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MINIMIZERS FOR THE EMBEDDING OF
BESOV SPACES
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Abstract Using the profile decomposition, we will show the relatively com-
pactness of the minimizing sequence to the critical embeddings between Besov
spaces, which implies the existence of minimizer of the critical embeddings of
Besov spaces Bf,%,ql — B;gm in d dimensions with s1 — d/p1 = s2 — d/p2,
s1>s2and 1 <q1 < g2 < 00. Moreover, we establish the nonexistence of the
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minimizer in the case B,] , — B2 ;.
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1. Introduction

Let X and Y be two Banach spaces. We say that X — Y if X is a subset of Y
and there exists a constant R > 0 such that Rl|ju|ly < |lul|x holds for all u € X.
Obviously, the constant R > 0 is not unique, but it has a maximal one, which is
denoted by S. It is easy to see that

S = inf{||uHX; ue X, ||ully = 1}.
If there exists up € X and ||ugl|ly = 1 such that,
luollx = inf{lullx; v € X, [lully =1},

then wug is said to be a minimizer of the embedding X — Y. In view of the definition
of S, one easily sees that there exists a sequence of {u,} satisfying the following
properties:

up € X, |lunlly =1, JJupllx =S and lim |ju,|x =5,
n— o0

which is said to be a minimizing sequence. If {u,} is compact in X, which means
that it has a subsequence converging to uyp € X, then we see that ug is a minimizer
of the embedding X — Y.

In the present work we are mainly interested in the existence of the minimizer
in the embeddings of Besov spaces B;  and we consider the following question:

Question. Let B;i_’ql (R?) ng,qz (R?). Does the minimizer exist or not?
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The existence of the minimizer for the classical Sobolev’s embeddings was es-
tablished in Lions [17] in the 1980s using the concentration-compactness principle
(see also Struwe [20]). In this paper we will use the profile decomposition to solve
this problem in the Besov’s embeddings. Similarly, the conclusion in the Sobolev’s
embeddings can also be obtained by using the profile decomposition, which is much
easier than the concentration-compactness principle (see [11]).

It is known that we have the critical embedding (cf. [21])

d d
RY) < B3 (RY), 53— — =8y — —, 51> 82, @1 <o

pq( P2,q
n >t b1 b2

These two spaces have the same scaling properties, which means that for any func-
tion f and A > 0, we have

d d
gy, =N WAy, IE gy, = N Wy, 7= s = o = s

This inclusion lacks compactness: there exists a bounded sequence in B5! . whose

P1,91°
any subsequence is not strongly convergent in B;§ g+ However, one can rewrite a
bounded sequence which is known as profile decomposition, and the “profile” is the
typical obstacle to compactness [11,12,16]. A profile decomposition shows that the
lack of compactness of such embeddings generally comes from linear combinations
of the profiles which are norm-invariant transformations of some non-zero elements.
Firstly, the profiles can be isolated to recover some aspects of compactness. Then the
orthogonal inequalities are established due to the orthogonality of each two profiles.
As a result, we can see that at most one profile in the decomposition is different
from zero, leading to the relatively compactness of the minimizing sequence.

In 1998, the profile decomposition was established by Gérard in [11] for the
embedding of the homogeneous Sobolev space X = H* into the Lebesgue space
Y = LP with 0 < s = d/2 — d/p. Jaffard [12] used the wavelet expansions to
generalize the profile decomposition to the case where X is a Riesz potential space.
Until 2010, such a profile decomposition for Lebesgue and Besov space embeddings
was obtained by Koch in [16] by use of wavelet bases. Such a profile decomposition
has particular applications to the regularity theory of nonlinear partial differential
equations (cf. [2,4,5,7-10,13-15]). In our paper, we present that it has another
application to recover the existence of the minimizer for critical space embeddings.
That is to say, the profile decomposition can be used to recover the existence of the
minimizer in the following cases:

(1) H*(R?) < LP(R?) where 0 < s < d/2 and p = 2d/(d — 2s);

)
(2) H5P(R%) < LI(R?) where s > 0, s — d/p = —d/q;
(3) LP(RY) < By (R) where 2 < p < g, 7 < 00, s, := d(1/r — 1/p) < 0;
(4)

4 plql( ) B;;qg(Rd) Wheresl—d/p1:s2—d/p2’1§p1<p2§oo71§

q1 < g2 < 0.

