∫
|∆0un −∆0u|p2dx

) p1
p2

+ λ
p1
p2 Sp10

= Sp10

(
(1− λ)

p1
p2 + λ

p1
p2

)
≥ Sp10 (1− λ+ λ)

p1
p2 = Sp10 ,

where the first inequality is from (1.1), and the second inequality is by strict con-
cavity. The equality holds if and only if λ ∈ {0, 1} since p1 < p2. By making
translation and dilation to ∆0un, we may assure λ =

∫
|∆0u|p2dx 6= 0. Thus

λ =

∫
|∆0u|p2dx = 1, ‖∆0un −∆0u‖p2 → 0.

Furthermore,

S0 = S0‖∆0u‖p2 ≤ ‖∆0u‖p1 ≤ lim inf
n→∞

‖∆0un‖p1 = S0.

It implies ‖∆0un‖p1 → ‖∆0u‖p1 . Combined with ∆0un ⇀ ∆0u in Lp1 , it follows
that ∆0un → ∆0u in Lp1 , as desired. The proof is completed. �

Next, we extend the result of ∆0 to every frequency-localized operator ∆j , j ∈ Z.
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Proposition 3.1. S0‖∆0u‖p2 ≤ ‖∆0u‖p1 holds if and only if

S0‖∆ju‖p2 ≤ 2jd(1/p1−1/p2)‖∆ju‖p1

holds for any j ∈ Z.

Proof. On the one hand, ∀j ∈ Z, let ũ(x) := u(2−jx), it is easy to calculate that
(∆0ũ)(x) = (∆ju)(2−jx). By S0‖∆0ũ‖p2 ≤ ‖∆0ũ‖p1 , we can get S0‖∆ju‖p2 ≤
2jd(1/p1−1/p2)‖∆ju‖p1 .

On the other hand, let ū(x) := u(2jx). Then from

S0‖∆j ū‖p2 ≤ 2jd(1/p1−1/p2)‖∆j ū‖p1 ,

we have S0‖∆0u‖p2 ≤ ‖∆0u‖p1 .

Proof of Theorem 1.2. We can get from Proposition 3.1 that

Sj = 2jd(1/p2−1/p1)S0.

Suppose {∆0un} is a minimizing sequence of ∆0, that is

∆0un ∈ Lp1 , ‖∆0un‖p2 = 1, lim
n→∞

‖∆0un‖p1 = S0.

Theorem 3.1 implies that there exists u such that ∆0un → ∆0u in Lp1 . For any
fixed j ∈ Z, take the sequence vn := 2jd/p2un(2jx) and v := 2jd/p2u(2jx). We can
obtain

‖∆jvn‖p2 = ‖∆0un‖p2 = 1,

lim
n→∞

‖∆jvn‖p1 = 2jd(1/p2−1/p1) lim
n→∞

‖∆0un‖p1 = 2jd(1/p2−1/p1)S0 = Sj .

Then {∆jvn} is a minimizing sequence of ∆j , and

‖∆jvn −∆jv‖p1 = 2jd(1/p2−1/p1)‖∆0un −∆0u‖p1 → 0.

The proof is completed. �
Finally, we establish a proposition to supplement.

Proposition 3.2. Let 1 ≤ p1 < p2 ≤ ∞, s1 − d/p1 = s2 − d/p2, and S is the
maximal constant for S‖u‖Ḃs2p2,q ≤ ‖u‖Ḃs1p1,q , then S = S0.

Proof. On the one hand, by Proposition 3.1,

S0‖∆ju‖p2 ≤ 2jd(1/p1−1/p2)‖∆ju‖p1 , ∀j ∈ Z.

From the embedding condition s1 − d/p1 = s2 − d/p2, we can get

S0‖∆ju‖p2 ≤ 2j(s1−s2)‖∆ju‖p1 , ∀j ∈ Z.

Transfering 2js2 to the left side of the inequality and taking the `q norm about
j ∈ Z, we have(∑

j∈Z

(
2js2S0‖∆ju‖p2

)q)1/q

≤
(∑
j∈Z

(
2js1‖∆ju‖p1

)q)1/q

.
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It means that S0‖u‖Ḃs2p2,q ≤ ‖u‖Ḃs1p1,q , then S0 ≤ S.

