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A SOLID TRANSPORTATION PROBLEM
WITH MIXED CONSTRAINT IN DIFFERENT

ENVIRONMENT

Amrit Das1,†, Uttam Kumar Bera1,† and Barun Das2

Abstract In this paper, we have introduced a Solid Transportation Problem
where the constrains are mixed type. The model is developed under different
environment like, crisp, fuzzy and intuitionistic fuzzy etc. Using the interval
approximation method we defuzzify the fuzzy amount and for intuitionistic
fuzzy set we use the (α, β)-cut sets to get the corresponding crisp amount. To
find the optimal transportation units a time and space based with order of
convergence O(MN2) meta-heuristic Genetic Algorithm have been proposed.
Also the equivalent crisp model so obtained are solved by using LINGO 13.0.
The results obtained using GA treats as the best solution by comparing with
LINGO results for this present study. The proposed models and techniques
are finally illustrated by providing numerical examples. Degree of efficiency
have been find out for both the algorithm.

Keywords Solid transportation problem mixed constraint, fuzzy set, intu-
itionistic fuzzy set, interval analysis, genetic algorithm.
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1. Introduction

Transportation is about moving goods from one place to another place using a
variety of vehicles across different arrangement systems. Not only the different
technology (namely vehicles, energy, and infrastructure) are involved in it, but
also people’s time and effort are there. So basically transportation problem is a
particular class of linear programming, which is associated with day-to-day activities
in our real life and mainly deals with logistics. It helps in solving problems on
distribution and transportation of resources from one place to another. The goods
are transported from a set of sources (e.g., plant) to a set of destinations (e.g.,
warehouse) to meet the specific necessities. The goal is to satisfy the demand
at destinations from the supply constraints at the minimum transportation cost
possible. The transportation problem (TP) was developed by Hitchcock [10] in
1941. When in a transportation system there are mixed transportation modes are
available for the shipments of goods, we might transport from sources to destinations
by different transportation ways to reduce costs or to meet time schedule. In that
case the solid transportation problem (STP), which considers three item properties,
is very suitable. The STP was first stated by Shell [17]. Haley [8, 9] developed
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the solution procedure of a STP and made a comparison between the STP and
the classical TP. In literature a good number of researchers have developed solid
transportation model considering the equality constraint [6, 12, 15, 21]. Pandian
et al. [16] and H. Isermann [11] have studied transportation problem with mixed
constraint and develop its solution technique. In spite of this development till now,
there are some important issues that possibly missed by the previous researchers.
Here these issues are pointed out.

(i) In literature it found that, most of the papers related to mixed constraint are
two dimensional, i.e. transportational problem without vehicle or conveyance
constraint. But the vehicles are very important in transportation system. So
here we consider a TP where the conveyance constraint are present.

(ii) Most of the previous researchers have investigated TP with mixed constraint
in crisp environment. But it is often observed that in transportation system
basis on customer inexact demand, weather condition, bad road due to hilly
area, rainy season, landslide etc. uncertain situation take place. To handle
such situation we have considered fuzzy and intuitionistic fuzzy environment
in our model.

(iii) Another issue that we raised here is use of meta-heuristic algorithm. Now a
days the use of such algorithms take a great interest among the researchers.
Also such algorithms report the more convergency. In our model we have
considered genetic algorithm (GA).

All the above mentioned issues motivate us to make this research. The paper
has been organized as follows. Section 1 is introduction, section 2 is about the basic
concepts that are mandatory to develop this paper. The defuzzification methods
has been discussed in this section. The formulation of the three proposed models
are in section 3 and the solution procedure is followed by section 4. Next in section
5 we have provided the numerical experiments, in this section we have evaluated the
degree of efficiency (cf 5.3) for the two solution techniques. Last section numbered
as 6 gives the conclusion and future extension.

2. Preliminaries and definitions

2.1. Fuzzy Set

Fuzzy sets were first proposed by Lofti A. Zadeh [22] in 1965. The definition of
fuzzy set is as follows

Definition 2.1. If X is a collection of objects denoted generically by x,then a fuzzy
set Ã in X is a set of ordered pairs:

Ã = {(x, µÃ(x)|x ∈ X)}

µÃ(x) is called the membership function (generalized characteristic function) which
maps X to the membership space M . Its range is the subset of nonnegative real
numbers whose supremum is finite.