In the first case, the orthogonal property and the corresponding result can be ob-
tained easily because H* has Hilbert structure. And in the other three cases, we
can get the results in a similar way by using wavelet bases. Therefore, in our paper
we only consider the last case.

We list the main results of this paper as follows.
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Theorem 1.1. (i) Let X = BZM, Y = B;;q where 1 <p; <ps <o00,1<g<

00, 51 —d/p1 = so — d/p2. Then the minimizer does not exist.

(i) Let X = B;qu, Y = B;;(D where 1 < p1 < p2 < 00,1 < q1 < g2 < 00,
s1—d/p1 = s9 —d/ps. Suppose max(p1,q1) < min(pe,qa), then the minimizer

exists.

It is easy to note that these two results in Theorem 1.1 are the corollaries of
the main theorems in Section 4 and Section 5. The profile decompositions for the
embeddings of Tribel-Lizorkin, Lorentz, Holder and BMO spaces were established
by Bahouri etc [1]. If the relevant orthogonal results can be recovered, we believe
that the questions in these spaces’ embeddings can also be solved.

In order to more clearly express that why the same sequence index ¢ leads to
the nonexistence of minimizer. Let us introduce the relatively compactness of the
minimizing sequence of frequency-localized operator. From Bernstein’s inequality,
we know that for 1 < p; < pa < o0, | fllp, S I fllp, if suppf is compact. Therefore,
we consider the existence of the minimizer for

SillAjullp, < |Ajullp,, 1<p1<py<oo, jeL, (1.1)

where S is the maximal constant of the frequency-localized operator A; (the defi-
nition is in next section). Suppose {Aju,} is a minimizing sequence, that is

Ajun € I, [[Ajunllyy =1, Tim [ Ajunp, = S5 (1.2)
If the minimizing sequence is compact in LP', the minimizer exists. We have the
following theorem:

Theorem 1.2. Let 1 < p; < pa < 00, Sj||Ajullp, <I||Ajullp,. Then the minimizer
exists for any fived j € Z. In particular, S; = 27d(1/p2=1/p1) G .

The proof of Theorem 1.2 is in Section 3. We find that the difference between
p1 and po ensures the relatively compactness of the minimizing sequence at every
frequency torus, but the same ¢ shall lead to the non-compactness.

2. Preliminaries

First, we introduce the dyadic decomposition and homogeneous Besov spaces, see
[21]. Let ¢ : R? — [0, 1] be a smooth radial cut-off function which is supported in

{¢€ € R% ¢ < 2} and equals 1 on {¢ € R%[¢] < 1}. Denote ¢(€) = 9(€) — 9(2€),
then supp ¢ C {¢ : 271 < |¢] < 2}. Next we introduce the function sequence

{ei} T3
(&) = p(277¢), jeL. (2.1)

It is easy to see that supp ¢; C {€: 2771 <|¢] < 2771} and

S ei(e) =1, ¢RI\ {0}, (2.2)
JEZ

Define the homogeneous dyadic decomposition operators as following:

Ay =F ', 7, jEL. (2.3)
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Noticing that in (2.1)-(2.3), there is no restriction on £ = 0, and so one needs to
modify the Schwartz space . and its dual .#’. Denote

SR = {f € ZRY : (D*f)(0) =0, Va.

