# EXISTENCE OF PERIODIC SOLUTION FOR FOURTH-ORDER LIENARD TYPE $P$-LAPLACIAN GENERALIZED NEUTRAL DIFFERENTIAL EQUATION WITH VARIABLE PARAMETER* 

Zhibo Cheng ${ }^{1, \dagger}$ and Jingli Ren ${ }^{2}$


#### Abstract

In this paper, we consider the following fourth-order Liénard type $p$-Laplacian generalized neutral differential equation with variable parameter $\left(\varphi_{p}(x(t)-c(t) x(t-\delta(t)))^{\prime \prime}\right)^{\prime \prime}+f(x(t)) x^{\prime}(t)+g\left(t, x(t), x(t-\tau(t)), x^{\prime}(t)\right)=e(t)$.


By applications of coincidence degree theory and some analysis skills, sufficient conditions for the existence of periodic solutions are established.

Keywords Periodic solution, p-Laplacian, fourth-order, neutral operator, liénard type.

MSC(2010) 34C25, 34K13, 34K40.

## 1. Introduction

In this paper, we consider the following fourth-order Liénard type $p$-Laplacian neutral differential equation with variable parameter

$$
\begin{equation*}
\left(\varphi_{p}(x(t)-c(t) x(t-\delta(t)))^{\prime \prime}\right)^{\prime \prime}+f(x(t)) x^{\prime}(t)+g\left(t, x(t), x(t-\tau(t)), x^{\prime}(t)\right)=e(t) \tag{1.1}
\end{equation*}
$$

where $p \geq 2, \varphi_{p}(x)=|x|^{p-2} x$ for $x \neq 0$ and $\varphi_{p}(0)=0 ;|c(t)| \neq 1, c, \delta \in C^{2}(\mathbb{R}, \mathbb{R})$ and $c, \delta$ are $T$-periodic functions for some $T>0 ; f$ is continuous function; $g$ is continuous function defined on $\mathbb{R}^{4}$ and periodic in $t$ with $g(t, \cdot)=g(t+T, \cdot, \cdot, \cdot)$, $e, \tau: \mathbb{R} \rightarrow \mathbb{R}$ are continuous periodic functions with $e(t+T) \equiv e(t), \int_{0}^{T} e(t) d t=0$ and $\tau(t+T) \equiv \tau(t)$.

In recent years, there is a good amount of work on periodic solutions for Liénard type $p$-Laplacian differential equations (see $[1-3,5-10,12,13,15,16]$ and the references cited therein.) For example, in [10], applying Mawhin's continuation theorem, Shan \& Lu study the existence of periodic solution for a kind of fourth-order $p$-Laplacian functional differential equation with a deviating argument as follows

$$
\begin{equation*}
\left[\varphi_{p}\left(u^{\prime \prime}(t)\right)\right]^{\prime \prime}+f(u(t)) u^{\prime}(t)+g(t, u(t), u(t-\tau(t)))=e(t) . \tag{1.2}
\end{equation*}
$$

[^0]Afterwards, by means of Mawhin's continuation theorem, Wang \& Zhu [13] study a kind of fourth-order p-Laplacian neutral functional differential equation

$$
\begin{equation*}
\left[\varphi_{p}(x(t)-c x(t-\delta))^{\prime \prime}\right]^{\prime \prime}+f(x(t)) x^{\prime}(t)+g\left(t, x\left(t-\tau\left(t,|x|_{\infty}\right)\right)\right)=e(t) \tag{1.3}
\end{equation*}
$$

Some sufficient criteria to guarantee the existence of periodic solutions are obtained.
However, the fourth-order $p$-Laplacian neutral differential equation (1.1), in which there are the $p$-Laplacian neutral differential equation, has not attracted much in the literature. There are not so many existence results for (1.1) even when the neutral operator with variable parameter. In this paper, we try to fill gap and establish the existence of periodic solution of (1.1) using some Mawhin's continuation theory. Our new results generalize in several aspects some recent results contained in $[10,13]$.

Here $A=x(t)-c(t) x(t-\delta(t))$ is a natural generalization of the operator $A_{1}=$ $x(t)-c x(t-\delta)$, which typically possesses a more complicated nonlinearity than $A_{1}$. For example, $A_{1}$ is homogeneous in the following sense $\left(A_{1} x\right)^{\prime}(t)=\left(A_{1} x^{\prime}\right)(t)$, whereas $A$ in general is inhomogeneous. As a consequence many of the new results for differential equations with the neutral operator $A$ will not be a direct extension of known theorems for neutral differential equations.

The remaining part of the paper is organized as follows, in Section 2, we first give qualitative properties of the neutral operator $A$ which will be helpful for further studies of differential equations with this neutral operator; in Section 3, by applying Mawhin's continuation theory and some new inequalities, we obtain sufficient conditions for the existence of periodic solutions for (1.1); in Section 4, some examples are also given to illustrate our results.

## 2. Preparation

Let

$$
c_{\infty}=\max _{t \in[0, T]}|c(t)|, \quad c_{0}=\min _{t \in[0, T]}|c(t)| .
$$

Define operators $A: C_{T} \rightarrow C_{T}$ by

$$
(A x)(t)=x(t)-c(t) x(t-\delta(t))
$$

Lemma 2.1 (see [14]). If $|c(t)| \neq 1$, then the operator $A$ has a continuous inverse $A^{-1}$ on $C_{T}$, satisfying
(1) $\left(A^{-1} f\right)(t)=\left\{\begin{array}{l}f(t)+\sum_{j=1}^{\infty} \prod_{i=1}^{j} c\left(D_{i}\right) x\left(t-\sum_{i=1}^{j} \delta\left(D_{i}\right)\right), \text { for }|c(t)|<1, \forall f \in C_{T}, \\ -\frac{f(t+\delta(t))}{c(t+\delta(t))}-\sum_{j=1}^{\infty} \frac{f\left(t+\delta(t)+\sum_{i=1}^{j} \delta\left(D_{i}^{\prime}\right)\right)}{c(t+\delta(t)) \prod_{i=1}^{j} c\left(D_{i}^{\prime}\right)}, \text { for }|c(t)|>1, \forall f \in C_{T} .\end{array}\right.$
(2) $\left|\left(A^{-1} f\right)(t)\right| \leq \begin{cases}\frac{|f|_{\infty}}{1-c_{\infty}}, & \text { for } c_{\infty}<1 \quad \forall f \in C_{T}, \\ \frac{|f|_{\infty}}{c_{0}-1}, & \text { for } c_{0}>1 \quad \forall f \in C_{T} .\end{cases}$
(3) $\int_{0}^{T}\left|\left(A^{-1} f\right)(t)\right| d t \leq\left\{\begin{array}{lll}\frac{1}{1-c_{\infty}} \int_{0}^{T}|f(t)| d t, & \text { for } c_{\infty}<1 \quad \forall f \in C_{T}, \\ \frac{1}{c_{0}-1} \int_{0}^{T}|f(t)| d t, & \text { for } c_{0}>1 & \forall f \in C_{T} .\end{array}\right.$
where $D_{1}=t$ and $D_{j}=t-\sum_{i=1}^{j} \delta\left(D_{i}\right), j=1,2, \ldots ; D_{1}^{\prime}=t, D_{j}^{\prime}=t+\sum_{i=1}^{j} \delta\left(D_{i}^{\prime}\right)$, $j=1,2, \cdots$.

Let $X$ and $Y$ be real Banach spaces and $L: D(L) \subset X \rightarrow Y$ be a Fredholm operator with index zero, here $D(L)$ denotes the domain of $L$. This means that $\operatorname{Im} L$ is closed in $Y$ and $\operatorname{dim} \operatorname{Ker} L=\operatorname{dim}(Y / \operatorname{Im} L)<+\infty$. Consider supplementary subspaces $X_{1}, Y_{1}$ of $X, Y$ respectively, such that $X=\operatorname{Ker} L \oplus X_{1}, Y=\operatorname{Im} L \oplus Y_{1}$. Let $P: X \rightarrow K e r L$ and $Q: Y \rightarrow Y_{1}$ denote the natural projections. Clearly, Ker $L \cap\left(D(L) \cap X_{1}\right)=\{0\}$ and so the restriction $L_{P}:=\left.L\right|_{D(L) \cap X_{1}}$ is invertible. Let $K$ denote the inverse of $L_{P}$.

Let $\Omega$ be an open bounded subset of $X$ with $D(L) \cap \Omega \neq \emptyset$. A map $N: \bar{\Omega} \rightarrow Y$ is said to be $L$-compact in $\bar{\Omega}$ if $Q N(\bar{\Omega})$ is bounded and the operator $K(I-Q) N$ : $\bar{\Omega} \rightarrow X$ is compact.

Lemma 2.2 (Gaines and Mawhin [4]). Suppose that $X$ and $Y$ are two Banach spaces, and $L: D(L) \subset X \rightarrow Y$ is a Fredholm operator with index zero. Let $\Omega \subset X$ be an open bounded set and $N: \bar{\Omega} \rightarrow Y$ be L-compact on $\bar{\Omega}$. Assume that the following conditions hold:
(1) $L x \neq \lambda N x, \forall x \in \partial \Omega \cap D(L), \lambda \in(0,1)$;
(2) $N x \notin \operatorname{Im} L, \forall x \in \partial \Omega \cap \operatorname{Ker} L$;
(3) $\operatorname{deg}\{J Q N, \Omega \cap$ Ker $L, 0\} \neq 0$, where $J:$ Im $Q \rightarrow$ Ker $L$ is an isomorphism.

Then the equation $L x=N x$ has a solution in $\bar{\Omega} \cap D(L)$.
In order to apply Mawhin's continuation degree theorem to study the existence of periodic solution for (1.1), we rewrite (1.1) in the form:

$$
\left\{\begin{array}{l}
\left(A x_{1}\right)^{\prime \prime}(t)=\varphi_{q}\left(x_{2}(t)\right)  \tag{2.1}\\
x_{2}^{\prime \prime}(t)=-f\left(x_{1}(t)\right) x_{1}^{\prime}(t)-g\left(t, x_{1}(t), x_{1}(t-\tau(t)), x_{1}^{\prime}(t)\right)+e(t)
\end{array}\right.
$$

where $\frac{1}{p}+\frac{1}{q}=1$. Clearly, if $x(t)=\left(x_{1}(t), x_{2}(t)\right)^{\top}$ is an $T$-periodic solution to (2.1), then $x_{1}(t)$ must be an $T$-periodic solution to (1.1). Thus, the problem of finding an $T$-periodic solution for (1.1) reduces to finding one for (2.1).