Definition 2.2. Fuzzy number (Grzegorzewski 2002)
A fuzzy subset Ã of real number < with membership function µÃ : < → [0, 1] is
said to be a fuzzy number if
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• µ
(̃A)

(x) is upper semi-continuous membership function;

• Ã is normal, i.e., there exists an element x0 such that µÃ(x0);

• Ã is fuzzy convex, i.e.µÃ(λx1 + (1− λ)x2) ≥ µÃ(x1)
∧
µÃ(x2)∀x1, x2 ∈ < and

λ ∈ [0, 1];
• Support of Ã = x ∈ < : µÃ(x) > 0 is bounded.

Fuzzy numbers are represented by two types of membership functions: (a) Lin-
ear membership functions e.g. Triangular fuzzy number (TFN), Trapezoidal fuzzy
number, Piecewise Linear fuzzy number etc. (b) Non-linear membership functions
e.g. Parabolic fuzzy number (PFN), Exponential fuzzy number and other non-linear
fuzzy number. We used the following fuzzy numbers:

Definition 2.3. Triangular Fuzzy Number
Triangular Fuzzy Number (TFN) is the fuzzy number Ã = (a1, a2, a3) with the
membership function µÃ(x), a continuous mapping µÃ : < → [0, 1]

µÃ(x) =



0, −∞ < x < a1,
x− a1

a2 − a1
, a1 ≤ x < a2,

a3 − x
a3 − a2

, a2 ≤ x ≤ a3,

0, a2 ≤ x ≤ ∞.

Figure 1. Membership function of Triangular Fuzzy Number

2.2. Defuzzification Methods

When a defuzzifcation method is applied to a fuzzy valued function then it converts
the fuzzy amount to its corresponding crisp valued function. There are so many
important defuzzification methods like as the nearest interval approximation, cen-
troid method, graded mean and modified graded mean integration representation
etc.

2.2.1. The Nearest Interval Approximation

Here, we like to approximate a fuzzy number by a crisp interval. Let Ã and B̃ be two
fuzzy numbers, with respective α-cuts are [AL(α), AR(α)] and [BL(α), BR(α)].Then
according to Grzegorzewski [7] the distance between Ã and B̃ can be defined as:

d(Ã, B̃) =

√∫ 1

0

{AL(α)−BL(α)}2dα+

∫ 1

0

{AR(α)−BR(α)}2dα.
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Let Cd(Ã) = [CL, CR] be the nearest crisp interval of the fuzzy number Ã with
respect to the above distance metric d. Since each interval is also a fuzzy number
with constant α-cuts (Cd(Ã))α = [CL, CR], for all α ∈ [0, 1]. Now according to
above distance metric d, distance of Ã from Cd(Ã),d(Ã, Cd(Ã)) is given by

d(Ã, Cd(Ã)) =

√∫ 1

0

{AL(α)− CL}2dα+

∫ 1

0

{AR(α)− CR}2dα.

So Cd(Ã) is optimal when d(Ã, Cd(Ã)) is minimum with respect to CL and CR. In
order to minimize d(Ã, Cd(Ã)), it is sufficient to minimize the function D(CL, CR)(=
d2(Ã, Cd(Ã))). The first partial derivatives are

∂D(CL, CR)

∂CL
= −2

∫ 1

0

AL(α)dα+ 2CL.

∂D(CL, CR)

∂CR
= −2

∫ 1

0

AR(α)dα+ 2CR.

Therefore, solution of ∂D(CL,CR)
∂CL

= 0 and ∂D(CL,CR)
∂CR

= 0 are given by C∗L =∫ 1

0
AL(α)dα and C∗R =

∫ 1

0
AR(α)dα. Again since

∂2D(C∗L, C
∗
R)

∂C2
L

= 2 > 0,
∂2D(C∗L, C

∗
R)

∂C2
R

= 2 > 0,
∂2D(C∗L, C

∗
R)

∂CL∂CR
= 0

and

H(C∗L, C
∗
R) =

∂2D(C∗L, C
∗
R)

∂C2
L

.
∂2D(C∗L, C

∗
R)

∂C2
R

−
(
∂2D(C∗L, C

∗
R)

∂CL∂CR

)2

= 4 > 0.

So D(CL, CR) i.e. d(Ã, Cd(Ã)) is global minimum. Therefore the interval

Cd(Ã) =

[∫ 1

0

AL(α)dα+

∫ 1

0

AR(α)dα

]
is nearest interval approximation of fuzzy number Ã with respect to metric d. Let
Ã = (a1, a2, a3) be a fuzzy number.. The α-level interval of Ã is defined as (Ã)α =
[AL(α), AR(α)]. When Ã is TFN then

AL(α) = a1 + α(a2 − a1)

and
AR(α) = a3 − α(a3 − a2).