On the other hand, S‖u‖Ḃs2p2,q ≤ ‖u‖Ḃs1p1,q means that(∑
j∈Z

(
2js2S‖∆ju‖p2

)q)1/q

≤
(∑
j∈Z

(
2js1‖∆ju‖p1

)q)1/q

.

There exists at least one j0 ∈ Z such that

2j0s2S‖∆j0u‖p2 ≤ 2j0s1‖∆j0u‖p1 .

Transfering 2j0s2 to the right side of the inequality and using s1−d/p1 = s2−d/p2,
we obtain

S‖∆j0u‖p2 ≤ 2j0d(1/p1−1/p2)‖∆j0u‖p1 .
By the proof of Proposition 3.1, we have

S‖∆0u‖p2 ≤ ‖∆0u‖p1 ,

then S ≤ S0. The proof is completed.

4. Nonexistence cases of the minimizer in Besov
embeddings

The Besov’s embeddings Ḃs1p1,q1(Rd) ↪→ Ḃs2p2,q2(Rd) hold when s1−d/p1 = s2−d/p2,
1 ≤ p1 < p2 ≤ ∞, 1 ≤ q1 ≤ q2 ≤ ∞. In this section we consider the case q1 = q2.
Let S be the maximal constant for

S‖u‖Ḃs2p2,q ≤ ‖u‖Ḃs1p1,q , s1 −
d

p1
= s2 −

d

p2
, 1 ≤ p1 < p2 ≤ ∞.

We have the following theorem.

Theorem 4.1. Let s1 − d/p1 = s2 − d/p2, 1 ≤ p1 < p2 ≤ ∞ and 1 ≤ q <∞, then
there exists a minimizing sequence {un} satisfying

un ∈ Ḃs1p1,q, ‖un‖Ḃs2p2,q = 1, and lim
n→∞

‖un‖Ḃs1p1,q = S, (4.1)

such that {un} is not relatively compact in Ḃs1p1,q.

Proof. The strategy of the proof is by contradiction. We assume that the conclu-
sion is false. It is to say that any minimizing sequence {un} is relatively compact
in Ḃs1p1,q.

We choose a fixed sequence {un} satisfying (4.1). Then there exists u ∈ Ḃs1p1,q
such that ‖un − u‖Ḃs1p1,q → 0, ‖un − u‖Ḃs2p2,q → 0 as n → ∞. It means that

‖u‖Ḃs1p1,q = S, ‖u‖Ḃs2p2,q = 1. It is easy to see that∑
|j|>n

(
2js2‖∆ju‖p2

)q ≤ ε(n), lim
n→∞

ε(n) = 0.

Next we consider a sequence {vn} which has the following form:

vn(x) = u(x) + (23n)
d
p2
−s2u(23nx) =: u(x) + wn(x). (4.2)
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For any j ∈ Z, we have

∆jvn = ∆ju+ ∆jwn = ∆ju+ (23n)
d
p2
−s2(∆j−3nu)(23nx).

Therefore,∑
j∈Z

(
2js2‖∆jvn‖p2

)q
=
∑
|j|≤n

(
2js2‖∆ju+ ∆jwn‖p2

)q
+
∑
|j|>n

(
2js2‖∆ju+ ∆jwn‖p2

)q
=
∑
|j|≤n

(
2js2‖∆ju‖p2

)q
+
∑
|j|>n

(
2js2‖∆jwn‖p2

)q
+ θ(ε(n))

=
∑
|j|≤n

(
2js2‖∆ju‖p2

)q
+

∑
j>−2n or
j<−4n

(
2js2‖∆ju‖p2

)q
+ θ(ε(n)),

(4.3)

where θ(ε(n))→ 0 as ε(n)→ 0. Let n→ +∞ in (4.3), we obtain

lim
n→∞

‖vn‖qḂs2p2,q
= 2‖u‖q

Ḃ
s2
p2,q

= 2. (4.4)