Now, Set $X=\left\{x=\left(x_{1}(t), x_{2}(t)\right) \in C^{2}\left(\mathbb{R}, \mathbb{R}^{2}\right): x(t+T) \equiv x(t)\right\}$ with the norm $|x|_{\infty}=\max \left\{\left|x_{1}\right|_{\infty},\left|x_{2}\right|_{\infty}\right\} ; Y=\left\{x=\left(x_{1}(t), x_{2}(t)\right) \in C^{2}\left(\mathbb{R}, \mathbb{R}^{2}\right): x(t+T) \equiv x(t)\right\}$ with the norm $\|x\|=\max \left\{|x|_{\infty},\left|x^{\prime}\right|_{\infty}\right\}$. Clearly, $X$ and $Y$ are both Banach spaces. Meanwhile, define

$$
L: D(L)=\left\{x \in C^{2}\left(\mathbb{R}, \mathbb{R}^{2}\right): x(t+T)=x(t), t \in \mathbb{R}\right\} \subset X \rightarrow Y
$$

by

$$
(L x)(t)=\binom{\left(A x_{1}\right)^{\prime \prime}(t)}{x_{2}^{\prime \prime}(t)}
$$

and $N: X \rightarrow Y$ by

$$
\begin{equation*}
(N x)(t)=\binom{\varphi_{q}\left(x_{2}(t)\right)}{-f\left(x_{1}(t)\right) x_{1}^{\prime}(t)-g\left(t, x_{1}(t), x_{1}(t-\tau(t)), x_{1}^{\prime}(t)\right)+e(t)} \tag{2.2}
\end{equation*}
$$

Then (2.1) can be converted to the abstract equation $L x=N x$. From the definition of $L$, one can easily see that

$$
\text { Ker } L \cong \mathbb{R}^{2}, \quad \operatorname{Im} L=\left\{y \in Y: \int_{0}^{T}\binom{y_{1}(s)}{y_{2}(s)} d s=\binom{0}{0}\right\}
$$

So $L$ is a Fredholm operator with index zero. Let $P: X \rightarrow \operatorname{Ker} L$ and $Q: Y \rightarrow$ $\operatorname{Im} Q \subset \mathbb{R}^{2}$ be defined by

$$
P x=\binom{\left(A x_{1}\right)(0)}{x_{2}(0)}, \quad Q y=\frac{1}{T} \int_{0}^{T}\binom{y_{1}(s)}{y_{2}(s)} d s
$$

then $\operatorname{Im} P=\operatorname{Ker} L, \operatorname{Ker} Q=\operatorname{Im} L$. let $K$ denote the inverse of $\left.L\right|_{\operatorname{Kerp} \cap D(L)}$. It is easy to see that $\operatorname{Ker} L=\operatorname{Im} Q=\mathbb{R}^{2}$ and

$$
[K y](t)=\int_{0}^{T} G(t, s) y(s) d s
$$

where

$$
G(t, s)= \begin{cases}\frac{-s(T-t)}{T}, & 0 \leq s \leq t \leq T  \tag{2.3}\\ \frac{-t(T-s)}{T}, & 0 \leq t<s \leq T\end{cases}
$$

From (2.2) and (2.3), it is clearly that $Q N$ and $K(I-Q) N$ are continuous, $Q N(\bar{\Omega})$ is bounded and then $K(I-Q) N(\bar{\Omega})$ is compact for any open bounded $\Omega \subset X$ which means $N$ is $L$-compact on $\bar{\Omega}$.

## 3. Main results

For the sake of convenience, we list the following assumptions which will be used repeatedly in the sequel:
$\left(H_{1}\right)$ There exists a constant $D>0$ such that

$$
v_{1} g\left(t, v_{1}, v_{2}, v_{3}\right)>0 \quad \forall\left(t, v_{1}, v_{2}, v_{3}\right) \in[0, T] \times \mathbb{R}^{3} \text { with }\left|v_{1}\right|>D .
$$

$\left(H_{2}\right)$ There exist positive constants $a, b$ such that $|f(x)| \leq a|x|^{p-2}+b, \quad x \in \mathbb{R}$.
$\left(H_{3}\right)$ Tthere exist positive constants $\alpha_{1}, \alpha_{2}$ such that $|f(x)| \leq \alpha_{1}|x|^{p-1}+\alpha_{2}, x \in \mathbb{R}$.
$\left(H_{4}\right)$ There exist positive constants $\beta_{1}, \beta_{2}, \beta_{3}, m$ such that $\left|g\left(t, v_{1}, v_{2}, v_{3}\right)\right| \leq$ $\beta_{1}\left|v_{1}\right|^{p-1}+\beta_{2}\left|v_{2}\right|^{p-1}+\beta_{3}\left|v_{3}\right|^{p-1}+m$, for $\left(t, v_{1}, v_{2}, v_{3}\right) \in[0, T] \times \mathbb{R}^{3}$.

Theorem 3.1. Assume that conditions $\left(H_{1}\right)-\left(H_{2}\right),\left(H_{4}\right)$ hold. Suppose the following one of conditions is satisfied
(i) If $c_{\infty}<1$ and
$0<\frac{2^{p-1}\left(\beta_{1}+\beta_{2}\right) T^{2 p}+(4 \pi)^{p-1} T^{p+1} \beta_{3}+2^{p} a T^{2 p-1}}{2^{3 p-1} \pi^{p-1}\left(1-c_{\infty}-\left(\frac{T^{2}}{4 \pi} c_{2}+T c_{1}+T c_{1} \delta_{1}+\frac{T}{2} c_{\infty} \delta_{2}+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)\right)^{p-1}}<1$,
(ii) If $c_{0}>1$ and
$0<\frac{2^{p-1}\left(\beta_{1}+\beta_{2}\right) T^{2 p}+(4 \pi)^{p-1} T^{p+1} \beta_{3}+2^{p} a T^{2 p-1}}{2^{3 p-1} \pi^{p-1}\left(c_{0}-1-\left(\frac{T^{2}}{4 \pi} c_{2}+T c_{1}+T c_{1} \delta_{1}+\frac{T}{2} c_{\infty} \delta_{2}+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)\right)^{p-1}}<1$,
where $\delta_{i}=\max _{t \in[0, \omega]}\left|\delta^{(i)}(t)\right|, c_{i}=\max _{t \in[0, \omega]}\left|c^{(i)}(t)\right|, i=1,2$.
Then (1.1) has at least non-constant $T$-periodic solution.
Proof. Consider the equation

$$
L x=\lambda N x, \quad \lambda \in(0,1) .
$$

Set $\Omega_{1}=\{x: L x=\lambda N x, \lambda \in(0,1)\}$. If $x(t)=\left(x_{1}(t), x_{2}(t)\right)^{\top} \in \Omega_{1}$, then

$$
\left\{\begin{array}{l}
\left(A x_{1}\right)^{\prime \prime}(t)=\lambda \varphi_{q}\left(x_{2}(t)\right),  \tag{3.1}\\
x_{2}^{\prime \prime}(t)=-\lambda f\left(x_{1}(t)\right) x_{1}^{\prime}(t)-\lambda g\left(t, x_{1}(t), x_{1}(t-\tau(t)), x_{1}^{\prime}(t)\right)+\lambda e(t) .
\end{array}\right.
$$

Substituting $x_{2}(t)=\lambda^{1-p} \varphi_{p}\left[\left(A x_{1}\right)^{\prime \prime}(t)\right]$ into the the second equation of (3.1)

$$
\begin{equation*}
\left(\varphi_{p}\left(A x_{1}\right)^{\prime \prime}(t)\right)^{\prime \prime}+\lambda^{p} f\left(x_{1}(t)\right) x_{1}^{\prime}(t)+\lambda^{p} g\left(t, x_{1}(t), x_{1}(t-\tau(t)), x_{1}^{\prime}(t)\right)=\lambda^{p} e(t) . \tag{3.2}
\end{equation*}
$$

Integrating both side of (3.2) over $[0, T]$, we have

$$
\int_{0}^{T} g\left(t, x_{1}(t), x_{1}(t-\tau(t)), x_{1}^{\prime}(t)\right) d t=0
$$

From the integral mean value theorem, there is a constant $\xi \in[0, T]$ such that

$$
g\left(\xi, x_{1}(\xi), x_{1}(\xi-\tau(\xi)), x_{1}^{\prime}(\xi)\right)=0
$$

In view of $\left(H_{1}\right)$, we obtain

$$
\left|x_{1}(\xi)\right| \leq D .
$$

Then, we have

$$
\left|x_{1}(t)\right|=\left|x_{1}(\xi)+\int_{\xi}^{t} x_{1}^{\prime}(s) d s\right| \leq D+\int_{\xi}^{t}\left|x_{1}^{\prime}(s)\right| d s, \quad t \in[\xi, \xi+T],
$$

and
$\left|x_{1}(t)\right|=\left|x_{1}(t-T)\right|=\left|x_{1}(\xi)-\int_{t-T}^{\xi} x_{1}^{\prime}(s) d s\right| \leq D+\int_{t-T}^{\xi}\left|x_{1}^{\prime}(s)\right| d s, \quad t \in[\xi, \xi+T]$.
Combing the above two inequalities, we obtain

$$
\begin{align*}
\left|x_{1}\right|_{\infty} & =\max _{t \in[0, T]}\left|x_{1}(t)\right|=\max _{t \in\{\xi, \xi+T]}\left|x_{1}(t)\right| \\
& \leq \max _{t \in[\xi, \xi+T]}\left\{D+\frac{1}{2}\left(\int_{\xi}^{t}\left|x_{1}^{\prime}(s)\right| d s+\int_{t-T}^{\xi}\left|x_{1}^{\prime}(s)\right| d s\right)\right\}  \tag{3.3}\\
& \leq D+\frac{1}{2} \int_{0}^{T}\left|x_{1}^{\prime}(s)\right| d s .
\end{align*}
$$