By nearest interval approximation method, lower and upper limits of the interval
are respectively

CL =

∫ 1

0

AL(α)dα =

∫ 1

0

[a1 − α(a2 − a1)](α)dα =
1

2
(a2 + a1)

and

CR =

∫ 1

0

AR(α)dα =

∫ 1

0

[a3 − α(a3 − a2)](α)dα =
1

2
(a2 + a3).

Therefore, interval number considering Ã as a TFN is
[

1
2 (a2 + a1), 1

2 (a2 + a3)
]
.
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2.3. Intuitionistic Fuzzy Set(IFS)

According to Krassimir Atanassov [1, 2] the intuitionistic fuzzy set is character-
ized by the degrees of membership and non-membership of its elements. A formal
definition of intuitionistic fuzzy set is given by

Definition 2.4 ( [1–3]). Let X 6= φ be a given set. An intuitionistic fuzzy set in
X is an object A given by

Â = {〈x, µÂ(x), νÂ(x)〉;x ∈ X},

where µÂ : X → [0, 1] and µÂ : X → [0, 1] satisfy the condition 0 ≤ µÂ(x)+νÂ(x) ≤
1, for every x ∈ X.

Here the two functions µÂ : X → [0, 1] and µÂ : X → [0, 1] represents degree of
membership and non-membership respectively.

Definition 2.5 ( [4–8]). An intuitionistic fuzzy set Â = {〈x, µÂ(x), νÂ(x)〉;x ∈ <}
such that µÂ and1− νÂ, where

(1− νÂ)(x) = 1− νÂ(x),∀x ∈ X

is called an intuitionistic fuzzy number.

Definition 2.6. ((α, β)-cuts) A set (α, β)-cuts, generated by IFS Â, where α, β ∈
[0, 1] are fixed number such that α+ β ≤ 1 is defined as

Âα,β =

{
〈x, µÂ(x), νÂ(x)〉, x ∈ X,
µÂ(x) ≥ α, νÂ(x) ≤ β, α, β ∈ [0, 1],

where (α, β)-cut,denoted by Âα,β is defined as the crisp set of elements x which

belong to at least Â at least to the degree α and which does belong to Â at most
to the degree β.

2.3.1. Generalized Triangular Intuitionistic Fuzzy Number (GTIFN)

According Seikh et al. [5] the generalized triangular intuitionistic fuzzy number
(GTIFN) can be define as follows:
A generalized triangular intuitionistic fuzzy number (GTIFN) τ̂a = 〈(a, lµ, rµ;wa),
(a, lν , rν ;ua)〉 is a special intuitionistic fuzzy set on a real number set < whose
degree of membership and non-membership functions are given by,

µτ̂a(x) =



x− a+ lµ
lµ

, a− lµ ≤ x < a,

wa, x = a,
a+ rµ − x

rµ
, a < x ≤ a+ rµ,

0 otherwise,

and

ντ̂a(x) =



(a− x) + ua(x− a+ lν)

lν
, a− lν ≤ x < a,

ua, x = a,
(x− a) + ua(a+ rν − x)

rν
, a < x ≤ a+ rν ,

1, otherwise,
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Figure 2. Membership and Non-membership function GTIFN

where lµ, rµ, lν , rνare called the spreads of membership and non-membership func-
tion respectively and a is called mean value. wa and ua represent the maximum
degree of membership and minimum degree of non-membership respectively such
that they satisfy the conditions 0 ≤ wa ≤ 1, 0 ≤ ua ≤ 1 and 0 ≤ ua + wa ≤ 1.

2.3.2. (α, β)-Cut set of GTIFN

Definition 2.7. A (α, β)-Cut set of GTIFN τ̂a = 〈(a, lµa, rµa;wa), (a, lνa, rνa;ua)〉
is a crisp subset of <, which defined as

τ̂α,βa = {x : µτ̂ a(x) ≥ α}, ν τ̂ a(x) ≤ β},

where 0 ≤ α ≤ wa, ua ≤ β ≤ 1 and 0 ≤ α+ β ≤ 1.