From s1 − d/p1 = s2 − d/p2, we can get by similar discussion that

lim
n→∞

‖vn‖qḂs1p1,q
= 2‖u‖q

Ḃ
s1
p1,q

= 2Sq. (4.5)

Combining (4.4) and (4.5), we see that S limn→∞ ‖vn‖Ḃs2p2,q = limn→∞ ‖vn‖Ḃs1p1,q . It

implies that the sequence {vn} is a minimizing sequence after normalizing. For any
subsequence of {vn} which is still denoted by {vn}, we have vn ⇀ u weakly in Ḃs1p1,q
because of (4.2). However, limn→∞ ‖vn‖Ḃs1p1,q = 21/q‖u‖Ḃs1p1,q > ‖u‖Ḃs1p1,q , which is

contrary to the assumption. Now we complete the proof of Theorem 4.1.

5. Existence cases of the minimizer in Besov em-
beddings

In this section we consider the existence of minimizers for the critical Besov’s em-
beddings

Ḃs1p1,q1(Rd) ↪→ Ḃs2p2,q2(Rd), s1 −
d

p1
= s2 −

d

p2
, s1 > s2, 1 ≤ q1 < q2 ≤ ∞.

We shall use the equivalent norms of Besov spaces as (2.4). Let S be the maximal

constant for S‖u‖̃Ḃs2p2,q2 ≤ ‖u‖̃Ḃs1p1,q1 . Assume that {un} is a minimizing sequence

for S, that is

un ∈ Ḃs1p1,q1 , ‖un‖̃Ḃs2p2,q2 = 1, and lim
n→∞

‖un‖̃Ḃs1p1,q1 = S.

We use the profile decomposition to get the following theorem.

Theorem 5.1. Let s1 − d/p1 = s2 − d/p2, 1 < p1 < p2 ≤ ∞ and 1 < q1 < q2 ≤
∞. Suppose max(p1, q1) ≤ min(p2, q2), then any minimizing sequence {un} up to
translation and dilation is relatively compact in Ḃs1p1,q1 .
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To prove Theorem 5.1, we introduce the profile decomposition for bounded se-
quences in Besov spaces which is established by Koch (see [1, 16]).

Lemma 5.1. Let 1 ≤ p1 < p2 ≤ ∞, 1 ≤ q1 < q2 ≤ ∞, α = s1−d/p1 = s2−d/p2.
Let {un}∞n=1 be a bounded sequence in Ḃs1p1,q1 . There exists a sequence of profiles

{φl}∞l=1 ⊂ Ḃs1p1,q1 and a set of sequences {(jln, kln)}∞n=1 ⊂ Z × Zd for l ∈ N, both
depending on {un}, such that, after possibly passing to a subsequence in n,

un(x) =

L∑
l=1

(2j
l
n)−αφl

(
2j
l
nx− kln) + rLn (x) (5.1)

for any L ∈ N where the following properties hold:

(i) For l 6= l′, the sequences {(jln, kln)} and {(jl′n , kl
′

n)} are orthogonal in the fol-
lowing sense:

lim
n→∞

∣∣∣ log
(
2(jln−j

l′
n )
)∣∣∣+

∣∣∣2(jln−j
l′
n )kl

′

n − kln
∣∣∣ = +∞. (5.2)

(ii) The remainder rLn satisfies the following smallness condition:

lim
L→∞

lim sup
n→∞

‖rLn ‖̃Ḃs2p2,q2 = 0. (5.3)

(iii) (Stability) For each n ∈ N,∣∣∣(‖(2jln)−αφl
(
2j
l
nx− kln)‖̃Ḃs1p1,q1

)∞
l=1

∥∥∥
`τ
≤ lim inf

n′→∞
‖un′ ‖̃Ḃs1p1,q1 , (5.4)

where τ := max(p1, q1), and for any L ∈ N,

‖rLn ‖̃Ḃs1p1,q1 ≤ ‖un‖̃Ḃs1p1,q1 + ◦(1) as n→∞. (5.5)

Remark 5.1. In [16], (5.3) needs the condition q2/q1 ≥ p2/p1. However, the
authors [1] put this condition off.