Since $\left(A x_{1}\right)(t)=x_{1}(t)-c(t) x_{1}(t-\delta(t))$, we have

$$
\begin{aligned}
\left(A x_{1}\right)^{\prime}(t)= & \left(x_{1}(t)-c(t) x_{1}(t-\delta(t))\right)^{\prime} \\
= & x_{1}^{\prime}(t)-c^{\prime}(t) x_{1}(t-\delta(t))-c(t) x_{1}^{\prime}(t-\delta(t))+c(t) x_{1}^{\prime}(t-\delta(t)) \delta^{\prime}(t) \\
\left(A x_{1}\right)^{\prime \prime}(t)= & \left(x_{1}^{\prime}(t)-c^{\prime}(t) x_{1}(t-\delta(t))-c(t) x_{1}^{\prime}(t-\delta(t))+c(t) x_{1}^{\prime}(t-\delta(t)) \delta^{\prime}(t)\right)^{\prime} \\
= & x_{1}^{\prime \prime}(t)-\left[c^{\prime \prime}(t) x(t-\delta(t))+c^{\prime}(t) x^{\prime}(t-\delta(t))\left(1-\delta^{\prime}(t)\right)\right. \\
& +c^{\prime}(t) x^{\prime}(t-\delta(t))+c(t) x^{\prime \prime}(t-\delta(t)) \cdot\left(1-\delta^{\prime}(t)\right)-c^{\prime}(t) x^{\prime}(t-\delta(t)) \delta^{\prime}(t) \\
& \left.-c(t) x^{\prime \prime}(t-\delta(t))\left(1-\delta^{\prime}(t)\right) \delta^{\prime}(t)-c(t) x^{\prime}(t-\delta(t)) \delta^{\prime \prime}(t)\right] \\
= & x_{1}^{\prime \prime}(t)-c(t) x_{1}^{\prime \prime}(t-\delta(t))-\left[c^{\prime \prime}(t) x(t-\delta(t))+\left(2 c^{\prime}(t)-2 c^{\prime}(t) \delta^{\prime}(t)\right.\right. \\
& \left.\left.-c(t) \delta^{\prime \prime}(t)\right) x_{1}^{\prime}(t-\delta(t))+\left(c(t)\left(\delta^{\prime}(t)\right)^{2}-2 c(t) \delta^{\prime}(t)\right) x_{1}^{\prime \prime}(t-\delta(t))\right]
\end{aligned}
$$

and

$$
\begin{align*}
\left(A x_{1}^{\prime \prime}\right)(t)= & \left(A x_{1}\right)^{\prime \prime}(t)+c^{\prime \prime}(t) x(t-\delta(t))+\left(2 c^{\prime}(t)-2 c^{\prime}(t) \delta^{\prime}(t)\right. \\
& \left.-c(t) \delta^{\prime \prime}(t)\right) x_{1}^{\prime}(t-\delta(t))+\left(c(t)\left(\delta^{\prime}(t)\right)^{2}-2 c(t) \delta^{\prime}(t)\right) x_{1}^{\prime \prime}(t-\delta(t)) \tag{3.4}
\end{align*}
$$

Case (I): If $|c(t)| \leq c_{\infty}<1$, by applying Lemma 2.1, we have

$$
\begin{aligned}
\left|x_{1}^{\prime \prime}\right|_{\infty} & =\max _{t \in[0, T]}\left|A^{-1} A x_{1}^{\prime \prime}(t)\right| \leq \frac{\max _{t \in[0, T]}\left|A x_{1}^{\prime \prime}(t)\right|}{1-c_{\infty}} \\
& \leq \frac{\varphi_{q}\left(\left|x_{2}\right|_{\infty}\right)+c_{2}\left|x_{1}\right|_{\infty}+\left(2 c_{1}+2 c_{1} \delta_{1}+c_{\infty} \delta_{2}\right)\left|x_{1}^{\prime}\right|_{\infty}+\left(c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)\left|x_{1}^{\prime \prime}\right|_{\infty}}{1-c_{\infty}}
\end{aligned}
$$

From (3.3) and Wirtinger inequality ( [11]), we have

$$
\begin{align*}
\left|x_{1}\right|_{\infty} & \leq D+\frac{1}{2} \int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t \leq D+\frac{T^{\frac{1}{2}}}{2}\left(\int_{0}^{T}\left|x_{1}^{\prime}(t)\right|^{2} d t\right)^{\frac{1}{2}}  \tag{3.5}\\
& \leq D+\frac{T^{\frac{1}{2}}}{2} \frac{T}{2 \pi}\left(\int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right|^{2} d t\right)^{\frac{1}{2}} \leq D+\frac{T^{2}}{4 \pi}\left|x_{1}^{\prime \prime}\right|_{\infty}
\end{align*}
$$

From $x_{1}(0)=x_{1}(T)$, there exists a point $t_{1} \in[0, T]$ such that $x_{1}^{\prime}\left(t_{1}\right)=0$, then we have

$$
\begin{equation*}
\left|x_{1}^{\prime}\right|_{\infty} \leq x_{1}^{\prime}\left(t_{1}\right)+\frac{1}{2} \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t \leq \frac{T}{2}\left|x_{1}^{\prime \prime}\right|_{\infty} \tag{3.6}
\end{equation*}
$$

Therefore, we have

$$
\begin{aligned}
& \left|x_{1}^{\prime \prime}\right|_{\infty} \\
\leq & \left(\varphi_{q}\left(\left|x_{2}\right|_{\infty}\right)+c_{2}\left(D+\frac{T^{2}}{4 \pi}\left|x_{1}^{\prime \prime}\right|_{\infty}\right)+\frac{T}{2}\left(2 c_{1}+2 c_{1} \delta_{1}+c_{\infty} \delta_{2}\right)\left|x_{1}^{\prime \prime}\right|_{\infty}+\left(c_{\infty} \delta_{1}^{2}\right.\right. \\
& \left.\left.+2 c_{\infty} \delta_{1}\right)\left|x_{1}^{\prime \prime}\right|_{\infty}\right) /\left(1-c_{\infty}\right) \\
\leq & \frac{\varphi_{q}\left(\left|x_{2}\right|_{\infty}\right)+\left(\frac{T^{2}}{4 \pi} c_{2}+T c_{1}+T c_{1} \delta_{1}+\frac{T}{2} c_{\infty} \delta_{2}+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)\left|x_{1}^{\prime \prime}\right|_{\infty}+c_{2} D}{1-c_{\infty}}
\end{aligned}
$$

Since $1-c_{\infty}-\left(\frac{T^{2}}{4 \pi} c_{2}+T c_{1}+T c_{1} \delta_{1}+\frac{T}{2} c_{\infty} \delta_{2}+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)>0$, so, we have

$$
\begin{equation*}
\left|x_{1}^{\prime \prime}\right|_{\infty} \leq \frac{\varphi_{q}\left(\left|x_{2}\right|_{\infty}\right)+c_{2} D}{1-c_{\infty}-\left(\frac{T^{2}}{4 \pi} c_{2}+T c_{1}+T c_{1} \delta_{1}+\frac{T}{2} c_{\infty} \delta_{2}+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)} \tag{3.7}
\end{equation*}
$$

On the other hand, from $x_{2}(0)=x_{2}(T)$, there exists a point $t_{2} \in[0, T]$ such that $x_{2}^{\prime}\left(t_{2}\right)=0$, which together with the integration of the second (3.1) on interval [ $0, T]$ gives

$$
\begin{align*}
& 2\left|x_{2}^{\prime}(t)\right| \leq 2\left(x_{2}^{\prime}\left(t_{2}\right)+\frac{1}{2} \int_{0}^{T}\left|x_{2}^{\prime \prime}(t)\right| d t\right) \\
= & \lambda \int_{0}^{T}\left|-f\left(x_{1}(t)\right) x_{1}^{\prime}(t)-g\left(t, x_{1}(t), x_{1}(t-\tau(t)), x_{1}^{\prime}(t)\right)+e(t)\right| d t  \tag{3.8}\\
\leq & \int_{0}^{T}\left|f\left(x_{1}(t)\right)\right|\left|x_{1}^{\prime}(t)\right| d t+\int_{0}^{T}\left|g\left(t, x_{1}(t), x_{1}(t-\tau(t)), x_{1}^{\prime}(t)\right)\right| d t+\int_{0}^{T}|e(t)| d t .
\end{align*}
$$

From $\left(H_{2}\right)$ and $\left(H_{4}\right)$, we have

$$
\begin{align*}
2\left|x_{2}^{\prime}(t)\right| \leq & a \int_{0}^{T}\left|x_{1}(t)\right|^{p-2}\left|x_{1}^{\prime}(t)\right| d t+b \int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t+\beta_{1} \int_{0}^{T}\left|x_{1}(t)\right|^{p-1} d t \\
& +\beta_{2} \int_{0}^{T}\left|x_{1}(t-\tau(t))\right|^{p-1} d t+\beta_{3} \int_{0}^{T}\left|x_{1}^{\prime}(t)\right|^{p-1} d t+\left(m+|e|_{\infty}\right) T  \tag{3.9}\\
\leq & a\left|x_{1}\right|_{\infty}^{p-2} \int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t+b \int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t+\left(\beta_{1}+\beta_{2}\right) T\left|x_{1}\right|_{\infty} \\
& +\beta_{3} T\left|x_{1}^{\prime}\right|_{\infty}^{p-1}+\left(m+|e|_{\infty}\right) T
\end{align*}
$$

From Wirtinger inequality, we have

$$
\begin{equation*}
\int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t \leq T^{\frac{1}{2}}\left(\int_{0}^{T}\left|x_{1}^{\prime}(t)\right|^{2} d t\right)^{\frac{1}{2}} \leq T^{\frac{1}{2}} \frac{T}{2 \pi}\left(\int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right|^{2} d t\right)^{\frac{1}{2}} \leq \frac{T^{2}}{2 \pi}\left|x_{1}^{\prime \prime}\right|_{\infty} \tag{3.10}
\end{equation*}
$$

