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NONAXISYMMETRIC FREE CONVECTION
FLOW OVER A ROTATING DISK IN A

VISCOELASTIC FLUID WITH MAGNETIC
FIELD∗

Rajeswari Seshadri1,† and J Sabaskar1

Abstract The non axisymmetric motion produced by a buoyancy-induced
secondary flow of a viscoelastic fluid over an infinite rotating disk in a vertical
plane with a magnetic field applied normal to the disk has been studied.
The governing Navier Stokes equations and the energy equation admit a self
similar solution. The system of ordinary differential equations has been solved
numerically using Runge-Kutta Gill subroutine. The turning moment for
the viscoelastic fluid is found to be less than that of the Newtonian fluid
but the turning moment is increased due to the magnetic parameter. The
resultant force due to the buoyancy-induced secondary flow increases with the
magnetic parameter but reduces as the viscoelastic parameter increases. The
quantity of fluid, which is pumped outwards due to the centrifuging action
of the disk, for the viscoelastic fluid is more than that of the Newtonian
fluid. The buoyancy-induced secondary flow boundary layer is much thicker
than the primary boundary layer thickness. The thermal boundary layer
due to the primary flow increases with the magnetic parameter decreases as
the viscoelastic parameter increases. The heat transfer increases with the
viscoelastic parameter but decreases as the magnetic parameter increases.
The effect of the viscoelastic parameter is more pronounced on the secondary
flow than on the primary flow.

Keywords Viscoelastic fluid, three-dimensional flow, rotating disk, non Ax-
isymmetric, free convection, magnetic field.
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1. Introduction

The phenomenon of free convection arises in a fluid when the temperature changes
cause density variation which lead to buoyancy forces. This process of heat transfer
is encountered in the natural world such as in power transformers, nuclear reactors,
etc. Excellent reviews of free convection flows have been given by Ede [8], Gebhart
( [10, 11]). The axisymmetric forced convection flow over a rotating disk with or
without magnetic field has been studied by von kármán [13] ,Cochran [7], Sparrow
and Cess [23], Benton [4] and kumar [12]. In rotating flows the axisymmetric char-
acter of the flow is destroyed when translational velocities or buoyancy forces are
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applied to a symmetric flow. Such non-axisymmetric flows over rotating disks have
been studied by Rott and Lewellen [21] Chawla and Verma [6] and Thacker [25].
Also, the non symmetric flow over a rotating plates and disks without magnetic
field and buoyancy forces has been studied by Parter [18] and Rajagopal and Lai
( [15, 16]). Turkyilmazoglu in a series of four research articles, considered various
aspects of the boundary layer flow due to a infinitely rotating disk in an incom-
pressible viscous fluid. He has obtained exact solutions, analytical solutions as well
as the numerical solutions for the rotating disk problem considering the effects of
uniform suction and blowing and uniform magnetic [26, 27, 29]. In [28] the three
dimensional boundary layer flow of an electrically conducting fluid on a radially
stretchable rotating disk is studied.

In recent years, the study of non-Newtonian fluids has gained importance due to
their increasing applications in industry. The steady axisymmetric forced convection
flow without magnetic field for a viscoelastic fluid has been considered by Elliott [9].
Various aspects of non-Newtonian fluid have been discussed in Pipkin [19], Beard [3]
and Tanner [24]. Recently Rajagopal [20] has presented an excellent review of
the forced convection flow of a viscoelastic fluid between rotating disks. Recently,
Ariel [2] analyzed the two dimensional stagnation point flow of an elastico-viscous
fluid with partial slip. Analysis of viscoelastic fluid over a stretching sheet subject
to a transverse magnetic field with heat and mass transfer has been studied by
Aiboud [1]. Unsteady rotating flow over an impulsively rotating infinite disk with
axial magnetic field and suction has been studied by Kumari and Nath [14].