A α− cut set of a GTIFN τ̂a is a crisp subset of <, which is defined as

τ̂αa = {x : µτ a(x) ≥ α},

where 0 ≤ α ≤ wa.
According to the definition of GTIFN it can be easily shown that τ̂αa = {x :

µτ a(x) ≥ α} is a closed interval, defined by

τ̂αa = [aL(α), aR(α)],

where aL(α) = (a− lµa) +
α lµa
wa

and aR(α) = (a− rµa)− α rµa
wa

.
Same way a β-cut set of a GTIFN τ̂a = 〈(a, lµa, rµa;wa), (a, lνa, rνa;ua)〉 is a

crisp subset of <, which is defined as

τ̂βa = {x : ντ a(x) ≤ β},

where ua ≤ β ≤ 1.
It follows from definition that τ̂βa is a closed interval, denoted by τ̂βa = [aL(β), aR(beta)]

which can be calculate as
τ̂βa = [aL(β), aR(β)],

where

aL(β) = (a− lνa) +
(1− β)lνa

1− ua
,
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and

aR(β) = (a+ rνa) +
(1− β)rνa

1− ua
.

It can be easily proven that for τ̂a = 〈(a, lµa, rµa;wa), (a, lνa, rνa;ua)〉 ∈ GTIFN(<)
and for any α ∈ [0, wa], β ∈ [ua, 1], where 0 ≤ α+ β ≤ 1

τ̂α,βa = τ̂αa ∧ τ̂βa ,

where the symbol “∧” denotes the minimum between τ̂αa and τ̂βa .

2.4. Order Relations of Intervals

Let A = [aL, aR] and B = [bL, bR] be a pair of arbitrary intervals. These can be
classified as follows:

Type-I: Non-overlapping intervals;

Type-II: Partially overlapping intervals;

Type-III: Completely overlapping intervals;

These three types of intervals are shown in Figure-3(a), 3(b) and 3(c) for different
situations.

Figure. 3(a) Figure. 3(b) Figure. 3(c)

Figure 3. Different type of intervals

3. Model formulation

To formulate the models we make the following assumption:
• cijk, c̃ijk, ĉijk = are the crisp, fuzzy, intuitionistic fuzzy unit transportation

cost in STP respectively.
• ai, ãi, âi = are the available crisp, fuzzy, intuitionistic fuzzy source at supply

point i respectively.
• bj , b̃j , b̂j = are the crisp, fuzzy, intuitionistic fuzzy demand at demand point j

resepectively.
• ek, ẽk, êk = are the crisp, fuzzy, intuitionistic fuzzy conveyance capacity for

the conveyance k respectively.
• xijk = the unknown quantity to be transported from i-th origin to j-th desti-

nation by means of k-th conveyance.
where i = 1, 2, · · · ,m; j = 1, 2, · · · , n; k = 1, 2, · · · , l respectively.
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3.1. Model 1: A Solid Transportation Problem with Mixed
Constraint in Crisp Environment

Here all the parameters of STP are crisp in nature and with this assumption the
mixed constraint STP model formulate as:

MinZ =

m∑
i=1

n∑
j=1

l∑
k=1

(cijkxijk)

subject to,

n∑
j=1

l∑
k=1

xijk ≥ ai, i ∈ α1;

n∑
j=1

l∑
k=1

xijk = ai, i ∈ α2;

n∑
j=1

l∑
k=1

xijk ≤ ai, i ∈ α3,

m∑
i=1

l∑
k=1

xijk ≥ bj , j ∈ β1;

m∑
i=1

l∑
k=1

xijk = bj , j ∈ β2;

m∑
i=1

l∑
k=1

xijk ≤ bj , j ∈ β3,

m∑
i=1

n∑
j=1

xijk ≥ ek, k ∈ γ1;

m∑
i=1

n∑
j=1

xijk = ek, k ∈ γ2

m∑
i=1

n∑
j=1

xijk ≤ ek, k ∈ γ3,

where xijk ≥ 0, i = 1, 2, · · · ,m; j = 1, 2, · · · , n and k = 1, 2, · · · , l are all integers.
α1, α2 andα3 are pairwise disjoint subset of {1, 2, · · · , n} such that α1 ∪ α2 ∪ α3 =
{1, 2, · · · , n}; Similarly β1, β2 andβ3 are pairwise disjoint subset of {1, 2, · · · ,m}
such that β1 ∪ β2 ∪ β3 = {1, 2, · · · ,m} and γ1, γ2 and γ3 are pairwise disjoint subset
of {1, 2, · · · , l} such that γ1 ∪ γ2 ∪ γ3 = {1, 2, · · · , l}.