Substituting (3.5), (3.6) and (3.10) into (3.9)

$$
\begin{align*}
& 2\left|x_{2}^{\prime}(t)\right| \leq\left(\beta_{1}+\beta_{2}\right) T\left(D+\frac{T^{2}}{4 \pi}\left|x_{1}^{\prime \prime}\right|_{\infty}\right)^{p-1}+\beta_{3} \frac{T^{p}}{2^{p-1}}\left|x_{1}^{\prime \prime}\right|_{\infty}^{p-1} \\
& \quad+a\left(D+\frac{T^{2}}{4 \pi}\left|x_{1}^{\prime \prime}\right|_{\infty}\right)^{p-2}\left(\frac{T^{2}}{2 \pi}\right)\left|x_{1}^{\prime \prime}\right|_{\infty}+b\left(\frac{T^{2}}{2 \pi}\right)\left|x_{1}^{\prime \prime}\right|_{\infty}+\left(m+|e|_{\infty}\right) T \\
& =  \tag{3.11}\\
& \quad\left(\beta_{1}+\beta_{2}\right) T\left(\frac{T^{2}}{4 \pi}\right)^{p-1}\left(1+\frac{4 \pi D}{T^{2}\left|x_{1}^{\prime \prime}\right|_{\infty}}\right)^{p-1}\left|x_{1}^{\prime \prime}\right|_{\infty}^{p-1}+\beta_{3} \frac{T^{p}}{2^{p-1}}\left|x_{1}^{\prime \prime}\right|_{\infty}^{p-1} \\
& \\
& \quad+a\left(\frac{T^{2}}{4 \pi}\right)^{p-2}\left(\frac{T^{2}}{2 \pi}\right)\left(1+\frac{4 \pi D}{T^{2}\left|x_{1}^{\prime \prime}\right|_{\infty}}\right)^{p-2}\left|x_{1}^{\prime \prime}\right|_{\infty}^{p-1}+b \frac{T^{2}}{2 \pi}\left|x_{1}^{\prime \prime}\right|_{\infty}+\left(m+|e|_{\infty}\right) T
\end{align*}
$$

For constant $\delta>0$, which is only dependent on $k>0$, we have

$$
(1+x)^{k} \leq 1+(1+k) x \quad \text { for } \quad x \in[0, \delta]
$$

From (3.7) and (3.11), we have

$$
\begin{aligned}
& 2\left|x_{2}^{\prime}(t)\right| \leq\left(\beta_{1}+\beta_{2}\right) T\left(\frac{T^{2}}{4 \pi}\right)^{p-1}\left(1+\frac{4 \pi D p}{T^{2}\left|x_{1}^{\prime \prime}\right|_{\infty}}\right)\left|x_{1}^{\prime \prime}\right|_{\infty}^{p-1}+\beta_{3} \frac{T^{p}}{2^{p-1}}\left|x_{1}^{\prime \prime}\right|_{\infty}^{p-1} \\
& +a\left(\frac{T^{2}}{4 \pi}\right)^{p-2}\left(\frac{T^{2}}{2 \pi}\right)\left(1+\frac{4 \pi D(p-1)}{T^{2}\left|x_{1}^{\prime \prime}\right|_{\infty}}\right)\left|x_{1}^{\prime \prime}\right|_{\infty}^{p-1}+b \frac{T^{2}}{2 \pi}\left|x_{1}^{\prime \prime}\right|_{\infty}+\left(m+|e|_{\infty}\right) T
\end{aligned}
$$

$$
\begin{align*}
= & \left(\frac{\left(\beta_{1}+\beta_{2}\right) T^{2 p-1}}{(4 \pi)^{p-1}}+\beta_{3} \frac{T^{p}}{2^{p-1}}+\frac{2 a T^{2 p-2}}{(4 \pi)^{p-1}}\right)\left|x_{1}^{\prime \prime}\right|_{\infty}^{p-1}+\left(\frac{\left(\beta_{1}+\beta_{2}\right) T^{2 p-3} D p}{(4 \pi)^{p-2}}\right. \\
& \left.+a D(p-1)\left(\frac{T^{2}}{2 \pi}\right)\left(\frac{T^{2}}{4 \pi}\right)^{p-3}\right)\left|x_{1}^{\prime \prime}\right|_{\infty}^{p-2}+b \frac{T^{2}}{2 \pi}\left|x_{1}^{\prime \prime}\right|_{\infty}+\left(m+|e|_{\infty}\right) T \\
\leq & \left(\frac{\left(\beta_{1}+\beta_{2}\right) T^{2 p-1}}{(4 \pi)^{p-1}}+\beta_{3} \frac{T^{p}}{2^{p-1}}+\frac{2 a T^{2 p-2}}{(4 \pi)^{p-1}}\right)  \tag{3.12}\\
& \cdot \frac{\left(\varphi_{q}\left(\left|x_{2}\right|_{\infty}\right)+c_{2} D\right)^{p-1}}{\left(1-c_{\infty}-\left(\frac{T^{2}}{4 \pi} c_{2}+T c_{1}+T c_{1} \delta_{1}+\frac{T}{2} c_{\infty} \delta_{2}+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)\right)^{p-1}} \\
& +\left(\frac{\left(\beta_{1}+\beta_{2}\right) T^{2 p-3} D p}{(4 \pi)^{p-2}}+a D(p-1)\left(\frac{T^{2}}{2 \pi}\right)\left(\frac{T^{2}}{4 \pi}\right)^{p-3}\right) \\
& \cdot \frac{\left(\varphi_{q}\left(\left|x_{2}\right|_{\infty}\right)+c_{2} D\right)^{p-2}}{\left(1-c_{\infty}-\left(\frac{T^{2}}{4 \pi} c_{2}+T c_{1}+T c_{1} \delta_{1}+\frac{T}{2} c_{\infty} \delta_{2}+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)\right)^{p-2}} \\
& +b \frac{T^{2}}{2 \pi} \frac{\varphi_{q}\left(\left|x_{2}\right|_{\infty}\right)+c_{2} D}{1-c_{\infty}-\left(\frac{T^{2}}{4 \pi} c_{2}+T c_{1}+T c_{1} \delta_{1}+\frac{T}{2} c_{\infty} \delta_{2}+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)}+\left(m+|e|_{\infty}\right) T .
\end{align*}
$$

Since $\int_{0}^{T} \varphi_{p}\left(x_{2}(t)\right) d t=\int_{0}^{T}\left(A x_{1}\right)^{\prime \prime}(t) d t=0$, then there exists a point $t_{3} \in[0, T]$ such that $x_{2}\left(t_{3}\right)=0$. So, we have

$$
\begin{equation*}
\left|x_{2}\right|_{\infty} \leq \frac{1}{2} \int_{0}^{T}\left|x_{2}^{\prime}(t)\right| d t \leq \frac{T}{2}\left|x_{2}^{\prime}\right|_{\infty} . \tag{3.13}
\end{equation*}
$$

Combination of (3.12) and (3.13) implies

$$
\begin{aligned}
& \left|x_{2}\right|_{\infty} \leq \frac{T}{4}\left[\left(\frac{\left(\beta_{1}+\beta_{2}\right) T^{2 p-1}}{(4 \pi)^{p-1}}+\beta_{3} \frac{T^{p}}{2^{p-1}}+\frac{2 a T^{2 p-2}}{(4 \pi)^{p-1}}\right)\right. \\
& \cdot \frac{\left(\varphi_{q}\left(\left|x_{2}\right|_{\infty}\right)+c_{2} D\right)^{p-1}}{\left(1-c_{\infty}-\left(\frac{T^{2}}{4 \pi} c_{2}+T c_{1}+T c_{1} \delta_{1}+\frac{T}{2} c_{\infty} \delta_{2}+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)\right)^{p-1}} \\
& +\left(\frac{\left(\beta_{1}+\beta_{2}\right) T^{2 p-3} D p}{(4 \pi)^{p-2}}+a D(p-1)\left(\frac{T^{2}}{2 \pi}\right)\left(\frac{T^{2}}{4 \pi}\right)^{p-3}\right) \\
& \\
& \cdot \frac{\left(\varphi_{q}\left(\left|x_{2}\right|_{\infty}\right)+c_{2} D\right)^{p-2}}{\left(1-c_{\infty}-\left(\frac{T^{2}}{4 \pi} c_{2}+T c_{1}+T c_{1} \delta_{1}+\frac{T}{2} c_{\infty} \delta_{2}+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)\right)^{p-2}} \\
& \\
& \left.+b \frac{T^{2}}{2 \pi} \frac{\varphi_{q}\left(\left|x_{2}\right|_{\infty}\right)+c_{2} D}{1-c_{\infty}-\left(\frac{T^{2}}{4} c_{2}+T c_{1}+T c_{1} \delta_{1}+\frac{T}{2} c_{\infty} \delta_{2}+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)}+\left(m+|e|_{\infty}\right) T\right] \\
& \\
& \\
& \quad \cdot \frac{\left(\frac{\left(\beta_{1}+\beta_{2}\right) T^{2 p-1}}{(4 \pi)^{p-1}}+\beta_{3} \frac{T^{p}}{2^{p-1}}+\frac{2 a T^{2 p-2}}{(4 \pi)^{p-1}}\right)}{\left(1-c_{\infty}-\left(\frac{T^{2}}{4 \pi} c_{2}+T c_{1}+T c_{1} \delta_{1}+\frac{T}{2} c_{\infty} \delta_{2}+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)\right)^{p-1}} \\
& \\
& +\left(\frac{\left(\beta_{1}+\beta_{2}\right) T^{2 p-3} D p}{(4 \pi)^{p-2}}+a D(p-1)\left(\frac{T^{2}}{2 \pi}\right)\left(\frac{T^{2}}{4 \pi}\right)^{p-3}\right) \\
& \\
&
\end{aligned} \frac{\left(\varphi_{q}\left(\left|x_{2}\right|_{\infty}\right)+c_{2} D\right)^{p-2}}{\left(1-c_{\infty}-\left(\frac{T^{2}}{4 \pi} c_{2}+T c_{1}+T c_{1} \delta_{1}+\frac{T}{2} c_{\infty} \delta_{2}+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)\right)^{p-2}}
$$

$$
\begin{aligned}
& +b \frac{T^{2}}{2 \pi} \frac{\varphi_{q}\left(\left|x_{2}\right|_{\infty}\right)+c_{2} D}{1-c_{\infty}-\left(\frac{T^{2}}{4 \pi} c_{2}+T c_{1}+T c_{1} \delta_{1}+\frac{T}{2} c_{\infty} \delta_{2}+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)} \\
& \left.+\left(m+|e|_{\infty}\right) T\right] .
\end{aligned}
$$