The proof of Lemma 5.1 can be found in [1, 16]. It used the wavelet bases. Let
me sketch the proceeding to get the profile decomposition.

We consider the embeddings Ḃs1p1,q1 ↪→ Ḃs2p2,q2 ↪→ Ḃα∞,∞, where α = s1 − d/p1 =
s2 − d/p2. From the equivalent norm (2.4), we have

‖f ‖̃Ḃα∞,∞ = sup
λ∈Λ

2j(α+d/2)|c(i)j,k|.

Thus we define

a
(i)
j,k := 2j(α+d/2)c

(i)
j,k, ψλ(x) := 2−j(α+d/2)ϕλ(x).

Therefore, for a given f one may write

f =
∑
λ

cλϕλ =
∑
λ

aλψλ =
∑
λ

aλ2−jαϕ(i)(2jx− k), (5.6)

and we have the equivalence norm:

‖f‖Ḃsp,q ' ‖f ‖̃Ḃsp,q :=
∥∥∥2j(s−α−d/p)‖a(i)

j,k‖`pi,k
∥∥∥
`qj

.
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In particular,

‖f ‖̃Ḃα∞,∞ = sup
λ∈Λ
|a(i)
j,k|, ‖f ‖̃Ḃs1p1,q1 =

∥∥‖a(i)
j,k‖`p1i,k

∥∥
`
q1
j

, ‖f ‖̃Ḃs2p2,q2 =
∥∥‖a(i)

j,k‖`p2i,k
∥∥
`
q2
j

.

(5.7)

For convenience, for any λ = {i, j, k} ∈ Λ, let

τ(x) := 2jx− k, (τϕ(i))(x) := 2−jαϕ(i)(τ(x)), |τ | := | log 2j |+
∣∣∣ k
2j

∣∣∣.
Then for a given f one may write from (5.6) that

f =
∑
λ

aλ(τϕ(i))(x).

Moreover, note that τ1(τ2ϕ
(i)) = (τ2 ◦ τ1)ϕ(i) for any such τ1, τ2. For sequences

τ1,n(x) := 2j
1
nx− k1

n and τ2,n(x) := 2j
2
nx− k2

n, let τ
(2,1)
n := τ2,n ◦ τ−1

1,n, then

τ (2,1)
n (x) = 2j

2
n−j

1
nx− (k2

n − 2j
2
n−j

1
nk1

n), |τ (2,1)
n | =

∣∣∣ log 2(j2n−j
1
n)
∣∣∣+
∣∣∣2(j1n−j

2
n)k2

n − k1
n

∣∣∣.
We say “τ1,n and τ2,n are orthogonal” if |τ (2,1)

n | → ∞ as n → ∞, which is in
conformity with (5.2).

The strategy of getting the profile decomposition is by method of iteration. The
wavelet decomposition is

un =
∑
λ

aλ,nψλ =
∑
λ

aλ,n(τϕ(i)).

At every iteration l, we sort out a wavelet component aλlnψλln = aλlnτl,nϕ
(il) whose

coefficient has the largest possible modulus. Here λln = (il, j
l
n, k

l
n), τl,n = 2j

l
nx−kln,

aλln → al 6= 0 as n → ∞ (passing to a subsequence if necessary). If for any l̄ < l,

τl,n and τl̄,n are orthogonal, we shall build a new profile; else if there is some l̄ < l
such that τl,n and τl̄,n are not orthogonal, we shall use alψλln to modify the profile
contains τl̄,n. We show out the general form which can be found in [16],

un =

LN∑
l=1

MN (l)∑
µ=1

a
λ
mµ(l)
n

τmµ(l),nϕ
imµ(l) + uNn

=

LN∑
l=1

τm1(l),n

(
MN (l)∑
µ=1

a
λ
mµ(l)
n

τ (mµ(l),m1(l))ϕimµ(l)

)
+ uNn

=:

LN∑
l=1

τm1(l),n

(
MN (l)∑
µ=1

amµ(l)τ
(mµ(l),m1(l))ϕimµ(l)

)
+ rNn , (5.8)

where the second equality is obtained by passing to a subsequence such that τ
(mµ(l),m1(l))
n