3.2. Model 2: A Solid Transportation Problem with Mixed
Constraint in Fuzzy Environment

Here all the parameters of STP are fuzzy in nature and the model formulated as:

MinZ =

m∑
i=1

n∑
j=1

l∑
k=1

(c̃ijkxijk)

subject to,

n∑
j=1

l∑
k=1

xijk ≥ ãi, i ∈ ρ1;

n∑
j=1

l∑
k=1

xijk = ãi, i ∈ ρ2;

n∑
j=1

l∑
k=1

xijk ≤ ãi, i ∈ ρ3,

m∑
i=1

l∑
k=1

xijk ≥ b̃j , j ∈ θ1;

m∑
i=1

l∑
k=1

xijk = b̃j , j ∈ θ2;

m∑
i=1

l∑
k=1

xijk ≤ b̃j , j ∈ θ3,

m∑
i=1

n∑
j=1

xijk ≥ ẽk, k ∈ δ1;

m∑
i=1

n∑
j=1

xijk = ẽk, k ∈ δ2;

m∑
i=1

n∑
j=1

xijk ≤ ẽk, k ∈ δ3,

where xijk ≥ 0, i = 1, 2, · · · ,m; j = 1, 2, · · · , n and k = 1, 2, · · · , l are all integers.
ρ1, ρ2 and ρ3 are pairwise disjoint subset of {1, 2, · · · , n} such that ρ1 ∪ ρ2 ∪ ρ3 =
{1, 2, · · · , n}; Similarly θ1, θ2 and θ3 are pairwise disjoint subset of {1, 2, · · · ,m}
such that θ1 ∪ θ2 ∪ θ3 = {1, 2, · · · ,m} and δ1, δ2 and δ3 are pairwise disjoint subset
of {1, 2, · · · , l} such that δ1 ∪ δ2 ∪ δ3 = {1, 2, · · · , l}.
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3.3. Model 3: A Solid Transportation Problem with Mixed
Constraint in Intuitionistic Fuzzy Environment

Here all the parameters of STP are intuitionistic fuzzy in nature and the respective
model formulated as:

MinZ =

m∑
i=1

n∑
j=1

l∑
k=1

(ĉijkxijk)

subject to,

n∑
j=1

l∑
k=1

xijk ≥ âi, i ∈ σ1;

n∑
j=1

l∑
k=1

xijk = âi, i ∈ σ2;

n∑
j=1

l∑
k=1

xijk ≤ âi, i ∈ σ3,

m∑
i=1

l∑
k=1

xijk ≥ b̂j , j ∈ ϕ1;

m∑
i=1

l∑
k=1

xijk = b̂j , j ∈ ϕ2;

m∑
i=1

l∑
k=1

xijk ≤ b̂j , j ∈ ϕ3,

m∑
i=1

n∑
j=1

xijk ≥ êk, k ∈ ω1;

m∑
i=1

n∑
j=1

xijk = êk, k ∈ ω2;

m∑
i=1

n∑
j=1

xijk ≤ êk, k ∈ ω3,

where xijk ≥ 0, i = 1, 2, · · · ,m; j = 1, 2, · · · , n and k = 1, 2, · · · , l are all integers.
σ1, σ2 and σ3 are pairwise disjoint subset of {1, 2, · · · , n} such that σ1 ∪ σ2 ∪ σ3 =
{1, 2, · · · , n}; Similarly ϕ1, ϕ2 andϕ3 are pairwise disjoint subset of {1, 2, · · · ,m}
such that ϕ1∪ϕ2∪ϕ3 = {1, 2, · · · ,m} and ω1, ω2 andω3 are pairwise disjoint subset
of {1, 2, · · · , l} such that ω1 ∪ ω2 ∪ ω3 = {1, 2, · · · , l}.

4. Solution Procedure

The proposed models are solved using two different techniques, genetic algorithm
(GA) and LINGO, which based on the Generalized Reduced Gradient(GRG) Algo-
rithm. The steps of GA are given as follows.

4.1. Genetic Algorithm (GA)

A genetic algorithm is a heuristic search process for optimization that resembles
natural selection. GAs has been applied successfully in different areas. Genetic
Algorithm for the Linear and Nonlinear Transportation Problem develop by G.A.
Vignauz and Z. Michalewicz [20]. As the name suggests, GA is originated from the
analogy of biological evolution. GAs consider a population of individuals. Using
the terminology of genetics, a population is a set of feasible solutions of a problem.
A member of the population is called a genotype, a chromosome, a string or a
permutation. A genetic algorithm contains three operators - reproduction, crossover
and mutation.