Since $p \geq 2$ and $\frac{2^{p-1}\left(\beta_{1}+\beta_{2}\right) T^{2 p}+(4 \pi)^{p-1} T^{p+1} \beta_{3}+2^{p} a T^{2 p-1}}{2^{3 p-1} \pi^{p-1}\left(1-c_{\infty}-\left(\frac{T^{2}}{4 \pi} c_{2}+T c_{1}+T c_{1} \delta_{1}+\frac{T}{2} c_{\infty} \delta_{2}+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)\right)^{p-1}}<1$, then there exists a positive constant $M_{1}$ (independent of $\lambda$ ) such that

$$
\begin{equation*}
\left|x_{2}\right|_{\infty} \leq M_{1} . \tag{3.14}
\end{equation*}
$$

Case (ii): If $c_{0}>1$, we have

$$
\begin{aligned}
& \left|x_{1}^{\prime \prime}\right|_{\infty}=\max _{t \in[0, T]}\left|A^{-1} A x_{1}^{\prime \prime}(t)\right| \leq \frac{\max _{t \in[0, T]}\left|A x_{1}^{\prime \prime}(t)\right|}{c_{0}-1} \\
& \leq \frac{\varphi_{q}\left(\left|x_{2}\right|_{\infty}\right)+\left(\frac{T^{2}}{4 \pi} c_{2}+T c_{1}+T c_{1} \delta_{1}+\frac{T}{2} c_{\infty} \delta_{2}+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)\left|x_{1}^{\prime \prime}\right|_{\infty}+c_{2} D}{c_{0}-1}
\end{aligned}
$$

Since $c_{0}-1-\left(\frac{T^{2}}{4 \pi} c_{2}+T c_{1}+T c_{1} \delta_{1}+\frac{T}{2} c_{\infty} \delta_{2}+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)>0$, so, we have

$$
\left|x_{1}^{\prime \prime}\right|_{\infty} \leq \frac{\varphi_{q}\left(\left|x_{2}\right|_{\infty}\right)+c_{2} D}{c_{0}-1-\left(\frac{T^{2}}{4 \pi} c_{2}+T c_{1}+T c_{1} \delta_{1}+\frac{T}{2} c_{\infty} \delta_{2}+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)} .
$$

Similarly, we can get $\left|x_{2}\right|_{\infty} \leq M_{1}$.
From (3.7) and (3.14), we obtain that

$$
\begin{aligned}
\left|x_{1}^{\prime \prime}\right|_{\infty} & \leq \frac{\varphi_{q}\left(\left|x_{2}\right|_{\infty}\right)+c_{2} D}{1-c_{\infty}-\left(\frac{T^{2}}{4 \pi} c_{2}+\sqrt{T} c_{1}+\sqrt{T} c_{1} \delta_{1}+\frac{\sqrt{T}}{2} c_{\infty} \delta_{2}+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)} \\
& \leq \frac{M_{1}^{q-1}+c_{2} D}{1-c_{\infty}-\left(\frac{T^{2}}{4 \pi} c_{2}+\sqrt{T} c_{1}+\sqrt{T} c_{1} \delta_{1}+\frac{\sqrt{T}}{2} c_{\infty} \delta_{2}+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)}:=M_{2}^{*} .
\end{aligned}
$$

It follows from (3.5) that

$$
\left|x_{1}\right|_{\infty} \leq D+\frac{T^{2}}{4 \pi}\left|x_{1}^{\prime \prime}\right|_{\infty} \leq D+\frac{T^{2}}{4 \pi} M_{2}^{*}:=M_{3}
$$

by (3.6)

$$
\left|x_{1}^{\prime}\right|_{\infty} \leq \frac{T}{2}\left|x_{1}^{\prime \prime}\right|_{\infty} \leq \frac{T}{2} M_{2}^{*}:=M_{2} .
$$

From (3.8), ( $H_{2}$ ) and $\left(H_{4}\right)$, we know

$$
\begin{aligned}
& \left|x_{2}^{\prime}\right|_{\infty} \leq \frac{1}{2} \max \left|\int_{0}^{T} x_{2}^{\prime \prime}(t) d t\right| \\
\leq & \frac{1}{2} \int_{0}^{T}\left|-f\left(x_{1}(t)\right) x_{1}^{\prime}(t)-g\left(t, x_{1}(t), x_{1}(t-\tau(t)), x_{1}^{\prime}(t)\right)+e(t)\right| d t \\
\leq & \frac{1}{2}\left[a T\left|x_{1}\right|_{\infty}^{p-1}\left|x_{1}^{\prime}\right|_{\infty}+b T\left|x_{1}^{\prime}\right|_{\infty}+\left(\beta_{1}+\beta_{2}\right) T\left|x_{1}\right|_{\infty}^{p-1}+\beta_{3} T\left|x_{1}^{\prime}\right|_{\infty}^{p-1}+\left(m+|e|_{\infty}\right) T\right] \\
\leq & \frac{1}{2}\left[a T M_{3}^{p-1} M_{2}+b T M_{2}+\left(\beta_{1}+\beta_{2}\right) T M_{3}^{p-1}+\beta_{3} T M_{2}^{p-1}+\left(m+|e|_{\infty}\right) T\right]:=M_{4} .
\end{aligned}
$$

Let $M=\max \left\{M_{1}, M_{2}, M_{3}, M_{4}\right\}+1, \Omega=\left\{x=\left(x_{1}, x_{2}\right)^{\top}:\|x\|<M\right\}$ and $\Omega_{2}=\{x: x \in \partial \Omega \cap$ Ker $L\}$ then $\forall x \in \partial \Omega \cap$ Ker $L$

$$
Q N x=\frac{1}{T} \int_{0}^{T}\binom{\varphi_{q}\left(x_{2}(t)\right)}{-f\left(x_{1}(t)\right) x_{1}^{\prime}(t)-g\left(t, x_{1}(t), x_{1}(t-\tau(t)), x_{1}^{\prime}(t)\right)+e(t)} d t
$$

If $Q N x=0$, then $x_{2}(t)=0, x_{1}=M$ or $-M$. But if $x_{1}(t)=M$, we know

$$
0=\int_{0}^{T}\{g(t, M, M, 0)-e(t)\} d t
$$

From assumption $\left(H_{1}\right)$, we have $x_{1}(t) \leq D \leq M$, which yields a contradiction. Similarly if $x_{1}=-M$. We also have $Q N x \neq 0$, i.e., $\forall x \in \partial \Omega \cap \operatorname{Ker} L, x \notin \operatorname{Im} L$, so conditions (1) and (2) of Lemma 2.2 are both satisfied. Define the isomorphism $J: \operatorname{Im} Q \rightarrow$ Ker $L$ as follows:

$$
J\left(x_{1}, x_{2}\right)^{\top}=\left(x_{2},-x_{1}\right)^{\top}
$$

Let $H(\mu, x)=-\mu x+(1-\mu) J Q N x, \quad(\mu, x) \in[0,1] \times \Omega$, then $\forall(\mu, x) \in(0,1) \times$ $(\partial \Omega \cap \operatorname{Ker} L)$,

$$
H(\mu, x)=\binom{-\mu x_{1}(t)-\frac{1-\mu}{T} \int_{0}^{T}\left[g\left(t, x_{1}, x_{1}, 0\right)-e(t)\right] d t}{-\mu x_{2}(t)-(1-\mu) \varphi_{q}\left(x_{2}(t)\right)}
$$

We have $\int_{0}^{T} e(t) d t=0$. So, we can get

$$
\begin{gathered}
H(\mu, x)=\binom{-\mu x_{1}(t)-\frac{1-\mu}{T} \int_{0}^{T} g\left(t, x_{1}, x_{1}, 0\right) d t}{\left.-\mu x_{2}(t)-(1-\mu)\right) \varphi_{q}\left(x_{2}(t)\right)}, \\
\forall(\mu, x) \in(0,1) \times(\partial \Omega \cap \operatorname{Ker} L)
\end{gathered}
$$

From $\left(H_{1}\right)$, it is obvious that $x^{\top} H(\mu, x)<0, \forall(\mu, x) \in(0,1) \times(\partial \Omega \cap \operatorname{Ker} L)$. Hence

$$
\begin{aligned}
\operatorname{deg}\{J Q N, \Omega \cap \operatorname{Ker} L, 0\} & =\operatorname{deg}\{H(0, x), \Omega \cap \operatorname{Ker} L, 0\} \\
& =\operatorname{deg}\{H(1, x), \Omega \cap \operatorname{Ker} L, 0\} \\
& =\operatorname{deg}\{I, \Omega \cap \text { Ker } L, 0\} \neq 0 .
\end{aligned}
$$

So condition (3) of Lemma 2.2 is satisfied. By applying Lemma 2.2, we conclude that equation $L x=N x$ has a solution $x=\left(x_{1}, x_{2}\right)^{\top}$ on $\bar{\Omega} \cap D(L)$, i.e., (2.1) has an $T$-periodic solution $x_{1}(t)$.

Finally, observe that $y_{1}^{*}(t)$ is not constant. For if $y_{1}^{*} \equiv a$ (constant), then from (1.1) we have $g(t, a, a, 0)-e(t) \equiv 0$, which contradicts to the assumption that $g(t, a, a, 0)-e(t) \not \equiv 0$. The proof is complete.

Theorem 3.2. Assume that conditions $\left(H_{1}\right),\left(H_{3}\right),\left(H_{4}\right)$ hold. Suppose the following one of conditions is satisfied
(i) If $c_{\infty}<1$ and $0<\frac{T^{\frac{1}{q}}\left(\left(c_{\infty} \alpha_{1}+\left(1+c_{\infty}\right)\left(\beta_{1}+\beta_{2}\right)\right) T^{p+1}+2^{p-1} T^{2}\left(1+c_{\infty}\right) \beta_{3}\right)^{\frac{1}{p}}}{2^{2}\left(1-c_{\infty}-\left(\frac{T^{2}}{4} c_{2}+T\left(c_{1}+c_{1} \delta_{1}+\frac{1}{2} c_{\infty} \delta_{2}\right)+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)\right)}<1$;
(ii) If $c_{0}>1$ and $0<\frac{T^{\frac{1}{q}}\left(\left(c_{\infty} \alpha_{1}+\left(1+c_{\infty}\right)\left(\beta_{1}+\beta_{2}\right)\right) T^{p+1}+2^{p-1} T^{2}\left(1+c_{\infty}\right) \beta_{3}\right)^{\frac{1}{p}}}{2^{2}\left(c_{0}-1-\left(\frac{T^{2}}{4} c_{2}+T\left(c_{1}+c_{1} \delta_{1}+\frac{1}{2} c_{\infty} \delta_{2}\right)+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)\right)}<1$.

