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ASYMPTOTIC BEHAVIOR OF THE

CAHN-HILLIARD-OONO EQUATION
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Abstract Our aim in this article is to study the asymptotic behavior, in

terms of finite-dimensional attractors, of the Cahn-Hilliard-Oono equation.

This equation differs from the usual Cahn-Hilliard equation by the presence

of a term of the form ǫu, ǫ > 0, which takes into account long-ranged interac-

tions. In particular, we prove the existence of a robust family of exponential

attractors as ǫ goes to 0.

Keywords Cahn-Hilliard-Oono equation, well-posedness, asymptotic behav-

ior, global attractor, exponential attractor.

MSC(2000) 35K55, 35J60, 80A22.

1. Introduction

We consider the following initial and boundary value problem:

∂u

∂t
+ ǫu+ ∆2u− ∆f(u) = 0, ǫ ≥ 0, (1.1)

∂u

∂ν
=
∂∆u

∂ν
= 0 on Γ, (1.2)

u|t=0 = u0, (1.3)

in a bounded and regular domain Ω of R
3 with boundary Γ; ν denotes the unit

outer normal to Γ.
Here, u = uǫ is the order parameter (it corresponds to a rescaled density of

atoms or concentration) and f is the derivative of a double-well potential F whose
wells characterize the phases. A thermodynamically relevant potential F is the
following logarithmic function which follows from a mean-field model:

F (s) =
θc

2
(1−s2)+

θ

2
[(1−s) ln(

1 − s

2
)+(1+s) ln(

1 + s

2
)], s ∈ (−1, 1), 0 < θ < θc,

(1.4)
hence

f(s) = −θcs+
θ

2
ln

1 + s

1 − s
, (1.5)
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although, as this will be the case here, such a function is very often approximated
by regular ones, typically,

F (s) =
1

4
(s2 − 1)2, (1.6)

hence

f(s) = s3 − s (1.7)

(see [2], [3], [4], [9] and [19]). Such an approximation is reasonable when the quench
is shallow, i.e., when the absolute temperature θ is close to the critical one θc.

In particular, when ǫ = 0, (1.1) reduces to the well-known Cahn-Hilliard equa-
tion. When ǫ > 0, (1.1) is known as the Oono equation (see [22]) and was in-
troduced to model long-ranged (nonlocal) interactions; actually, this equation was
also introduced in order to simplify numerical simulations (see [20]). Short-ranged
interactions tend to homogenize the system, whereas long-ranged ones forbid the
formation of too large structures; the competition between these two effects trans-
lates into the formation of a micro-separated state (also called super-crystal) with
a spatially modulated order parameter, defining structures with a uniform size (see
[22] for more details and references). Here, the term ǫu, ǫ > 0, models the long-
ranged interactions.

We can note that (1.1) is a particular (and actually simplified) case of nonlocal
Cahn-Hilliard models (see [16], [17] and [18]), obtained by considering the free
energy

ψ =
1

2
|∇u|2 + F (u) +

∫
Ω

u(y)g(y, x)u(x)dy, (1.8)

where | · | denotes the usual Euclidean norm and the function g describes the long-
ranged interactions. In particular, in Oono’s model, one takes

g(y, x) =
4πǫ

|y − x|
, ǫ > 0. (1.9)

Note that the long-ranged interactions are repulsive when u(y) and u(x) have op-
posite signs and thus favor the formation of interfaces (see [22] and the references
therein). Writing finally, as in the derivation of the classical Cahn-Hilliard equation,

∂u

∂t
= ∆

δψ

δu
, (1.10)

where δ
δu

denotes a variational derivative, we find (1.1), noting that − 1
|y−x| is the

Green function associated with the Laplace operator (see [22] and the references
therein for more details).

Integrating now (1.1) over Ω, we have

d < u >

dt
+ ǫ < u >= 0, (1.11)

where < · >= 1
Vol(Ω)

∫
Ω
·dx (or 1

Vol(Ω) < ·, 1 >H−1(Ω),H1(Ω) if one considers functions

in H−1(Ω), H−1(Ω) denoting the dual space of H1(Ω) and < ·, · >H−1(Ω),H1(Ω)

denoting the duality product) denotes the spatial average. Therefore, when ǫ > 0,
we no longer have the conservation of mass, i.e., of < u >, as in the Cahn-Hilliard
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equation (ǫ = 0); however, if < u0 >= 0, then < u(t) >= 0, ∀t ≥ 0. Indeed, it
follows from (1.11) that