As a subspace of .7, 5 (R?) is equipped with the same topology as .. we denote
by .#/(R%) the dual space of .#(R?). We now introduce the homogeneous Besov

s .
space B

By, ={fe S RY: 1flgy, <o}, —oo<s<oo, 1<pg<oo;

) 1/q
by = (2 Ia1)

JEZL

I1£1

Using the dilation, we have the scaling property
LY. — 9l(s—d/p) .
1F2) 5y = 2P f] 5,

Next, we introduce the wavelet bases and the equivalent norm of Besov spaces,
see [16]. Fix any m € N, denote A = (i,5,k) € {1,2,---,2¢ —1} x Z x Z¢ := A.
There exists a real-valued set of functions {¢(V}, ;c0a 1 C C™(R?)U(Nps1 LP(RY))
such that ¢y = (szl)c defined by @y (z) = 274/2p() (271 — k) is an orthonormal basis
of L?:

feLl*)RY) — f= ZCAQDM where ¢, = cjf,)f = /Rd ox- [
AeA

Moreover, the equivalent norm of Besov spaces is defined by:

1l = g, = |22

0 LSPasoo, [s|<m.
J
(2.4)

By calculating, one has the scaling property
1£2 )] g, =2 ],
Finally, we recall some known lemmas which would be used.

Lemma 2.1 (Compactness in LP, [19]). Fiz 1 < p < co. A family of functions
F C LP(RY) is precompact in this topology if and only if it obeys the following three
conditions:

(i) There exists A >0 so that || f|l, < A for all f € F.

(i) For any e > 0 there exists 6 > 0 so that [o, |f(x) — f(z 4+ y)[Pdx < e for all
feF and all ly| <6.

(iii) For any e > 0 there exists R so that f‘m|>R |f|Pdx < e for all f € F.

Remark 2.1. It is easy to note that when we consider a compact set K C R%, the
third condition of Lemma 2.1 is trivial.

Lemma 2.2 (Bernstein multiplier theorem, [21]). Let L > d/2 be an integer, O, p €
L2, i=1,---,d and 0 < o < L. Then we have p € M,, 1 < p < 0o and

. d d/2L

1—-d/2L

lollas, < ol (Zna;plg) .
=1
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3. Minimizers for the frequency-localized operator
First, we consider the minimizer of the frequency-localized operator Ag. The main
result of this section is as follows.

Theorem 3.1. Let1 < p1 < pa < 00, So||Aoullp, < [[Aoullp,. Then the minimizing
sequence {Aguy,} is relatively compact in LP. Moreover, Agu, is convergence to
Aou strongly in LP.

Before proving Theorem 3.1, we introduce the following lemma.

Lemma 3.1. Let 1 < p; < pa < oo, K be any compact set in R, Then the
restriction of the minimizing sequence {Aou,} on K, which is denoted by Agun |k,
is relatively compact in LP(K), i € {1,2}.

Proof. In the next proceeding, ¢ = 1 or 2. It is easy to see that Agu,|x is
uniformly bounded in L?i(K). In fact from (1.2), we know that there exists C; such
that

[AounllLri (k) < [[AotunllLri wey < Ci.

Next we claim that for any € > 0, there exists 6 > 0 such that ||(Aquy)(z + h) —
(Aoun ) ()| Lri (k) < € for all |h| < 4. Indeed,

1(Aoun) (@ + h) = (Botn) (@) Lo () < I(F 71" = 1)00(€) Fun) (@) s -

From the construction of ¢;, one has the almost orthogonality ¢; = Z|l|<1 PjPj+i-
Then we have -

[(Aoun)(x + h) = (Doun) ()| e (k)
<I(F 1™ = D(p-1(8) + ¢0(€) + 91(E))F T~ 0o(§) Fun) ()| Lri ma
<™ = 1)(9-1(8) + ©o(&) + @1())ln,,
<Gill(e™ = 1)(p-1(8) + ¢0(&) + ¢1())llas,, -
By using Bernstein multiplier theorem, we can get that there exists § > 0 so that

(€& — 1) (p_1(€) + po(&) + ©1(8)lla,, <e/C; for all [h| < 6. Thus from Lemma
2.1, the conclusion is obtained. O