The aim of the present study is to consider the non axisymmetric flow of a
viscoelastic fluid over a disk rotating in a vertical plane in the presence of a buoyancy
force and a magnetic field. The non axisymmetric motion arises due to the buoyancy
induced cross or secondary flow. A set of transformations has been applied which
uncouple the momentum and energy equation that result in an independent set of
equation that govern the (a) primary axisymmetric flow with an axial magnetic
field. (b) an energy equation dependent on the primary flow and (c) secondary
cross-flow dependent on both the primary flow and the energy. The system of
ordinary differential equations governed by a two-point boundary value problem has
been solved numerically using Runge-Kutta-Gill integration scheme. The particular
cases of the present results have been compared with those of Cochran [7], Sparrow
and Cess [23], Chawla and Verma [6], Thacker [25] and Elliott [9].

2. Governing Equation

We consider a cartesian x,y,z co-ordinate system in a non rotating reference frame
where the x-axis is aligned with the negative direction of gravity g, and the z-axis
is horizontal. An infinite vertical disk is placed at z=0 in a viscous incompressible
viscoelastic fluid. The disk rotates around z-axis with a constant angular velocity
ω. A magnetic field of strength B is applied normal to the disk surface. The
disk is at a constant temperature Tw and the fluid temperature far from the disk
is T∞(Tw > T∞). The effects of the induced magnetic field, viscous dissipation
and joule heating have been neglected (1962). The Navier Stokes equations and
the energy equation governing the steady incompressible free convection flow of a
viscoelastic fluid (Walter liquid B model) under the Boussinesq approximation can
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be expressed as

ux + vy + wz = 0, (2.1)
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uTx + vTy + wTz = α (Txx + Tyy + Tzz) , (2.5)
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+

∂2
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+

∂2

∂z2
. (2.6)

The boundary conditions are given by

u = −yω, v = xω, w = 0, T = Tw at z = 0,

u → 0, v → 0, T → T∞ as z → ∞. (2.7)

Here u, v and w are the velocity components in the x−, y− and z−direction re-
spectively; p is the pressure; ρ is the density; ν is the kinematic viscosity; g is
the acceleration due to gravity; α is the thermal diffusivity of the fluid; β is the
coefficient of thermal expansion; K0 is the viscoelastic parameter; B is the ap-
plied magnetic field; T is the temperature; σ is the electrical conductivity; and the
subscripts x, y and z denote derivations with respect to x, y and z, respectively.

As mentioned earlier due to the buoyancy force the flow is no longer axisym-
metric but becomes non-symmetric. However, it is possible to find transformations
which uncouple the momentum and energy equations and reduce the equations
(2.1)-(2.5) to a system of ordinary differential equations. The transformations are
given by Sparrow and Cess [23] and Thacker [25].

u = ω
[
−2−1xF ′(η)− yG(η)

]
+ [gβ (Tw − T∞) /ω]H(η),

u = ω
[
xG(η)− 2−1yF ′(η)

]
+ [gβ (Tw − T∞) /ω]N(η),

w = (νω)
1/2

F (η), p = −ρωνP (η), η =
(ω
ν

)1/2

z,

T − T∞ = (Tw − T∞)Θ(η), K∗ =
K0ω

µ
, M =

σB2

ρω
. (2.8)

Applying the above transformations to equations (2.1)-(2.5), we find that (2.1) is
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satisfied identically and (2.2)-(2.5) reduce to

F ′′′ − FF ′′ +
(F ′)2

2
− 2G2 −MF ′ −K∗

[( (F ′)2

2
− FF ′′ − 2G2

)′′
− 2

(F ′F ′′

2
− FF IV − 2GG′′)] = 0, (2.9)

G′′ − FG′ + F ′G−MG−K∗
[
(F ′G− FG′)

′′ − 2
(F ′G′′

2
+

GF ′′′

2
− FG′′′)] = 0,

(2.10)

Pr−1Θ′′ − FΘ′ = 0, (2.11)

H ′′ − FH ′ +
F ′H

2
+GN −MH +Θ−K∗

[(
F ′H

2
+GN − FH ′

)′′

−2

(
F ′′′H

2
+G′′N − FH ′′′

)]
= 0, (2.12)

N ′′ − FN ′ +
F ′N

2
+GH −MN −K∗

[(
F ′N

2
+GH − FN ′

)′′

−2

(
F ′′′N

2
+G′′H − FN ′′′

)]
= 0, (2.13)