< u(t) >= e−ǫt < u0 >, t ≥ 0. (1.12)

We also deduce from (1.12) that

| < u(t) > | ≤ | < u0 > |, t ≥ 0, (1.13)

lim
t→+∞

< u(t) >= 0 (ǫ > 0 fixed), (1.14)

lim
ǫ→0+

< u(t) >=< u0 > (t ≥ 0 fixed). (1.15)

Our aim in this article is to study the asymptotic behavior of the dynamical
system associated with (1.1)-(1.3). In particular, we prove the existence of a robust
family of exponential attractors as ǫ goes to 0, i.e., of a family of compact and
finite-dimensional sets which attract all bounded sets of initial data exponentially
fast and is Hölder continuous at ǫ = 0. This shows that, in some proper sense, the
dynamics of the Cahn-Hilliard equation is ”close” to that of the Cahn-Hilliard-Oono
equation, for ǫ > 0 small. Recall that the Cahn-Hilliard-Oono equation was also
introduced for computational purposes.

Throughout this article, the same constant c (and, sometimes, c′ or c′′) denotes
constants which may vary from line to line (and even in a same line).

2. A priori estimates

We assume in what follows that f is the usual cubic nonlinearity (1.7) and we
further assume that

| < u0 > | ≤M, M ≥ 0. (2.1)

In particular, we have, a priori,

| < u(t) > | ≤M, ∀t ≥ 0. (2.2)

We first note that it follows from (1.1) and (1.11) that

∂u

∂t
+ ǫu+ ∆2u− ∆f(u) = 0, (2.3)

where u = u− < u >, which we can rewrite (formally) in the equivalent form

∂

∂t
(−∆)−1u+ ǫ(−∆)−1u− ∆u+ f(u)− < f(u) >= 0, (2.4)

where (−∆)−1 denotes the inverse Laplace operator with Neumann boundary con-
ditions and acting on functions with null average.

Multiplying (2.4) by u, integrating over Ω and integrating by parts, we have

1

2

d

dt
‖u‖2

−1 + ǫ‖u‖2
−1 + ‖∇u‖2 + ((f(u), u)) = 0, (2.5)
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where ((·, ·)) and ‖ · ‖ denote the usual L2-scalar products and norms, respectively,

and ‖ · ‖−1 = ‖(−∆)−
1
2 · ‖. We then note that

((f(u), u)) ≥
3

4
‖u‖4

L4(Ω) − c,

| < u >

∫
Ω

f(u)dx| ≤
1

4
‖u‖4

L4(Ω) + cM ,

where, here and below, ‖ · ‖X denotes the norm on the Banach space X , which
yields

d

dt
‖u‖2

−1 + ‖∇u‖2 + ‖u‖4
L4(Ω) ≤ cM . (2.6)

Noting finally that

‖u‖−1 ≤ c‖∇u‖, (2.7)

we find

d

dt
‖u‖2

−1 + c‖u‖2
−1 +

1

2
‖∇u‖2 + ‖u‖4

L4(Ω) ≤ c′M . (2.8)

In particular, in (2.8), all constants are independent of ǫ. We now note that

d

dt
< u >2= 2 < u >

d < u >

dt
= −2ǫ < u >2≤ 0, (2.9)

which yields, recalling (2.2),

d

dt
(‖u‖2

−1+ < u >2) + c(‖u‖2
−1+ < u >2) +

1

2
‖∇u‖2 + ‖u‖4

L4(Ω) ≤ c′M . (2.10)

We deduce from (2.10) and Gronwall’s lemma a dissipative estimate on ‖u‖2
−1+ <

u >2, namely,

‖u(t)‖2
−1+ < u(t) >2≤ e−ct(‖u0‖

2
−1+ < u0 >

2) + c′, c > 0, (2.11)

where, here and below, we omit the dependence on M . Noting finally that v 7→
(‖v‖2

−1+ < v >2)
1
2 is a norm on H−1(Ω) which is equivalent to the usual H1-norm,

we deduce from (2.11) the existence of a bounded absorbing set for the associated
dynamical system on H−1(Ω), i.e., ∀R > 0, ‖u0‖H−1(Ω) ≤ R, ∃t0 = t0(R) ≥ 0 such
that t ≥ t0 implies

‖u(t)‖H−1(Ω) ≤ c, (2.12)

where the constant c is independent of R. We also have

∫ t+r

t

‖∇u‖2ds ≤ cr, t ≥ t0, r > 0, (2.13)