≡ τ (mµ(l),m1(l)) = const (because of working on lattices). Let iteration N → ∞
(if iteration stops at some finite N̄ , it is similar and easier), and denote L∞ :=
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limN→∞ LN , M∞(l) := limN→∞MN (l) for any l ∈ [1, L∞]. Then for any L ∈
[1, L∞], we have from (5.8) that:

un =

L∑
l=1

τm1(l),n

(
M∞(l)∑
µ=1

amµ(l)τ
(mµ(l),m1(l))ϕimµ(l)

)
+ rLn . (5.9)

Let

φl :=

M∞(l)∑
µ=1

amµ(l)τ
(mµ(l),m1(l))ϕimµ(l) ,

we know φl ∈ Ḃs1p1,q1 in the proof of Lemma 5.1 in [16]. Therefore (5.9) implies (5.1).
Replace both L∞ and M∞(l) by ∞. If either is finite, we set the extra components
are zero. It is to say that

un =

∞∑
l=1

τm1(l),n

( ∞∑
µ=1

a
λ
mµ(l)
n

τ (mµ(l),m1(l))ϕimµ(l)

)

=:

∞∑
l=1

τm1(l),n

( ∞∑
µ=1

amµ(l)τ
(mµ(l),m1(l))ϕimµ(l)

)
+ r∞n

=:

∞∑
l=1

τm1(l),nφl + r∞n =

∞∑
l=1

∞∑
µ=1

amµ(l)ψλmµ(l)
n

+ r∞n . (5.10)

To prove Theorem 5.1, we also need the following orthogonal inequalities.

Lemma 5.2. φl ∈ Ḃs1p1,q1 ↪→ Ḃs2p2,q2 for any l ∈ N+, and the symbols are as the
above discussion, then for any n ∈ N,∥∥∥∥ ∞∑

l=1

τm1(l),nφl

∥̃∥∥∥σ
Ḃ
s2
p2,q2

≤
∞∑
l=1

‖τm1(l),nφl‖̃σḂs2p2,q2 ,

where σ = min(p2, q2).

Proof. Since un can be decomposed into the form like (5.10), we may divide Λ
into a disjoint union of sets El: Λ = ∪∞l=1El. The proof is ascribed to proving the
following inequality:∥∥∥∥∑

λ∈Λ

aλψλ

∥̃∥∥∥σ
Ḃ
s2
p2,q2

≤
∞∑
l=1

∥∥∥∥ ∑
λ∈El

aλψλ

∥̃∥∥∥σ
Ḃ
s2
p2,q2

.

(1) The case σ = p2 ≤ q2. We have from (5.7) that

∞∑
l=1

∥∥∥∥ ∑
λ∈El

aλψλ

∥̃∥∥∥p2
Ḃ
s2
p2,q2

=

∞∑
l=1

(∑
j

( ∑
λ∈El,j

|aλ|p2
) q2
p2

) p2
q2

≥
(∑

j

( ∞∑
l=1

∑
λ∈El,j

|aλ|p2
) q2
p2

) p2
q2

=

∥∥∥∥∑
λ∈Λ

aλψλ

∥̃∥∥∥p2
Ḃ
s2
p2,q2

,

where λ ∈ El,j means λ = {i, j, k} having the same index j in El, and the inequality
is by Minkowski’s inequality.
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(2) The case σ = q2 ≤ p2.

∞∑
l=1

∥∥∥∥ ∑
λ∈El

aλψλ

∥̃∥∥∥q2
Ḃ
s2
p2,q2

=

∞∑
l=1

∑
j

( ∑
λ∈El,j

|aλ|p2
) q2
p2

=
∑
j

∞∑
l=1

( ∑
λ∈El,j

|aλ|p2
) q2
p2

≥
∑
j

( ∞∑
l=1

∑
λ∈El,j

|aλ|p2
) q2
p2

=

∥∥∥∥∑
λ∈Λ

aλψλ

∥̃∥∥∥q2
Ḃ
s2
p2,q2

,

where the inequality is from strict concavity.

Remark 5.2. In Lemma 5.2, when p2 6= q2, the equality in the result holds if and
only if at most one of the terms τm1(l),nφl, l ∈ N+, is different from zero.