Aotin|| Lrs (ra)

Proof of Theorem 3.1. From Lemma 3.1, we know that there exists g(z) such
that (Aou,)(x) — g(x) in LP*(K). Then there is a subsequence {u,} such that
(Agun)(xz) — g(z) pointwise almost everywhere on K. We may assume that
Agu, = Agu weakly in LP (1 < p; < 00) since Aguy, is uniformly bounded. By the
arbitrariness of compact set K, we obtain (Aguy)(z) = Agu(z) pointwise almost
everywhere on RY. Moreover, if the family (|Aou, — 8Aqu|P* ' Agu) is uniformly
integrable and tight over R? for all § € [0, 1], by Vitali’s convergence theorem we
can get that

lim /|A0un|p1dx—/|Aoun—Aou\pldx

n—oo
'd
= lim 7// — |Aguy,, — 0Agu|P dOdx
o db

1
= lim py // |Agtn — 0D0ulP* 2 (Agun, — 00u) Agudfds
0
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1
:pl// |Agu — OAgu|P* 2 (Agu — 0Agu) Agudfdr = / [AgulPrdx. (3.1)
0

Indeed, it is well known that ¥ ¢ > 0, there exist 6 > 0 and E C R¢ such that
1/p1
(/|Aoup1dx> <e, if m(e) < d;

1/p1
</ |A0u|p1dx> <e, if m(E) < cc.
EC

Thus from Holder’s inequality, we have
/JAO% — 0Aul” 7| Aguldz < || Aoull e (o) l| Aoun — OA0uF,
< (|| Aotn||Lr + |Aoul| L )PP < Ce,
and
/C Aotun — 080"~ Aguldz < [[Agullzor (o) | Atin — BAgul[Eh7"
< (| Aounllze + [[Aoullze )7 < Ce.
Hence we get the conclusion from (3.1) that
/|A0un|p1dx - / |Agun — AqulPrde — / |[AgulPrde. (3.2)
It is easy to see that this result is also true if p; is replaced by po, that is
/|A0un|”2dx - / |[Aguy — AqulP2dx — / |[AgulP2dx. (3.3)

We denote A := [ |Agu[P2dz. From (1.2) and (3.3), we have [ |Agu,,—Aou|P2dz —
1 — A. Then from (3.2) we see that

SP = nlgr;o/ | Agun |[Prdz = nan;o/\Aoun — AgulPrdx + / |Agu|Ptdx
> 8P lim (/ | Agtun — A0u|p2d:c) C gy
n— o0
= SP((1—A)72 A7) > SP (1 — A4 \)7 = S,

where the first inequality is from (1.1), and the second inequality is by strict con-
cavity. The equality holds if and only if A € {0,1} since p; < py. By making
translation and dilation to Agu,, we may assure A = [ |Aqu|P2dx # 0. Thus

A= / [AoulP2de =1, ||Aoun — Aoullp, — 0.

Furthermore,

So = Sol|Aoullp, < [|Aoullp, < liminf{|Agun[lp, = So.

It implies ||Aoun|lp, — [[Aoullp,. Combined with Agu, — Agu in LP*, it follows
that Agu, — Agu in LP1, as desired. The proof is completed. O
Next, we extend the result of Ay to every frequency-localized operator A;, j € Z.



Minimizers for the embedding of Besov Spaces 1643

Proposition 3.1. Sp||Aqullp, < ||Aoullp, holds if and only if

SollAjullp, < 2IPPD A,

holds for any j € Z.

Proof. On the one hand, Vj € Z, let a(z) := u(277z), it is easy to calculate that
(Aou)(z) = (Aju)(277z). By SollAotllp, < [[Aotllp,, we can get Sol|Ajullp, <
2jd(1/P1*1/P2)||Aju||p1.