P ′ + FF ′ − F ′′ = K∗
[
(FF ′)

′′ − 2FF ′′′
]
. (2.14)

The boundary conditions are given by

F = F ′ = 0, G = Θ = 1, H = N = P = 0, at η = 0,

F ′ = G = Θ = H = N = 0, as η → ∞. (2.15)

Here F ′, G and F are the dimensionless velocity components along x−, y−, and
z− directions, respectively; P is the dimensionless pressure; Θ is the dimensionless
temperature; H and N are the buoyancy-induced cross flow velocity components
along x− and y− directions, respectively; M is the dimensionless magnetic param-
eter; Pr is the Prandtl number; K∗ is the dimensionless viscoelastic parameter; η
is the similarity variable; and prime denotes derivative with respect to η.

Equations (2.9)-(2.11) represent the steady forced convection flow over a rotating
disk which is symmetric about the z−axis. Equations (2.12) and (2.13) represen-
t nonsymmetric nature of the flow. Equation (2.14) represents the dimensionless
pressure and can easily be determined after F along with its derivatives is known
from (2.9) and (2.10). Equations (2.9) and (2.10) are non linear and are uncoupled
from (2.11) -(2.13) which are linear. Equations (2.9) -(2.11) for K∗ = 0 (New-
tonian fluid) reduce to those of Sparrow and Cess [23] who studied the flow and
heat transfer on a rotating disk in the presence of an applied magnetic field. Also
equations (2.9) and (2.10) for K∗ = M = 0 reduce to those of van Kármán [13],
Cohran [7] and Benton [4] who studied the symmetric primary flow over an infinite
rotating disk. Equations (2.9)-(2.13) for K∗ = M = 0 reduce to those of Chawla
and Verma [6] who studied the free convection flow over a rotating disk without a
magnetic field. Also (2.9) - (2.13) for K∗ = 0 reduce to those of Thacker [25] who
investigated the free convection flow over a rotating disk taking into account the
effect of a magnetic field. Furthermore (2.9) and (2.10) for M=0 reduce to those
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of Elliott [9] who considered the axisymmetric flow of a viscoelastic fluid over a
rotating disk with out a buoyancy force.

Among the quantities of practical interest is the torque required to maintain a
steady rotation of the disk. Such a torque is needed to overcome the tangential
shear stress imposed by the fluid on the disk surface. The tangential shear stress
τ1 is expressed as Sparrow and Cess [23] and Elliott [9]

τ1 = ρ
(
νω3

)1/2
G′(0). (2.16)

In dimensionless form the skin friction coefficient in the tangential direction Cf can
be written as

Cf = 2τ1/
(
ρr2ω2

)
= −2 (Rer)

−1/2
G′(0), Rer = ωr2ν. (2.17)

Similarly, the radial shear stress τ2 is expressed in the form Sparrow and Cess [23]
and Elliott [9]

τ2 = −ρ
(
νω3

)1/2
F ′′(0). (2.18)

Also in dimensionless form the skin friction coefficient in the radial direction Cf is
expressed as

Cf = 2τ2/(ρr
2ω2) = −2 (Rer)

−1/2
F ′′(0). (2.19)

Although the results are strictly applicable to an infinite disk only, we may use the
some results for a finite disk, provided that the radius R is large compared with
thickness S of the layer carried with the disk. On a disk of radius R, the torque Tp

associated with the primary flow is

Tp = −2−1ρπR4(νω3)1/2G′(0). (2.20)

In dimensionless form, the torque or moment coefficient CT is given by

CT = 4Tp

(
ρω2R5

)
= −2π (ReR)

−1/2
G′(0),

ReR = ωR2/ν. (2.21)

Due to the buoyancy induced secondary flow on the disk with R (neglecting the edge
effects), the resultant force RF is given by Sparrow and Cess [23] and Thacker [25]

RF = ρgβπR2 (Tw − T∞) (ν/Ω)
1/2

[
(H ′(0))

2
+ (N ′(0))

2
]1/2

, (2.22)

where H ′(0) and N ′(0) are the buoyancy induced shear stress in x− and y− di-
rections, respectively. In dimensionless form, the resultant force RF is expressed
as