Then (1.1) has at least non-constant T-periodic solution.

Proof. Let $\Omega_{1}$ be defined as in Theorem 3.1. The proof of (3.3) is the same strategy and notations as the proof of Theorem 3.1.

Next, Multiplying the both sides of (3.2) by $\left(A x_{1}\right)(t)$ and integrating over $[0, T]$, we get

$$
\begin{align*}
\int_{0}^{T}\left(\varphi_{p}\left(A x_{1}\right)^{\prime \prime}(t)\right)^{\prime \prime}\left(A x_{1}(t)\right) d t= & -\lambda^{p} \int_{0}^{T} f\left(x_{1}(t)\right) x_{1}^{\prime}(t)\left(A x_{1}\right)(t) d t \\
& -\lambda^{p} \int_{0}^{T} g\left(t, x_{1}(t), x_{1}(t-\tau(t)), x_{1}^{\prime}(t)\right)\left(A x_{1}\right)(t) d t \\
& +\lambda^{p} \int_{0}^{T} e(t)\left(A x_{1}\right)(t) d t \tag{3.15}
\end{align*}
$$

Substituting $\int_{0}^{T}\left(\varphi_{p}\left(A x_{1}\right)^{\prime \prime}(t)\right)^{\prime \prime}\left(A x_{1}(t)\right) d t=\int_{0}^{T}\left|\left(A x_{1}\right)^{\prime \prime}(t)\right|^{p} d t$, $\int_{0}^{T} f\left(x_{1}(t)\right) x_{1}^{\prime}(t) x_{1}(t) d t=0$ into (3.15), in view of $\left(H_{3}\right)$ and $\left(H_{4}\right)$, we have

$$
\begin{align*}
& \int_{0}^{T}\left|\left(A x_{1}\right)^{\prime \prime}(t)\right|^{p} d t \\
\leq & \int_{0}^{T}\left|f\left(x_{1}(t)\right)\right|\left|c(t) x_{1}(t-\delta(t))\right| d t+\int_{0}^{T}\left|g\left(t, x_{1}(t), x_{1}(t-\tau(t)), x_{1}(t)\right)\right| \\
& \cdot\left|\left(A x_{1}\right)(t)\right| d t+\int_{0}^{T}|e(t)|\left|\left(A x_{1}\right)(t)\right| d t  \tag{3.16}\\
\leq & c_{\infty}\left|x_{1}\right|_{\infty}\left(\alpha_{1} \int_{0}^{T}\left|x_{1}(t)\right|^{p-1} d t+\alpha_{2}\right)+\left(1+c_{\infty}\right)\left|x_{1}\right|_{\infty}\left(\beta_{1} \int_{0}^{T}\left|x_{1}(t)\right|^{p-1} d t\right. \\
& \left.+\beta_{2} \int_{0}^{T}\left|x_{1}(t-\tau(t))\right|^{p-1} d t+\beta_{3} \int_{0}^{T}\left|x_{1}^{\prime}(t)\right|^{p-1} d t+m T\right)+\left(1+c_{\infty}\right) T|e|_{\infty}\left|x_{1}\right|_{\infty}
\end{align*}
$$

Substituting (3.3) into (3.16), we have

$$
\begin{align*}
& \int_{0}^{T}\left|\left(A x_{1}\right)^{\prime \prime}(t)\right|^{p} d t \\
\leq & c_{\infty}\left(D+\frac{1}{2} \int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t\right)\left(\alpha_{1} \int_{0}^{T}\left|x_{1}(t)\right|^{p-1} d t+\alpha_{2}\right) \\
& +\left(1+c_{\infty}\right)\left(D+\frac{1}{2} \int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t\right)\left(\beta_{1} \int_{0}^{T}\left|x_{1}(t)\right|^{p-1} d t+\beta_{2} \int_{0}^{T}\left|x_{1}(t-\tau(t))\right|^{p-1} d t\right. \\
& \left.+\beta_{3} \int_{0}^{T}\left|x_{1}^{\prime}(t)\right|^{p-1} d t+m T\right)+\left(1+c_{\infty}\right) T|e|_{\infty}\left(D+\frac{1}{2} \int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t\right) \\
= & \left(\frac{1}{2} c_{\infty} \alpha_{1}+\frac{1}{2}\left(1+c_{\infty}\right) \beta_{1}\right) \int_{0}^{T}\left|x_{1}(t)\right|^{p-1} d t \int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t  \tag{3.17}\\
& +\frac{1}{2}\left(1+c_{\infty}\right) \beta_{2} \int_{0}^{T}\left|x_{1}(t-\tau)\right|^{p-1} d t \int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t \\
& +\frac{1}{2}\left(1+c_{\infty}\right) \beta_{3} \int_{0}^{T}\left|x_{1}^{\prime}(t)\right|^{p-1} d t \int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t \\
& +\left(c_{\infty} D \alpha_{1}+\left(1+c_{\infty}\right) D \beta_{1}\right) \int_{0}^{T}\left|x_{1}(t)\right|^{p-1} d t
\end{align*}
$$

$$
\begin{aligned}
& \quad+\left(1+c_{\infty}\right) D \beta_{2} \int_{0}^{T}\left|x_{1}(t-\tau(t))\right|^{p-1} d t \\
& \quad+\left(1+c_{\infty}\right) D \beta_{3} \int_{0}^{T}\left|x_{1}^{\prime}(t)\right|^{p-1} d t+N_{1} \int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t+N_{2} \\
& \leq \frac{T^{2}}{2}\left(c_{\infty} \alpha_{1}+\left(1+c_{\infty}\right) \beta_{1}+\left(1+c_{\infty}\right) \beta_{2}\right)\left|x_{1}\right|_{\infty}^{p-1}\left|x_{1}^{\prime}\right|_{\infty}+\frac{T^{2}}{2}\left(1+c_{\infty}\right) \beta_{3}\left|x_{1}^{\prime}\right|_{\infty}^{p} \\
& \quad+N_{3}\left|x_{1}\right|_{\infty}^{p-1}+\left(1+c_{\infty}\right) D \beta_{3} T\left|x_{1}^{\prime}\right|_{\infty}^{p-1}+N_{1} T\left|x_{1}^{\prime}\right|_{\infty}+N_{2}
\end{aligned}
$$

where $N_{1}=\frac{1}{2} T\left(c_{\infty} \alpha_{2}+\left(1+c_{\infty}\right) m+\left(1+c_{\infty}\right)|e|_{\infty}\right), N_{2}=D T\left(c_{\infty} \alpha_{2}+\left(1+c_{\infty}\right) m+\right.$ $\left.\left(1+c_{\infty}\right)|e|_{\infty}\right)$ and $N_{3}=\left(c_{\infty} \alpha_{1}+\left(1+c_{\infty}\right)\left(\beta_{1}+\beta_{2}\right)\right) D T$.

From $x_{1}(0)=x_{1}(T)$, there exists a point $t_{4} \in[0, T]$ such that $x_{1}^{\prime}\left(t_{4}\right)=0$, then we have

$$
\begin{equation*}
\left|x_{1}^{\prime}\right|_{\infty} \leq x_{1}^{\prime}\left(t_{3}\right)+\frac{1}{2} \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t=\frac{1}{2} \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t \tag{3.18}
\end{equation*}
$$

From (3.3), we have

$$
\begin{align*}
\left|x_{1}\right|_{\infty} & \leq D+\frac{1}{2} \int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t \\
& \leq D+\frac{T}{2}\left|x_{1}^{\prime}\right|_{\infty} \\
& \leq D+\frac{T}{4} \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t . \tag{3.19}
\end{align*}
$$

Substituting (3.18) and (3.19) into (3.17), we have

$$
\begin{align*}
& \int_{0}^{T}\left|\left(A x_{1}\right)^{\prime \prime}(t)\right|^{p} d t \\
\leq & \frac{T^{2}}{2}\left(c_{\infty} \alpha_{1}+\left(1+c_{\infty}\right)\left(\beta_{1}+\beta_{2}\right)\right)\left(D+\frac{T}{4} \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t\right)^{p-1} \frac{1}{2} \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t \\
& +\frac{T^{2}}{2}\left(1+c_{\infty}\right) \beta_{3} \frac{1}{2^{p}}\left(\int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t\right)^{p} \\
& +N_{3}\left(D+\frac{T}{4} \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t\right)^{p-1}+N_{4}\left(\frac{1}{2} \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t\right)^{p-1} \\
& +\frac{N_{1} T}{2} \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t+N_{2} \\
= & \frac{T^{2}}{2}\left(\left(c_{\infty} \alpha_{1}+\left(1+c_{\infty}\right)\left(\beta_{1}+\beta_{2}\right)\right) \cdot \frac{T^{p-1}}{2^{2 p-1}}+\frac{\left(1+c_{\infty}\right) \beta_{3}}{2^{p}}\right)\left(\int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t\right)^{p} \\
& +\frac{T^{2}}{2}\left(c_{\infty} \alpha_{1}+\left(1+c_{\infty}\right)\left(\beta_{1}+\beta_{2}\right)\right) \cdot \frac{T^{p-2}}{2^{2 p-3}} D(p-1)\left(\int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t\right)^{p-1}+\cdots \\
& +\frac{T^{2}}{4}\left(c_{\infty} \alpha_{1}+\left(1+c_{\infty}\right)\left(\beta_{1}+\beta_{2}\right)\right) D^{p-1} \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t \\
& +N_{3}\left(D+\frac{T}{4} \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t\right)^{p-1}+N_{4}\left(\frac{1}{2} \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t\right)^{p-1} \\
& +\frac{N_{1} T}{2} \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t+N_{2}, \tag{3.20}
\end{align*}
$$

where $N_{4}=\frac{\left(1+c_{\infty}\right) D \beta_{3} T}{2^{p-1}}$.
Case (I): If $|c(t)| \leq c_{\infty}<1$, by applying Lemma 2.1 and (3.4), we have

$$
\begin{aligned}
& \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t \\
= & \int_{0}^{T}\left|A^{-1} A x_{1}^{\prime \prime}(t)\right| d t \leq \frac{\int_{0}^{T}\left|A x_{1}^{\prime \prime}(t)\right| d t}{1-c_{\infty}} \\
\leq & \left(\int_{0}^{T}\left|\left(A x_{1}\right)^{\prime \prime}(t)\right| d t+c_{2} T\left|x_{1}\right|_{\infty}+T\left(2 c_{1}+2 c_{1} \delta_{1}+c_{\infty} \delta_{2}\right)\left|x_{1}^{\prime}\right|_{\infty}\right. \\
& \left.+\left(c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right) \int_{0}^{T}\left|x^{\prime \prime}(t)\right| d t\right) /\left(1-c_{\infty}\right)
\end{aligned}
$$