On the other hand, let @(x) := u(2’x). Then from
SollAjllp, < 2990 /P= P A,
we have Spl|Agulp, < [|Aoullp,- O
Proof of Theorem 1.2. We can get from Proposition 3.1 that
S; = 27d(1/p2=1/p1) G
Suppose {Aguy,} is a minimizing sequence of Ag, that is
Agtin € 7, [ Aguallyy =1, lim_ [[ Aoty = S
Theorem 3.1 implies that there exists u such that Agu,, — Agu in LP'. For any

fixed j € Z, take the sequence v, := 209/P2q, (27z) and v := 27%/P2q(27z). We can
obtain

”Ajvanz = ”AOUanz =1,

nlgrolo 1A 0nlp, = 93d(1/p2—1/p1) nlggo | Aotinllp, = 27d(1/p2=1/p1) G\ — S;.
Then {Ajv,} is a minimizing sequence of A, and
1A v — Ajollp, = 2790/P2=1P0| Agu,, — Agul|, — 0.
The proof is completed. O

Finally, we establish a proposition to supplement.

Proposition 3.2. Let 1 < p; < ps < 00, 81 —d/p1 = so — d/p2, and S is the
maximal constant for S||u| < llullgss - then S = So.
1,

B

s2
r2,:9

Proof. On the one hand, by Proposition 3.1,
SollAjullp, < 279D A, V€ Z.
From the embedding condition s; — d/p1 = s2 — d/p2, we can get
SollAjullp, < 27172 Ajull,,, Vi€ Z.

Transfering 272 to the left side of the inequality and taking the ¢? norm about
Jj € Z, we have

(Z (2js250|Aju||p2)q> v < (Z (295 ||Aju|pl)q) l/q.

JEZ JEL
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It means that SOH“”B;;q < ||UHB;} ,» then Sp <'S.

On the other hand, S||u| Bz, < || pzr,, means that
. . 1/q _ . 1/q
(Z(2JSZSAjUI|p2) > < (Z(gysl||Ajum) ) :
JEL j€L

There exists at least one jy € Z such that
29052 8| A jyullpy < 20| Ay,

Transfering 27092 to the right side of the inequality and using s; —d/p; = s2 —d/pa,
we obtain '
SN Ajoullp, < 200 A ull,

By the proof of Proposition 3.1, we have
SlAoullp, < [[Aoullp,,

then S < Sy. The proof is completed. O

4. Nonexistence cases of the minimizer in Besov
embeddings

The Besov’s embeddings B5' , (R%) < B2 (R?) hold when s; —d/p; = s3 —d/pa,

P1,q1 P2,q2
1<p; <p2<00,1<¢q <¢g2 <oo. In this section we consider the case ¢ = ¢o.

Let S be the maximal constant for

Sl

S2
Pr2,49

d d
< HUHB;;CI» 51—171 282—1727 L<p <p2 < oo

We have the following theorem.

Theorem 4.1. Let s1 —d/p1 = s2 —d/p2, 1 <p; <py <0 and 1 < g < oo, then
there exists a minimizing sequence {u,} satisfying

un € Byt g lunllgzz =1, and lim funl| gz, =S, (4.1)

such that {uy} is not relatively compact in B;i’q.

Proof. The strategy of the proof is by contradiction. We assume that the conclu-
sion is false. It is to say that any minimizing sequence {u,} is relatively compact

in Bst .
P1,9 .
We choose a fixed sequence {u,} satisfying (4.1). Then there exists u € B! ,

such that |ju, — UHB;},q — 0, |lun — u||Bzqu — 0 as n — oo. It means that

Hu||35;q =5, ||ul sz, = 1. It is easy to see that

> (@ )Ajully,)" <e(n), lim e(n) = 0.

N n— 00
l7]>n

Next we consider a sequence {v,} which has the following form:

vn(z) = u(z) + (23")£752u(23"m) =: u(x) + wy(z). (4.2)
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For any j € Z, we have

Ajvn = A]‘U + Ajwn = Aju + (2371)%—52 (Aj_gnu)(anilZ).