RF = πGrR (ReR)
−5/2

[
(H ′(0))

2
+ (N ′(0))

2
]1/2

, (2.23)

where
RF = RF/

(
ρω2R4

)
, GrR = gβ (Tw − T∞)R3/ν2. (2.24)

The quantity of fluid Q which is pumped outwards as a result of the centrifuging
motion on one side of the disk of radius is

Q = 2πωR3 (ReR)
−1/2

F (∞). (2.25)
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In dimensionless form it can be expressed as

Q = Q/ωR3 = π (ReR)
−1/2

F (∞). (2.26)

The heat transfer coefficient in terms of Nusslet number is expressed as

Nu = −R

(
∂T

∂z

)
z=0

/(Tw − T∞) = − (ReR)
1/2

G′(0). (2.27)

3. Method of Solution

It may be remarked that the presence of elasticity (K∗ > 0) gives differential e-
quations (equations (2.9), (2.10), (2.12)-(2.14)) which are one order higher than in
the viscous case (K∗ = 0). This results in an additional boundary condition being
required in order to obtain the solution. Hence following Beard and Walters [3] and
Elliott [9], we use a regular perturbation technique and assume the solution of the
form

F = F0 +K∗F1 + (K∗)
2
F2 + (K∗)

3
F3 + · · · ,

G = G0 +K∗G1 + (K∗)
2
G2 + (K∗)

3
G3 + · · · ,

Θ = Θ0 +K∗Θ1 + (K∗)
2
Θ2 + (K∗)

3
Θ3 + · · · ,

H = H0 +K∗H1 + (K∗)
2
H2 + (K∗)

3
H3 + · · · ,

N = N0 +K∗N1 + (K∗)
2
N2 + (K∗)

3
N3 + · · · ,

P = P0 +K∗P1 + (K∗)
2
P2 + (K∗)

3
P3 + · · · , (3.1)

which is valid for (K∗ << 1). We substitute (3.1) in (2.9)-(2.15) and equate the
coefficients of various powers of K∗ which results in the system of equations given
in the Appendix. It may be noted that the first two equations (see Appendix)
are non linear and the remaining equations are linear. The non linear equations
under boundary conditions have been solved by shooting method with Newton’s
correction formula for the guessed values of the unknown boundary conditions.
The numerical integration is carried out using Runge-Kutta-Gill subroutine. The
remaining linear equation have been solved as an initial value problem using the
superposition principle as explained in Na [17]. The integration has been performed
by Runge-Kutta-Gill subroutine as in the case of non linear equations.

4. Results and Discussion

In order to test the accuracy of our method we have compared the radial, tan-
gential and axial velocity profiles (F ′, G, F ) for the axially symmetric flow when
M = K∗ = 0 with those of Cochran [7]. For Newtonian fluids (K∗ = 0), the radial
and tangential shear stresses for primary flow (−F ′′(0),−G′(0)) and heat transfer
(−Θ′(0)) have been compared with those of Sparrow and Cess [23]. The heat trans-
fer (−Θ′(0)) and the shear stresses due to cross or secondary flow (H ′(0),−N ′(0))
for M = K∗ = 0 have been compared with those of Chawla and Verma [6] and for
K∗ = 0, M > 0 with those of Thacker [25]. Also for M = 0, K∗ > 0 the velocity
profiles (F ′, G, F ) have been compared with those of Elliott [9]. In all the cases the
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results are found to be in excellent agreement. The maximum difference is found to
be less than one per cent. The comparison shown in Tables 1-3 and Fig 1(a). For
the sake of brevity, the comparison with those of Cochran [7] is not presented here.