From (3.18) and (3.19), we have

$$
\begin{aligned}
& \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t \\
\leq & \frac{\int_{0}^{T}\left|\left(A x_{1}\right)^{\prime \prime}(t)\right| d t+c_{2} T\left(D+\frac{T}{4} \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t\right)}{1-c_{\infty}} \\
& +\frac{\frac{T}{2}\left(2 c_{1}+2 c_{1} \delta_{1}+c_{\infty} \delta_{2}\right) \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t+\left(c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right) \int_{0}^{T}\left|x^{\prime \prime}(t)\right| d t}{1-c_{\infty}} \\
= & \left(\int_{0}^{T}\left|\left(A x_{1}\right)^{\prime \prime}(t)\right| d t+\left(\frac{T^{2}}{4} c_{2}+T\left(c_{1}+c_{1} \delta_{1}+\frac{1}{2} c_{\infty} \delta_{2}\right)+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)\right. \\
& \left.\cdot \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t+T c_{2} D\right) /\left(1-c_{\infty}\right)
\end{aligned}
$$

Since $1-c_{\infty}-\left(\frac{T^{2}}{4} c_{2}+T\left(c_{1}+c_{1} \delta_{1}+\frac{1}{2} c_{\infty} \delta_{2}\right)+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)>0$, so, we have

$$
\begin{align*}
\int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t & \leq \frac{\int_{0}^{T}\left|\left(A x_{1}\right)^{\prime \prime}(t)\right| d t+T c_{2} D}{1-c_{\infty}-\left(\frac{T^{2}}{4} c_{2}+T\left(c_{1}+c_{1} \delta_{1}+\frac{1}{2} c_{\infty} \delta_{2}\right)+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)} \\
& \leq \frac{T^{\frac{1}{q}}\left(\int_{0}^{T}\left|\left(A x_{1}\right)^{\prime \prime}(t)\right|^{p} d t\right)^{\frac{1}{p}}+T c_{2} D}{1-c_{\infty}-\left(\frac{T^{2}}{4} c_{2}+T\left(c_{1}+c_{1} \delta_{1}+\frac{1}{2} c_{\infty} \delta_{2}\right)+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)} \tag{3.21}
\end{align*}
$$

Applying the inequality $(a+b)^{k} \leq a^{k}+b^{k}$ for $a, b>0,0<k<1$, it follow from (3.20) and (3.21)

$$
\begin{aligned}
& \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t \\
\leq & \frac{T^{\frac{1}{q}}\left[\frac{T^{2}}{2}\left(\left(c_{\infty} \alpha_{1}+\left(1+c_{\infty}\right)\left(\beta_{1}+\beta_{2}\right)\right) \cdot \frac{T^{p-1}}{2^{2 p-1}}+\frac{\left(1+c_{\infty}\right) \beta_{3}}{2^{p}}\right)\right]^{\frac{1}{p}} \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t}{1-c_{\infty}-\left(\frac{T^{2}}{4} c_{2}+T\left(c_{1}+c_{1} \delta_{1}+\frac{1}{2} c_{\infty} \delta_{2}\right)+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)} \\
& +\frac{T^{\frac{1}{q}}\left[\frac{T^{2}}{2}\left(c_{\infty} \alpha_{1}+\left(1+c_{\infty}\right)\left(\beta_{1}+\beta_{2}\right)\right) \cdot \frac{T^{p-2}}{2^{2 p-3}} D(p-1)\right]^{\frac{1}{p}}\left(\int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t\right)^{\frac{p-1}{p}}}{1-c_{\infty}-\left(\frac{T^{2}}{4} c_{2}+T\left(c_{1}+c_{1} \delta_{1}+\frac{1}{2} c_{\infty} \delta_{2}\right)+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& +\cdots+\frac{T^{\frac{1}{q}}\left[\frac{T^{2}}{4}\left(c_{\infty} \alpha_{1}+\left(1+c_{\infty}\right)\left(\beta_{1}+\beta_{2}\right)\right) D^{p-1}\right]^{\frac{1}{p}}\left(\int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t\right)^{\frac{1}{p}}}{1-c_{\infty}-\left(\frac{T^{2}}{4} c_{2}+T\left(c_{1}+c_{1} \delta_{1}+\frac{1}{2} c_{\infty} \delta_{2}\right)+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)} \\
& +\frac{T^{\frac{1}{q}} N_{3}^{\frac{1}{p}}\left(D+\frac{T}{4} \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t\right)^{\frac{p-1}{p}}+T^{\frac{1}{q}} N_{4}^{\frac{1}{p}}\left(\frac{1}{2} \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t\right)^{\frac{p-1}{p}}}{1-c_{\infty}-\left(\frac{T^{2}}{4} c_{2}+T\left(c_{1}+c_{1} \delta_{1}+\frac{1}{2} c_{\infty} \delta_{2}\right)+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)} \\
& +\frac{\left(\frac{1}{2} N_{1}\right)^{\frac{1}{p}} T\left(\int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t\right)^{\frac{1}{p}}+T^{\frac{1}{q}} N_{2}^{\frac{1}{p}}+c_{2} D T}{1-c_{\infty}-\left(\frac{T^{2}}{4} c_{2}+T\left(c_{1}+c_{1} \delta_{1}+\frac{1}{2} c_{\infty} \delta_{2}\right)+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)} .
\end{aligned}
$$

Since $\frac{T^{\frac{1}{q}}\left(\left(c_{\infty} \alpha_{1}+\left(1+c_{\infty}\right)\left(\beta_{1}+\beta_{2}\right)\right) T^{p+1}+2^{p-1} T^{2}\left(1+c_{\infty}\right) \beta_{3}\right)^{\frac{1}{p}}}{2^{2}\left(1-c_{\infty}-\left(\frac{T^{2}}{4} c_{2}+T\left(c_{1}+c_{1} \delta_{1}+\frac{1}{2} c_{\infty} \delta_{2}\right)+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)\right)}<1$, then there exists a positive constant $M^{*}$ (independent of $\lambda$ ) such that

$$
\int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t \leq M^{*} .
$$

It follow from (3.19) that

$$
\left|x_{1}\right|_{\infty} \leq D+\frac{T}{4} \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t \leq D+\frac{T}{4} M^{*}:=M_{3} .
$$

By (3.18)

$$
\left|x_{1}^{\prime}\right|_{\infty} \leq \frac{1}{2} \int_{0}^{T}\left|x_{1}^{\prime \prime}(t)\right| d t \leq \frac{1}{2} M^{*}:=M_{2} .
$$

On the other hand, form $x_{2}(0)=x_{2}(T)$, we know that there is a point $t_{5} \in[0, T]$ such that $x_{2}^{\prime}\left(t_{5}\right)=0$; then by the second equation of (3.1), $\left(H_{3}\right)$ and $\left(H_{4}\right)$

$$
\begin{aligned}
& \left|x_{2}^{\prime}\right|_{\infty} \leq \frac{1}{2} \int_{0}^{T}\left|x_{2}^{\prime \prime}(t)\right| d t \\
\leq & \int_{0}^{T}\left(\left|f\left(x_{1}(t)\right)\right|\left|x_{1}^{\prime}(t)\right|+\left|g\left(t, x_{1}(t), x_{1}(t-\tau(t)) x_{1}^{\prime}(t)\right)\right|+|e(t)|\right) d t \\
\leq & \alpha_{1} T M_{3}^{p-1} M_{2}+\alpha_{2} T M_{2}+T\left(\left(\beta_{1}+\beta_{2}\right) M_{3}^{p-1}+\beta_{3} M_{2}^{p-1}\right)+T\left(m+|e|_{\infty}\right):=M_{4} .
\end{aligned}
$$

Integrating the first equation of over $[0, T]$, we have $\int_{0}^{T}\left|x_{2}(t)\right|^{q-2} x_{2}(t) d t=0$, which implies that there is a point $t_{6} \in[0, T]$ such that $x_{2}\left(t_{6}\right)=0$, so

$$
\left|x_{2}\right|_{\infty} \leq \frac{1}{2} \int_{0}^{T}\left|x_{2}^{\prime}(t)\right| d t \leq T\left|x_{2}^{\prime}\right|_{\infty} \leq T M_{4}:=M_{1} .
$$

This proves the claim and the rest of the proof of the theorem is identical to that of Theorem 3.1.