Therefore,
> (2218 0nllp,) " = D (2718w + Ajwnllp,)  + Y (2772 Aju+ Ajwnllp,)*
JEZ lil<n [7]>n
= > (@ 1Agullp) + D (2218 wallp,) ! + 0(e(n))
[71<n lj|>n
= (@2 Aullp) + D (272 1Aullp,)? + 6(e(n)),
|J|§" j}—?nor
j<—4n
(4.3)

where 0(g(n)) — 0 as e(n) — 0. Let n — 400 in (4.3), we obtain

: q —
T foallhes = 2u

., =2. 4.4
B (44)
From s; — d/p1 = s2 — d/p2, we can get by similar discussion that

: ¢ _ . _o9gq
T ol =2, =25 (45)
Combining (4.4) and (4.5), we see that Slim,, Hv,,,||B;2 , = limpo0 ||Un||B;1 o1t

implies that the sequence {v,} is a minimizing sequence after normalizing. For any

subsequence of {v,, } which is still denoted by {v, }, we have v, — u weakly in B;! |

B, HUHB;% . which is
contrary to the assumption. Now we complete the proof of Theorem 4.1. O

because of (4.2). However, lim,,_, ||UnHB;1 .= /4|y
1.

5. Existence cases of the minimizer in Besov em-
beddings

In this section we consider the existence of minimizers for the critical Besov’s em-
beddings

Byt o (RY) <= Bp2 ,(RY), 81— o Sg — o’ s1> 82, 1<q1 <@g <oo.

We shall use the equivalent norms of Besov spaces as (2.4). Let S be the maximal

constant for S||u|
for S, that is

B2, S || Bl Assume that {u,} is a minimizing sequence

un € Byl gy llunllgga, =1, and lim fug]

DP1,q17° Byl = S.

q1
We use the profile decomposition to get the following theorem.

Theorem 5.1. Let s1 —d/p1 = s2 —d/p2, 1l <p1 <pa<ooandl<q < g <
00. Suppose max(pi,q1) < min(pg,q2), then any minimizing sequence {u,} up to

translation and dilation is relatively compact in B! . .
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To prove Theorem 5.1, we introduce the profile decomposition for bounded se-
quences in Besov spaces which is established by Koch (see [1,16]).

Lemma 5.1. Let1<p; <py<00,1<q < g2 <00, a=s1—d/p1=s2—d/pa.

Let {un 2, be a bounded sequence in B;i ¢~ There exists a sequence of profiles
{o}e, C B;} o ond a set of sequences {(jl, kb)}o>, C Z x Z* for | € N, both

depending on {un}, such that, after possibly passing to a subsequence in n,

L
Zzﬂn oy (20ne — kL) + rE(x) (5.1)
=1

for any L € N where the following properties hold:

(i) Forl # 1, the sequences {(j.,kL)} and {(j%,kL)} are orthogonal in the fol-
lowing sense:

lim ‘1og (2Un =i >)‘ + ]2%—]'55 kY — k| = oo, (5.2)
n—oo
(ii) The remainder vt satisfies the following smallness condition:

. . L . o
Lh—>néo h;n_)solip ||7"n||B,,§,q2 =0. (5.3)

(i11) (Stability) For each n € N,

o l 0 . . I
(b anhe =iy, ), <tmint ey, G4
where T := max(p1,q1), and for any L € N,
Irellg, < luallgs, +o(1) as n— oo (5.5)

Remark 5.1. In [16], (5.3) needs the condition g2/q1 > p2/p1. However, the
authors [1] put this condition off.

The proof of Lemma 5.1 can be found in [1,16]. It used the wavelet bases. Let
me sketch the proceeding to get the profile decomposition.

We consider the embeddings B;i o < B;g < BOO 0o
s — d/ps. From the equivalent norm (2.4), we have

where a = 51 — d/p; =

||fHBa = sup 2j(a+d/2)|cjik
Radhe AEA ’
Thus we define
ali) 1= 2D, (2) = 27 OH D ().