M
Present Results Sparrow and Cess [23]

−F ′′(0) −G′(0) −Θ′(0) −F ′′(0) −G′(0) −Θ′(0)
0 1.0211 0.6161 0.3964 1.021 0.616 0.3960
0.5 0.7701 0.8492 0.2824 0.770 0.849 0.2820
1.0 0.6201 1.0691 0.1943 0.619 1.069 0.1940
2.0 0.4613 1.4422 0.0985 0.461 1.442 0.0982
3.0 0.3812 1.7483 0.0592 0.381 1.748 0.0588
4.0 0.3309 2.0104 0.0399 0.331 2.010 0.0395

Table 1. Comparison of radial and tangential shear stresses for primary flow (−F ′′(0),−G′(0)) and

heat transfer (−Θ′(0)) when K∗ = 0, Pr = 1.
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Figure 1. (a) Comparison of radial, tangential and axial velocity profiles (−F ′, G,−F ) and pressure

profiles for (P) for M = 0, K∗ = 0.1. (b) Radial velocity profile (−F ′) for M=0, 0.5, K∗=0, 0.2.

The effects of the viscoelastic parameter K∗ and the magnetic parameter M
on the velocity profiles (F ′, G, F ) of the primary Von Kármán flow (i.e., axially
symmetric flow)are shown in Figures 1(b), 2(a) and 2(b). It is observed that there is
a general reduction in the fluid velocity profiles (F ′, G, F ) with increasing magnetic
parameter M . Also the thickness of the velocity boundary layer decreases with
the increase in the value of the magnetic parameter. The effect of the viscoelastic
parameter K∗ is found to be just opposite. Similar trend for K∗ = 0, M > 0 has
been observed by Sparrow and Cess [23] and for M = 0, K∗ = 0 by Elliott [9].
The above behavior of velocity field can be explained by examining the details
of the flow field. The rotating disk acts like a fan, drawing fluid axially inward
from the surroundings towards the disk surface. Since the surface of the disk is
impermeable, the incoming fluid is turned and discharges in the radial direction.
Thus there is a close relationship between the axial inflow and the radial outflow.
Since the magnetic field is axial there are no magnetic forces operating to retard
the axial flow. But the radial component of the magnetic force opposes the radial
velocity. The reduction in the radial velocity tends to decrease the incoming axial



Non axisymmetric flow over rotating disk 413

Pr
Present Results Thacker [25]

−Θ′(0) H ′(0) −N ′(0) −Θ′(0) H ′(0) −N ′(0)
0.7 0.3231 1.0673 0.3618 0.3231 1.0673 0.3617
1.0 0.3964 0.9176 0.2749 0.3962 0.9178 0.2748
3.0 0.6827 0.6131 0.1275 0.6826 0.6131 0.1278
5.0 0.8536 0.5163 0.0919 0.8533 0.5161 0.0916

Table 2. Comparison of heat transfer (−Θ′(0)) and buoyancy induced cross-flow shear stresses

(H′(0),−N ′(0)) when M = K∗ = 0.

velocity. Since there is less fluid flow, the turning from axial to radial velocity takes
place closer to the disk surface. Thus the inflow velocity remains constant to within
smaller distances of the disk surface as the magnetic field increases. The magnetic
field induces a magnetic force in the tangential direction which tends to oppose the
tangential fluid velocity. Thus the tangential velocity is reduced and the boundary
layer becomes thinner.
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Figure 2. (a) Tangential velocity profile G for M=0, 0.5, K∗=0, 0.2 (b) Axial velocity profile (-F) for
M=0, 0.5, K∗=0, 0.2.

The effects of the viscoelastic parameter K∗ and the magnetic parameter M on
the buoyancy induced secondary (cross) flow profiles (H,N) and the temperature
profile (Θ) are presented in Figure 3(a). It is seen that the secondary flow profile
in x-direction H > 0 and the secondary flow profile in the y-direction N < 0 in
the entire region of the flow field. Also max |H| >> |N |. For example, when
M = 0.5, K∗ = 0.2, P r = 0.7 max |H| is about 0.3 times more than max |N |.
Similar trend has been observed by Chawla and Verma [6] and Thacker [25] for the
Newtonian fluid (K∗ = 0). For a fixed K∗, the thickness of the cross flow induced
thermal boundary layer increases as the magnetic parameterM increases. Similarly,
for a fixed M , the thickness of the secondary flow induced thermal boundary layer
increases as the viscoelastic parameter K∗ increases.