4.1.1. Parameters

Firstly, we set the different parameters on which this GA depends. These are the
number of generation (MAXGEN), population size (POPSIZE), probability of
crossover (PXOV ER), probability of mutation (PMU). There is no clear indica-
tion as to how large a population should be. If the population is too large, there
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may be difficulty in storing the data, but if the population is too small, there may
not be enough string for good crossovers. In our problem, POPSIZE = 500,
PXOV ER = 0.6, PMU = 0.9 and MAXGEN = 5000.

4.1.2. Chromosome representation

An important issue in applying a GA is to design an appropriate chromosome rep-
resentation of solutions of the problem together with genetic operators. Traditional
binary vectors used to represent the chromosome are not effective in many non-linear
physical problems. Since the proposed problem is non-linear, hence to overcome this
difficulty, a real - number representation is used in this problem.

4.1.3. Reproduction

Parents are selected at random with selection chances biased in relation to chromo-
some evaluations. Next to initialize the population, we first determine the indepen-
dent and dependent variables from all (here 16) variables and then their boundaries.

4.1.4. Crossover

Crossover is a key operator in the GA and is used to exchange the main charac-
teristics of parent individuals and pass them on the children. It consist of two
steps:

(i) Selection for crossover: For each solution of P 1(T ) generate a random number
r from the range [0, 1]. If r < pc then the solution is taken for crossover, where
pc is the probability of crossover.

(ii) Crossover process: Crossover taken place on the selected solutions. For each
pair of coupled solutions Y1, Y2 a random number c is generated from the range
[0, 1] and Y1, Y2 are replaced by their offspring’s Y11 and Y21 respectively
where Y11 = cY1 + (1− c)Y2, Y21 = cY2 + (1− c)Y1, provided Y11, Y21 satisfied
the constraints of the problem.

4.1.5. Mutation:

The mutation operation is needed after the crossover operation to maintain pop-
ulation diversity and recover possible loss of some good characteristics. It is also
consist of two steps:

(i) Selection for mutation: For each solution of P 1(T ) generate a random number
r from the range [0..1]. If r< pm then the solution is taken for mutation, where
pm is the probability of mutation.

(ii) Mutation process: To mutate a solution X=(x1, x2, .., xK) select a random
integer r in the range [1..K]. Then replace xr by randomly generated value
within the boundary of rth component of X.

4.1.6. Evaluation

Evaluation function plays the same role in GA as that which the environment plays
in natural evolution. To this problem, the evaluation function is

eval(Vi) = objective function value
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By Roulette wheel selection method the better chromosome are selected from the
population to generate the next the improved chromosomes. Now new chromosomes
are produced by arithmetic crossover and uniform mutation. The general outline of
the algorithm is following:

begin
t← 0
initialize Population(t)
evaluate Population(t)
while(not terminate-condition)
{
t← t+ 1
select Population(t) from Population(t-1)
alter(crossover and mutate) Population(t)
evaluate Population(t)
}
Print Optimum Result
end.

5. Numerical Example

In this section, a numerical example for the proposed STP with mixed constraint
has been solved. For the unavailability of high capacitance computer, we consider
i = 2, j = 2 and k = 2 with following input data. The problem can be extended
for more number of sources, destinations and conveyances with high capacitance
computer:

5.1. Input for three Models

Here we take the unit transportation cost, available source, the required demand
and the capacity of the conveyances are as crisp number for model-1, triangular
fuzzy number for model-2 and generalized intutionistic triangular fuzzy number for
model-3 respectively and given by Table 1.

5.2. Result of three proposed Models

With the numerical data given in Table 1, we solved the three proposed models
of this paper using the above mentioned solution techniques and in each case we
got global optimal solutions. These solutions are given by the Table 2. Observing
the optimal transportation cost for different models, it found that in all cases GA
gives the optimal value of objective function compare to LINGO for this particular
problem. As we have been considered maximum generation is 5000 for GA, so it
generate a the best optimal solution, whereas in LINGO we have noticed that after
4 iteration the solution obtained. So it is obvious that the solution so obtained
using GA converge more to global optimal solution than LINGO. The graphical
representation of change on total transportation cost obtained using two different
algorithm i.e. GA and LINGO, for shipping of same amount of goods are shown in
the Figure-4.