If $c(t) \equiv c$ and $|c| \neq 1, \delta(t) \equiv \delta$, then (1.1) translate into the follows form:

$$
\begin{equation*}
\left(\varphi_{p}(x(t)-c x(t-\delta))^{\prime \prime}\right)^{\prime \prime}+f(x(t)) x^{\prime}(t)+g\left(t, x(t), x(t-\tau(t)) x^{\prime}(t)\right)=e(t) \tag{3.22}
\end{equation*}
$$

Similarly, we can get the following result:

Theorem 3.3. Assume that conditions $\left(H_{1}\right),\left(H_{2}\right),\left(H_{4}\right)$ hold. Then (3.22) has at least non-constant T-periodic solution if

$$
\frac{2^{p-1}\left(\beta_{1}+\beta_{2}\right) T^{2 p}+(4 \pi)^{p-1} T^{p+1} \beta_{3}+2^{p} a T^{2 p-1}}{2^{3 p-1} \pi^{p-1}|1-|c||^{p-1}}<1
$$

Theorem 3.4. Assume that conditions $\left(H_{1}\right),\left(H_{3}\right),\left(H_{4}\right)$ hold. Then (3.22) has at least non-constant T-periodic solution if

$$
\frac{T^{\frac{1}{q}}\left(\left(|c| \alpha_{1}+(1+|c|)\left(\beta_{1}+\beta_{2}\right)\right) T^{p+1}+2^{p-1} T^{2}(1+|c|) \beta_{3}\right)^{\frac{1}{p}}}{2^{2}|1-|c||}<1
$$

## 4. Application

We illustrate our results with some examples.
Example 4.1. Consider the following fourth order Liénard type p-laplacian generality neutral functional differential

$$
\begin{align*}
& \left(\varphi_{p}\left(x(t)-\frac{1}{16} \sin (4 t) x\left(t-\frac{1}{32} \cos 4 t\right)\right)^{\prime \prime}\right)^{\prime \prime}+\frac{1}{4} x^{2}(t) x^{\prime}(t)+\frac{1}{3 \pi} x^{3}(t) \\
& +\frac{1}{6 \pi} \sin x(t-\cos 4 t)+\frac{1}{8 \pi} \cos 4 t \sin x^{\prime}(t)=\sin 4 t \tag{4.1}
\end{align*}
$$

Here $p=4$ is a constant. It is clear that $T=\frac{\pi}{2}, c(t)=\frac{1}{16} \sin 4 t, \delta(t)=$ $\frac{1}{32} \cos 4 t, \tau(t)=\cos 4 t, e(t)=\sin 4 t, c_{1}=\max _{t \in[0, T]}\left|\frac{1}{4} \cos 4 t\right|=\frac{1}{4}, c_{2}=\max _{t \in[0, T]} \mid-$ $\left.\sin 4 t\left|=1, \delta_{1}=\max _{t \in[0, T]}\right|-\frac{1}{8} \sin 4 t\left|=\frac{1}{8}, \delta_{2}=\max _{t \in[0, T]}\right|-\frac{1}{2} \cos 4 t \right\rvert\,=\frac{1}{2} . f(x)=\frac{1}{4} x^{2}$, take $a=\frac{1}{4}, \quad b=1$ such that $\left(H_{2}\right)$ holds; $g\left(t, v_{1}, v_{2}, v_{3}\right)=\frac{1}{3 \pi} v_{1}^{3}+\frac{1}{6 \pi} \sin v_{2}+$ $\frac{1}{8 \pi} \cos 4 t \sin v_{3}$, and $g(t, a, a, 0)-e(t)=\frac{1}{3 \pi} a^{3}+\frac{1}{6 \pi} \sin a-\sin 4 t \not \equiv 0$. Choose $D=\frac{1}{3 \pi}$ such that $\left(H_{1}\right)$ holds. Now we consider the assumption $\left(H_{4}\right)$, it is easy to see

$$
\left|g\left(t, v_{1}, v_{2}, v_{3}\right)\right| \leq \frac{1}{3 \pi}\left|v_{1}\right|^{3}+1
$$

which mean $\left(H_{3}\right)$ holds with $\beta_{1}=\frac{1}{3 \pi}, \beta_{2}=0, \beta_{3}=0, m=1$. Obviously

$$
\begin{aligned}
& \frac{2^{p-1}\left(\beta_{1}+\beta_{2}\right) T^{2 p}+(4 \pi)^{p-1} T^{p+1} \beta_{3}+2^{p} a T^{2 p-1}}{2^{3 p-1} \pi^{p-1}\left(1-c_{\infty}-\left(\frac{T^{2}}{4 \pi} c_{2}+T c_{1}+T c_{1} \delta_{1}+\frac{T}{2} c_{\infty} \delta_{2}+c_{\infty} \delta_{1}^{2}+2 c_{\infty} \delta_{1}\right)\right)^{p-1}} \\
= & \frac{2^{3} \times \frac{1}{3 \pi} \times\left(\frac{\pi}{2}\right)^{8}+2^{4} \times \frac{1}{4} \times\left(\frac{\pi}{2}\right)^{7}}{2^{1} 1 \times \pi^{3} \times\left(1-\frac{1}{16}-\left(\frac{\pi}{16}+\frac{\pi}{8}+\frac{\pi}{64}+\frac{\pi}{128}+\frac{1}{1024}+\frac{1}{64}\right)\right)^{3}} \\
\approx & \frac{5^{3}\left(\pi^{5}+3 \pi^{3}\right)}{51 \times 2^{13}} \approx 0.1790<1 .
\end{aligned}
$$

So by Theorem 3.1, (4.1) has at least one nonconstant $\frac{\pi}{2}$-periodic solution.
Example 4.2. Consider the following a kind of fourth order $p$-Laplacian neutral functional differential

$$
\begin{align*}
& \left(\varphi_{p}(x(t)-5 x(t-\delta))^{\prime \prime}\right)^{\prime \prime}+\frac{1}{5} x^{4}(t) x^{\prime}(t) \quad+\frac{1}{6 \pi} x^{4}(t)+\frac{1}{8 \pi} \cos x(t-\sin 2 t) \\
& +\frac{1}{10 \pi} \sin 2 t \cos x^{\prime}(t)=\cos 2 t \tag{4.2}
\end{align*}
$$

Here $p=5$ and $\delta$ is a constant. It is clear that $T=\pi, c=5, \tau(t)=\sin 2 t, e(t)=$ $\cos 2 t . f(x)=\frac{1}{5} x^{4}$, take $a=\frac{1}{5}, b=1$ such that $\left(H_{3}\right)$ holds; $g\left(t, v_{1}, v_{2}, v_{3}\right)=\frac{1}{6 \pi} v_{1}^{4}+$ $\frac{1}{8 \pi} \cos v_{2}+\frac{1}{10 \pi} \sin 2 t \cos v_{3}$, and $g(t, a, a, 0)-e(t)=\frac{1}{6 \pi} a^{4}+\frac{1}{8 \pi} \cos a+\frac{1}{10 \pi} \sin 2 t-$ $\cos 2 t \not \equiv 0$. Choose $D=\frac{1}{6 \pi}$ such that $\left(H_{1}\right)$ holds. Now we consider the assumption $\left(H_{4}\right)$, it is easy to see

$$
\left|g\left(t, v_{1}, v_{2}, v_{3}\right)\right| \leq \frac{1}{6 \pi}\left|v_{1}\right|^{4}+1
$$

which mean $\left(H_{3}\right)$ holds with $\beta_{1}=\frac{1}{3 \pi}, \beta_{2}=0, \beta_{3}=0, m=1$. Obviously

$$
\begin{aligned}
& \frac{T^{\frac{1}{q}}\left(\left(|c| \alpha_{1}+(1+|c|)\left(\beta_{1}+\beta_{2}\right)\right) T^{p+1}+2^{p-1} T^{2}(1+|c|) \beta_{3}\right)^{\frac{1}{p}}}{2^{2}|1-|c||} \\
= & \frac{\pi^{\frac{5}{4}}\left(1+\pi^{5}\right)^{\frac{1}{5}}}{16} \approx 0.8217<1 .
\end{aligned}
$$

So by Theorem 3.4, (4.2) has at least one nonconstant $\pi$-periodic solution.

## References

[1] Z. Cheng and J. Ren, Periodic solution for high-order differential system, J. Appl. Anal. Comput., 3 (2013), 239-249.
[2] W. Cheung and J. Ren, On the existence of periodic solutions for p-Laplacian generalized Liénard equation, Nonlinear Anal. TMA, 60 (2005), 65-75.
[3] B. Du, L. Guo, W. Ge and S. Lu, Periodic solutions for generalized Liénard neutral equation with variable parameter, Nonlinear Anal. TMA, 70 (2009), 2387-2394.
[4] R. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Differential Equation, Springer, Berlin, 1977.
[5] W. Liu, Existence and uniqueness of periodic solutions for a kind of Liénard type p-Laplacian equation, Nonlinear Anal. TMA, 69 (2008), 724-729.
[6] W. Liu, J. Liu, H. Zhang, Z. Hu and Y. Wu, Existence of periodic solutions for Liénard-type p-Laplacian systems with variable coefficients, Ann. Polon. Math., 109 (2013), 109-119.
[7] S. Lu and J. Shan, Existence of periodic solutions for a fourth-order p-Laplacian equation with a deviating argument, J. Comput. Appl. Math., 230 (2009), 513520.
[8] H. Meng and F. Long, Periodic solutions for a Liénard type p-Laplacian differential equation, J. Comput. Appl. Math., 224 (2009), 696-701.
[9] J. Meng, Positive periodic solutions for Liénard Type p-Laplacian Equations, Electronic J. Differential Equations, 39 (2009), 1-7.
[10] J. Shan and S. Lu, Periodic solutions for a fourth-order p-Laplacian differential equation with a deviating argument, Nonlinear Anal. TMA, 69 (2008), 17101718.
[11] P. Torres, Z. Cheng and J. Ren, Non-degeneracy and uniqueness of periodic solutions for $2 n$-order differential equation, Discrete Contin. Dyn. Syst. A, 33 (2013), 2155-2168.
[12] Y. Wang, X. Dai and X. Xia, On the existence of a unique periodic solution to a Liénard type p-Laplacian non-autonomous equation, Nonlinear Anal. TMA, 71 (2009), 275-280.
[13] K. Wang, and Y. Zhu, Periodic solutions for a fourth-order p-Laplacian neutral functional differential equation, J. Franklin Inst., 347 (2010), 1158-1170.
[14] Y. Xin, and Z. Cheng, Neutral operator with variable parameter and third-order neutral differential, Adv. Difference Equations, 2014:173 (2014), 1-18.
[15] Y. Xin, X. Han and Z. Cheng, Existence and uniqueness of positive periodic solution for $\phi$-Laplacian Liénard equation, Boundary Value Problems, 2014:244 (2014), 1-11.
[16] L. Yin and Z. Zhang, Existence of a positive solution for a first-order pLaplacian BVP with impulsive on time scales, J. Appl. Anal. Comput., (2) (2012), 103-109.


[^0]:    ${ }^{\dagger}$ the corresponding author. Email address: czbo@hpu.edu.cn (Z. Cheng)
    ${ }^{1}$ School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, China
    ${ }^{2}$ School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China
    *Research is supported by NSFC Project (No. 11326124, 11271339), the ZDGD13001 program, Henan Polytechnic University Outstanding Youth Fund (2015-J-002) and Fundamental Research Funds for the Universities of Henan Provience (NSFRF140142).