Also the buoyancy induced cross (secondary) flow boundary layer is more thicker
than the primary boundary layer thickness. For example, for K∗ = 0.2, M =
0.5, P r = 0.7, the secondary flow boundary layers are about 2.5 times thicker
than those of the primary flow. The effects of the viscoelastic parameter K∗ and
the magnetic parameter M on the turning moment CT , the quantity of the fluid
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M Pr
Present Results Thacker [25]

−Θ′(0) H ′(0) −N ′(0) −Θ′(0) H ′(0) −N ′(0)
0.5 0.7 0.2207 01.7863 0.8419 0.2209 01.7864 0.8418
0.5 1.0 0.2829 01.4291 0.5984 0.2827 01.4295 0.5981
0.5 3.0 0.5392 00.8184 0.2295 0.5389 00.8180 0.2299
0.5 5.0 0.6945 00.6596 0.1541 0.6948 00.6599 0.1544
1.0 0.7 0.1447 03.4641 1.7878 0.1449 03.4642 1.7875
1.0 1.0 0.1927 02.5755 1.2321 0.1930 02.5759 1.2318
1.0 3.0 0.4155 01.1854 0.4061 0.4153 01.1859 0.4065
1.0 5.0 0.5586 00.8891 0.2536 0.5589 00.8889 0.2533
3.0 0.7 0.0414 20.1719 6.0942 0.0417 20.1435 6.0947
3.0 1.0 0.0589 14.1172 4.2264 0.0587 14.1388 4.2292
3.0 3.0 0.1607 04.8251 1.3424 0.1609 04.8257 1.3428
3.0 5.0 0.2475 02.9827 0.7771 0.2478 02.9831 0.7775

Table 3. Comparison of heat transfer (−Θ′(0)) and buoyancy induced cross-flow shear stresses

(H′(0),−N ′(0)) when K∗ = 0,M > 0.

that is pumped outwards from the disk (Q) and the radial shear stress (−F ′′(0)) are
presented in Figure 3(b). It is seen that for a fixed M, CT decreases as K∗ increases
which implies that CT for the viscoelastic fluid (K∗ > 0) is less than that of the
Newtonian fluid (K∗ = 0). However, Q and −F ′′(0) increase with K∗. The effect
of the magnetic parameter M is found to be just opposite to that of K∗. Similar
trend has been observed by Sparrow and Cess [23] for K∗ = 0 and by Elliott [9] for
M = 0.
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Figure 3. (a) Buoyancy induced secondary flow profiles (H,N) for Pr=0.7, M=0, 0.5, K∗=0, 0.2. (b)

Turning moment (CT ), amount of fluid that is pumped outwards from the disk (Q), and tangential shear
stress (−F ′′(0)) for K∗ =0, 0.2.

The effects of the viscoelastic parameter K∗ and the magnetic parameter M on
the heat transfer (−Θ′(0)) and the buoyancy induced cross (secondary) flow shear
stresses (H ′(0)),−N ′(0)) are shown in Figure 4(a). The heat transfer (−Θ′(0)),
increases with K∗ due to the reduction in the thermal boundary layer thickness.
On the other hand, −Θ′(0) decreases as M increases due to the increase in the
thermal boundary layer thickness. Similar trend has been observed by Thacker [25]
for Newtonian fluids (K∗ = 0). The shear stress components H ′(0) and −N ′(0)
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Figure 4. (a) Buoyancy induced shear stress components (H′(0),−N ′(0)) and heat transfer parameter

(−Θ′(0)) for Pr=0.7, K∗=0, 0.2 (b) Buoyancy induced shear stress components (H′(0),−N ′(0)) and
heat transfer parameter (−Θ′(0)) for M=1, K∗=0.2.

associated with the buoyancy-induced secondary flow increase with M but reduce
as K∗ increases. Also the resultant force FR increases with M but reduces with
K∗.

The effect of the Prandtl number on the heat transfer (−Θ′(0)) and the shear
stress components due to the buoyancy induced cross flow (or secondary flow) H ′(0)
and −N ′(0) is shown in Figure 4(b). It is found that the heat transfer (−Θ′(0))
increases with Pr. Since a higher Prandtl number fluid has a relatively lower ther-
mal conductivity which reduces conduction and thereby increases the variations.
This results in thinner thermal boundary layer and increase in the convective heat
transfer at the wall. However, the shear stress components due to the secondary
flow (H ′(0),−N ′(0)) decrease as Pr increases. Similar trend has been observed by
Chawla and Verma [6].