190 A. Das, U. K. Bera & B. Das

Table 1. Input for different models
Input for Model-1

Crisp Unit Transportation Cost cijk
j = 1 j = 2 k

i = 1 3.25 2.75 1
i = 1 2.75 2.5 2
i = 2 3.5 3.0 1
i = 2 2.75 3.0 2

Available Source Require Demand Conveyance Capacity
a1 = 35 b1 = 10 e1 = 11
a2 = 8 b2 = 33 e2 = 32

Input for Model-2
Triangular Fuzzy Unit Transportation Cost c̃ijk

i = 1 (2,3,5) (1,3,4) 1
i = 1 (1,3,4) (2,2,4) 2
i = 2 (2,3,5) (1,3,4) 1
i = 2 (1,3,4) (2,3,4) 2

Available Source Require Demand Conveyance Capacity

ã1 = (20,24,28) b̃1 = (20,24,32) ẽ1 = (0,2,8)

ã2 = (4,6,12) b̃2 = (4,6,8) ẽ2 = (24,28,32)
Input for Model-2

Intutionistic triangular Fuzzy Unit Transportation Cost ĉijk
i = 1 〈(5,1,2;0.6),(5,1.5,2.6;0.3)〉 〈(6,1.5,2.5;0.5),(6,2,3;0.4)〉 1
i = 1 〈 (5,1.2,2.3;0.5),(5,1.7,2.8;0.3) 〉 〈 (3,1,2.2;0.5),(3,1.5,2.7;0.3) 〉 2
i = 2 〈 (6,1.4,2.8;0.5),(6,1.6,3.2;0.4) 〉 〈 (3,1,2.2;0.5),(3,1.5,2.7;0.3) 〉 1
i = 2 〈 (4,1.6,2;0.6),(4,1.7,2.6;0.3) 〉 〈 (4,1.4,2.1;0.7),(4,1.5,2.6;0.2) 〉 2

Available Source Require Demand Conveyance Capacity

â1 = 〈(8,2,1.5;0.6), b̂1 = 〈(6,1.5,0.9;0.5),(6,1.2,1;0.4)〉 ê1 = 〈(31,4,2.5;0.5),(31,3,2.8;0.4)〉
(8,1.8,2;0.3)〉

â2 = 〈(32,4,2;0.5), b̂2 = 〈(34,4.5,2.6;0.6),(34,3.6,3;0.3)〉 ê2 = 〈(9,2,1;0.7),(9,1.8,1.2;0.3)〉
(32,3,2;0.4)〉

5.3. Degree of efficiency evaluation

In order to validate the proposed methodology one numerical example for each en-
vironment of a STP with mixed type constraint solved using two different algorithm
viz. genetic algorithm and GRG algorithm. The optimal solutions are presented in
Table 2. From the result we observed that the genetic algorithm gives the optimal
solution compare to GRG algorithm i.e. LINGO 13.0. Also we find out the relative
error rate and standard deviation for the problems to test the order of convergency.

According to Kuo et al. [13] the relative error rate define as follows,

Relative error rate =
|f∗ − f∗G|

f∗G
× 100%, (5.1)

where f∗ is the optimal solution obtained by LINGO and for our problem f∗G is the
optimal solution based on GA algorithm.

And the standard deviation(SD) is given by the formula,

Standard deviation =

√√√√ 1

N

N∑
i=1

(f∗Mi − f∗MA)2, (5.2)

where i = 1, 2, · · · , N . f∗Mi represent the optimal solution for M method in the ith

execution and f∗MA represent the average of N optimal solutions for M method.
We execute our program on a personal computer with Intel Pentium duo processor
(2.2 GHz, 800 MHz FSB)CPU and 3GB RAM using Dev-C++ and LINGO 13.0
version. We calculated the relative error rate and SD using the equations (5.1) and
(5.2) respectively and listed in the Table 3. From the Table 3, it observed that the
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Table 2. Optimal transported amount (xijk) with optimal objective values

Solution using GA Solution using LINGO
Solution for model-1

j = 1 j = 2 j = 1 j = 2
i = 1 4.6270 0.0759 0 0 k = 1
i = 1 0.7115 0.0085 0 2.1 k = 2
i = 2 3.1922 3.1273 0 1 k = 1
i = 2 1.4721 0.2114 0 0.68 k = 2