Therefore, for a given f one may write
F=Y cxen=> axa=Y ax277%W 20z — k), (5.6)
A A A

and we have the equivalence norm:

— |[gi(s—a— d/p)Ha()

7 k

ZJ
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In particular,

= llafilezs e

(5.7)

o = ekl [l s 16552,

15 _ =suplalhl, 1152
’ AEA

For convenience, for any A = {i,j,k} € A, let
j @ —jor ) (0) i |k
T(z) =22 —k, (ro"W)(z): =277 (1(x)), |7|:=]|log2’|+ ‘27‘
Then for a given f one may write from (5.6) that

F=3 ax(re®) @)
A

Moreover, note that Tl(nga(i)) = (g0 Tl)go(i) for any such 71, 3. For sequences
Tin(x) == ng — kL and 7o, () := 2ng — k2, let i Ton O Tii, then

2D (@) = PRIy — (k2 — 2R ), [r2 ] = |log 20R )

4 ‘Q(j;—ji)ki — kL

We say “r1, and 72, are orthogonal” if |7',(L2’1)| — 00 as n — 00, which is in
conformity with (5.2).

The strategy of getting the profile decomposition is by method of iteration. The
wavelet decomposition is

Un =Y axatn = Y axa(re!”)
A A

At every iteration [, we sort out a wavelet component ay ¢y = a&’nyn@(il) whose
coefficient has the largest possible modulus. Here N\, = (iy, ji k), 7., = 2jitxj kL,
ax, —a;#0asn— o0 (passing to a subsequence if necessary). If for any [ < [,
Tin and 77, are orthogonal, we shall build a new profile; else if there is some I<1

such that 7, , and 77, are not orthogonal, we shall use ;i to modify the profile
contains 77,,. We show out the general form which can be found in [16],

Ly Mn(1)
Z Z a ’"u(l)Tm“(l) n‘plm““) +U
=1 p=1
Ln My (1)
= ZTml(zm( > %:;mmT(m“(l)’ml(l))sﬁi’"ﬂ’)) +ul)
=1 p=1
Mn (1)
= ZTWn(l < Z am (l)T(m“(l) ma(6)) %n“t)) +Tn’ (58)
pn=1

where the second equality is obtained by passing to a subsequence such that 7, (m“(l)’ml(l)
= 7(mu):mi()) = const (because of working on lattices). Let iteration N — 00

0 g
(if iteration stops at some finite N, it is similar and easier), and denote Lo,
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Hmy oo Ly, Moo(l) := limpy_y0o My (l) for any I € [1,Ls]. Then for any L €
[1, L], we have from (5.8) that:

L
u":ZTrm(l),n( Z Am, ()T (mu(B);ma (D) Zmu”)) 7"76. (5.9)
=1

Let
Moo (1)

Z Ay (l)T(m“(l)’ml(l))goim#”) ’

pn=1
we know ¢; € B;} g i the proof of Lemma 5.1 in [16]. Therefore (5.9) implies (5.1).
Replace both Lo, and M (1) by co. If either is finite, we set the extra components

are zero. It is to say that

Z Tma(1),n ( Z a muu)T(m“(l ma (D)) Z"‘N“’)

p=1

=: ZTml(l (Z l)T(m“(l)7m1(l))gpimu(l)) +T$Lo

Un

: ZTml(l),n¢l +ry = Z > A, () gm0 + T3 (5.10)

=1 =1 p=1
To prove Theorem 5.1, we also need the following orthogonal inequalities.

Lemma 5.2. ¢, € BS' < B  for any | € NT, and the symbols are as the

) . P1,91 p2,92
above discussion, then for any n € N,
o0 s &S]
g
E T (1),n Pl < E ITmy @) @il B
— BSQ — p2,492
=1 P2,92 =1

where o = min(pa, g2).