5. Conclusion

Many flows generated by rotation or free convection in axisymmetric enclosures with
axisymmetric boundary conditions break into non-axisymmetric patterns above a
certain threshold of the governing parameters. Hence the non axisymmetric motion
produced by a buoyancy induced secondary flow of a viscoelastic fluid over a rotating
disk has been studied. A magnetic filed of strength B is applied normal to the disk
surface. The buoyancy induced secondary flow boundary layer due to the rotating
disk is much thicker than the primary boundary layer thickness. The quantity of
fluid which is pumped outwards due to the centrifuging action of the rotating disk
is more for viscoelastic fluid compared to Newtonian fluid. The effect of magnetic
parameter and the viscoelastic parameter on the velocity and temperature profiles
as well as the skin friction and heat transfer rates are presented.
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A. Appendix

(K∗)0 :

F ′′′
0 − F0F

′′
0 + (F ′

0)
2/2− 2G2

0 −MF ′
0 = 0, (A.1)

G′′
0 − F0G

′
0 + F ′

0G0 −MG0 = 0, (A.2)

Pr−1Θ′′
0 − F0Θ

′
0 = 0, (A.3)

H ′′
0 − F0H

′
0 + F ′

0H0/2 +G0N0 +Θ0 = 0, (A.4)

N ′′
0 − F0N

′
0 + F ′

0N0/2−G0H0 = 0, (A.5)

P ′
0 + F0F

′
0 − F ′′

0 = 0. (A.6)

(K∗)1 :

F ′′′
1 − F0F

′′
1 − F ′′

0 F1 + F ′
0F

′
1 − 4G0G1 −MF ′

1

=
[
F0F

IV
0 − 2F ′

0F
′′′
0 − 4 (G′

0)
2
]
,

(A.7)

G′′
1 − F0G

′
1 −G′

0F1 + F ′
0G1 +G0F

′
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= [F0G
′′′
0 − 2F ′

0G
′′
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0 G
′
0] ,

(A.8)
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1 − F0Θ

′
1 − F1Θ

′
0 = 0, (A.9)

H ′′
1 − F0H

′
1 −H ′
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0H1 +H0F

′
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= [F0H
′′′
0 − (3/2)F ′

0H
′′
0 − F ′′′

0 H0/2 +G0N
′′
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0N
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0N0] ,
(A.10)

N ′′
1 − F0N

′
1 −N ′
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′
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= [F0N
′′′
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0N
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0H
′
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0H0] ,
(A.11)

P ′
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0F1 + F0F
′′′
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0F
′′
0 . (A.12)
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F ′′′
2 − (F0F

′′
2 + F ′′

0 F2 + F1F
′′)−

(
2F ′

0F
′
2 + (F ′

1)
2
)
/2− 2

(
2G0G2 +G2

1

)
−MF2

=
[
F0F

IV
1 + F IV

0 F1 − 2 (F ′
0F

′′′
1 + F ′′′

0 F ′
1)− 8G′

0G
′
1

]
, (A.13)

G′′
2 − (F0G

′
2 +G′

0F2) + (F ′
0G2 +G0F

′
2)−MG2

= [F0G
′′′
1 +G′′′

0 F1 + F ′′
0 G

′
1 +G′

0F
′′
1 − 2 (F ′

0G
′′
1 +G′′

0F
′
1)] ,

(A.14)
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The boundary conditions are given by

F (0) = F ′(0) = G0 − 1 = Θ0 − 1 = P0 = H0 = N0 = 0, at η = 0, (A.25)

F ′
0 = G0 = Θ0 = H0 = N0 = 0, as η → ∞. (A.26)

For n=1,2,3.

Fn = F ′
n = Gn = Θn = Pn = Hn = Nn = 0, at η = 0, (A.27)

F ′
n = Gn = Θn = Hn = Nn = 0, as η → ∞. (A.28)
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