Proof of Theorem 5.1. From ‖un‖̃Ḃs2p2,q2 = 1 and limn→∞ ‖un‖̃Ḃs1p1,q1 = S, we

know that ‖un‖̃Ḃs2p2,q2 and ‖un‖̃Ḃs1p1,q1 are uniformly bounded. Thus after possibly

passing to a subsequence in n, {un} can be decomposed into (5.1) in Ḃs1p1,q1 and

satisfies all the properties in Lemma 5.1. Moreover, since Ḃs1p1,q1 ↪→ Ḃs2p2,q2 , (5.1) is

also a decomposition of un in Ḃs2p2,q2 . Combining (5.3) and (5.10), we know after
passing a subsequence

lim
n→∞

‖r∞n ‖̃Ḃs2p2,q2 = 0.

As Lemma 5.1 and Lemma 5.2, let τ = max(p1, q1) and σ = min(p2, q2). From
(5.10) we have

1 = ‖un‖̃σḂs2p2,q2 = ‖un − r∞n ‖̃σḂs2p2,q2 + o(1)

=
∥∥∥ ∞∑
l=1

τm1(l),nφl

∥̃∥∥σ
Ḃ
s2
p2,q2

+ o(1) ≤
∞∑
l=1

‖τm1(l),nφl‖̃σḂs2p2,q2 + o(1)

≤ S−σ
∞∑
l=1

‖τm1(l),nφl‖̃σḂs1p1,q1 + o(1) ≤ S−σ
( ∞∑
l=1

‖τm1(l),nφl‖̃τḂs1p1,q1

)σ/τ
+ o(1)

≤ S−σ
(

lim
n′→∞

‖un′ ‖̃Ḃs1p1,q1
)σ

+ o(1) = 1 + o(1), (5.11)

where o(1)→ 0 (n→∞), the first inequality is by Lemma 5.2, the second inequality

is by S‖u‖̃Ḃs2p2,q2 ≤ ‖u‖̃Ḃs1p1,q1 , the third inequality is by strict convexity, and the forth

inequality is from (5.4).
Let n → ∞, the inequalities in (5.11) must ensure all equalities hold. If

max(p1, q1) < min(p2, q2), we know that the equality in the third inequality holds
if and only if at most one of the items φl, l ∈ N+, is not zero. If max(p1, q1) =
min(p2, q2), from the conditions p1 < p2, q1 < q2, we only have two cases:

p1 < q1 = p2 < q2, q1 < p1 = q2 < p2.

From Remark 5.2, we get that the equality in the first inequality holds if and only
if at most one of the terms φl, l ∈ N+, is different from zero. Therefore, there exists
l′ ∈ N+ such that

un(x) = (2j
l′
n )−αφl′

(
2j
l′
n x− kl

′

n) + rn. lim sup
n→∞

‖rn‖̃Ḃs2p2,q2 = 0.
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Let

vn(x) := (2j
l′
n )αun

(x+ kl
′

n

2j
l′
n

)
.

Passing to a subsequence and using the norm invariance, we have

lim
n→∞

‖vn − φl′ ‖̃Ḃs2p2,q2 = 0, ‖φl′ ‖̃Ḃs2p2,q2 = lim
n→∞

‖vn‖̃Ḃs2p2,q2 = lim
n→∞

‖un‖̃Ḃs2p2,q2 = 1.

Moreover, we have

S = S‖φl′ ‖̃Ḃs2p2,q2 ≤ ‖φl′ ‖̃Ḃs1p1,q1 ≤ lim
n→∞

‖vn‖̃Ḃs1p1,q1 = lim
n→∞

‖un‖̃Ḃs1p1,q1 = S.

It follows that ‖vn‖̃Ḃs1p1,q1 → ‖φl′ ‖̃Ḃs1p1,q1 as n → ∞. Combining with vn ⇀ φl′ in

Ḃs1p1,q1 , we know that vn → φl′ in Ḃs1p1,q1( here the condition 1 < p1, q1 < ∞ is
necessary). The proof is completed. �
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