Total cost = 42.4612 Total cost = 43.5
Solution for model-2

i = 1 1.9413 0.6338 0 0 k = 1
i = 1 0.2787 1.1541 0 0 k = 2
i = 2 3.1499 2.2889 0 5.82 k = 1
i = 2 0.3659 2.2714 1 0 k = 2

Total cost = 36.0559 Total cost = 38.5
Solution for model-3

i = 1 0.8364 1.8047 0 8.21 k = 1
i = 1 0.6074 1.4747 0 0 k = 2
i = 2 1.0004 4.5390 0 19.2 k = 1
i = 2 2.4744 1.8286 0 0 k = 2

Total cost = 32.6463 Total cost = 37.376

genetic algorithm (GA) has better solution compare to GRG algorithm (LINGO).
Although it find here that the standard deviation of LINGO is smaller than those
of genetic algorithm. which means that GRG algorithm (LINGO) is much more
stable than GA.

5.4. Replication based experimental evaluation for genetic al-
gorithm(GA)

To test the convergency of genetic algorithm (GA), here we have made some ex-
periment with GA by changing the different parameters by which GA has been
developed. We have run the program several times by changing the parameters
maximum generation number (MAXGEN), population size (POPSIZE), probabil-
ity of mutation(PMU) etc. The findings are given by the Table 4. From the Table 4,
it has been observed that, the parameters of GA viz. MAXGEN, POPSIZE, PMU
and the corresponding transportation cost are inversely proportional to each other,
i.e. when there is a decrease in these parameters the corresponding transportation
cost have an increase. This phenomena happen due to the fundamental proper-
ties of GA. Actually GA is a iteration based algorithm, where initially number are
generates randomly in the given range i.e. POPSIZE. So large POPSIZE creates
a large number of generation, by which we can check optimality. In our problem
we see that when the POPSIZE is 500 then the cost is minimum compare to other
POPSIZE. Same conclusion also can be drawn for the other parameters i.e. MAX-
GEN and PMU. These changes of cost with respect to the different GA parameters
are picturised by the Fig. 5 and Fig. 6.
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Figure 4. Cost Vs Total Transported amount for Different Models

Table 3. Comparison on results obtained using GA and LINGO

Methods → → → Genetic Algorithm LINGO
Optimal cost 42.4612 43.5

Model-1 error rate on optimal cost N/A 2.446%
Standard deviation on optimal cost 0.0000000001 0

Optimal cost 36.0559 38.5
Model-2 error rate on optimal cost N/A 6.779%

Standard deviation on optimal cost 0.000000002 0
Optimal cost 35.6463 37.376

Model-2 error rate on optimal cost N/A 2.941%
Standard deviation on optimal cost 0.000000001 0

6. Conclusion

This paper deals with several ideas that can handle a STP with mixed type con-
straint in different environments. The major aspects of this study are given by the
following.

1. We provide a meta-heuristic algorithm GA, to find the optimal solution of a
solid transportation problem with mixed constraints i.e. both less than, more
than and equal type constraints are exist in each side. The model is developed
in crisp, fuzzy and Intuitionistic fuzzy environments.

2. From Table 2 it reveal that, for a mixed constraints, optimal solutions may
not be balanced although problem is a balanced one, as it expected.

3. Also from Table 2, it fetches that,optimal amount of transportation need
not proportionate to the unit transportation cost as like “matrix minimum
methods”.

4. The criteria of mixed constraints STP also can be developed other environ-
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Table 4. Effect on cost for different values of parameters(GA)

MAXGEN POPSIZE PMU Optimal cost
1000 500 0.9 42.4612
900 500 0.9 43.6149
800 500 0.9 43.9223
600 500 0.9 43.3336
1000 500 0.9 42.4612

Model-1 1000 400 0.9 44.0757
1000 300 0.9 44.9685
1000 100 0.9 46.2795
1000 500 0.9 42.4612
1000 500 0.8 44.1630
1000 500 0.7 45.6761
1000 500 0.4 46.7326

Figure 5. Cost Vs Maximum generation(MAXGEN) and Population size(POPSIZE)

ments, like- stochastic, fuzzy stochastic, rough etc.

In this present investigation we have analyze a simple solid transportation problem
using two different optimization algorithm viz. GA and LINGO, with numerical
data. It has been revealed that the algorithm GA gives the best optimal solution
in such case. The proposed models can be further extended with fixed charge solid
transportation problem with a big size numerical illustration. All these extension
keep in our mind.
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Figure 6. Transportation cost Vs Probability of mutation(PMU)
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