Proof. Since wu, can be decomposed into the form like (5.10), we may divide A
into a disjoint union of sets Ey: A = U2, E;. The proof is ascribed to proving the
following inequality:

~0 ~0

> axihs

AEE,;

> axiha

AEA B2

P2 q2

<

(1) The case 0 = p2 < g2. We have from (5.7) that

i > axtha

AEE;

550
BP2=¢12

npP2 00 q P2

(S X))

Bp3.42 =1 J AEE, ;

(ST me)F)

i l=1XeE

[§)

9
2
sz a2

> amﬁ,\

A€EA

where A € Ej j means A = {4, j, k} having the same index j in Ej, and the inequality
is by Minkowski’s inequality.
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(2) The case 0 = g2 < pa.

e a2

S E ) =R (% )

1=1 " xeE, P22 I=1 j Ae€E, I=1 XeE;
oo a2 7192
> lax|P2) "™ = axy
= A AN 3
J =1 AE€E;, AEA Bp3.az
where the inequality is from strict concavity. O

Remark 5.2. In Lemma 5.2, when py # go, the equality in the result holds if and
only if at most one of the terms 7,,, (1)1, | € N, is different from zero.

Proof of Theorem 5.1. From ||UnHBSQ =1 and lim,,_, ||unﬂle =S, we
- - p2,492 P1,:491
know that ||uw,|] B2, and [|en | g, are uniformly bounded. Thus after possibly
2,492 191

passing to a subsequence in n, {u,} can be decomposed into (5.1) in BS'  and

. . P1,q1
satisfies all the properties in Lemma 5.1. Moreover, since B! , < B2 ., (5.1) is
also a decomposition of u, in B;;(H. Combining (5.3) and (5.10), we know after
passing a subsequence ~

1 o s =
g Il ., =0

As Lemma 5.1 and Lemma 5.2, let 7 = max(p1,q1) and ¢ = min(ps,g2). From
(5.10) we have

L=l = n =205+ o()

S iy I i
= H ZTm1(l),n¢lHB;2 + 0(1) < Z ||Tm1(l)7n¢l||%;;q2 + 0(1)
=1 2,92 =1

> - o B o/T
<5y 1T @ millFy |+ 0(1) <577 ( 3 ||Tml(l>7n¢l||g;})ql> +o(1)
=1 =1
< S B fuwllger )7+ 0(1) = 1+ 0(1), (5.11)

where o(1) — 0 (n — 00), the first inequality is by Lemma 5.2, the second inequality

isby Sl||ull gs2 < |lul[gs1 , the third inequality is by strict convexity, and the forth
P2,92 P1-91

inequality is from (5.4).

Let n — oo, the inequalities in (5.11) must ensure all equalities hold. If
max(p1,q1) < min(ps, g2), we know that the equality in the third inequality holds
if and only if at most one of the items ¢;, I € NT, is not zero. If max(pi,q1) =
min(ps, ¢2), from the conditions p; < pa2, g1 < g2, we only have two cases:

P1<q1=p2<@q2, q1 <p1=qz <p2.

From Remark 5.2, we get that the equality in the first inequality holds if and only
if at most one of the terms ¢;, [ € N7, is different from zero. Therefore, there exists
I’ € NT such that

L/ B R , . ~
Up(z) = (270 )¢y (27nz — kL) + 7. limsup ||7“n||Bf;g,q2 =0.
n—oo
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Let )
g xr + Kl

on(w) = (@) (T ).

Passing to a subsequence and using the norm invariance, we have

Jimn lon = drllggg , =0, ] B3 = 15, ]

B34 = S0 o] Bila = 1

Moreover, we have

S =Sloullsz, <lovlgn, < lIm foulgn = lim fualg =5

ch follows that ||vy,] B, Il | Bty
B! s we know that v, — ¢y in B;qu( here the condition 1 < py, ¢ < o0 is
necessary). The proof is completed. ([

as n — oo. Combining with v, — ¢p in
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