∫ t+r

t

‖u‖4
L4(Ω)ds ≤ cr, t ≥ t0, r > 0. (2.14)

Again, all constants are independent of ǫ, but may depend on M .
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We now multiply (1.1) by u and find, noting that

f ′ ≥ −c0, c0 > 0, (2.15)

the following inequation:

d

dt
‖u‖2 + ‖∆u‖2 ≤ c‖∇u‖2. (2.16)

Noting that

‖u‖2 ≤ 2(‖u‖2+ < u >2) ≤ c(‖∇u‖2 +M2),

we deduce from (2.12), (2.13), (2.16) and the uniform Gronwall’s lemma (see, e.g.,
[21]) that (assuming, as above, that ‖u0‖H−1(Ω) ≤ R)

‖u(t)‖ ≤ c, t ≥ t1(≥ t0), (2.17)

∫ t+r

t

‖∆u‖2ds ≤ cr, t ≥ t1. (2.18)

Note that this also yields the existence of a bounded absorbing set for the associated
dynamical system on L2(Ω).

We finally multiply (1.1) by −∆u to obtain

1

2

d

dt
‖∇u‖2 + ǫ‖∇u‖2 + ‖∇∆u‖2 + ((∆f(u),∆u)) = 0. (2.19)

Noting that

∆f(u) = f ′(u)∆u+ f ′′(u)|∇u|2,

we have, owing to (2.15),

((∆f(u),∆u)) ≥ 6

∫
Ω

u|∇u|2dx− c0‖∆u‖
2. (2.20)

Furthermore, owing to Ladyzhenskaya’s inequality,

∫
Ω |u||∇u|2dx ≤ ‖u‖‖∇u‖2

L4(Ω)3 ≤ c‖u‖‖∇u‖
1
2 ‖u‖

3
2

H2(Ω)

≤ c‖u‖4(‖∇u‖2 + 1) + c′‖∆u‖2 + c′′.
(2.21)

We finally deduce from (2.19), (2.20) and (2.21) that

d

dt
‖∇u‖2 ≤ c‖u‖4(‖∇u‖2 + 1) + c′‖∆u‖2 + c′′. (2.22)

We again deduce from the above estimates and the uniform Gronwall’s lemma that

‖u(t)‖H1(Ω) ≤ c, t ≥ t2(≥ t1). (2.23)

In particular, this yields the existence of a bounded absorbing set for the associated
dynamical system on H1(Ω).
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3. Estimates on the difference of two solutions

We first derive an estimate which will yield the uniqueness of solutions (as well as
the continuous dependence with respect to the initial data).

Let u1 and u2 be two solutions with initial data u0,1 and u0,2, respectively. We
set u = u1 − u2 and u0 = u0,1 − u0,2. We then have

∂u

∂t
+ ǫu+ ∆2u− ∆(f(u1) − f(u2)) = 0, (3.1)

∂u

∂ν
=
∂∆u

∂ν
= 0 on Γ, (3.2)

u|t=0 = u0. (3.3)

As in the previous section, we can rewrite (3.1) in the form

∂u

∂t
+ ǫu+ ∆2u− ∆(f(u1) − f(u2)) = 0. (3.4)

We multiply (3.4) by (−∆)−1u and have

1

2

d

dt
‖u‖2

−1 + ǫ‖u‖2
−1 + ‖∇u‖2 + ((f(u1) − f(u2), u)) = 0. (3.5)

We note that, owing to (2.15),

((f(u1) − f(u2), u)) ≥ −c0‖u‖
2− < u >

∫
Ω

(f(u1) − f(u2))dx. (3.6)

Furthermore,

‖u‖2 ≤ 2(‖u‖2+ < u >2) ≤ c(‖u‖−1‖∇u‖+ < u >2)

≤ γ‖∇u‖2 + c(‖u‖2
−1+ < u >2), ∀γ > 0,

(3.7)

hence

| < u >
∫
Ω
(f(u1) − f(u2))dx|

≤ c| < u > |
∫
Ω
(|u1|

2 + |u2|
2 + 1)|u|dx

≤ c(‖u‖2 + (‖u1‖
4
L4(Ω) + ‖u2‖

4
L4(Ω) + 1) < u >2)

≤ 1
4‖∇u‖

2 + c(‖u1‖
4
L4(Ω) + ‖u2‖

4
L4(Ω) + 1)(‖u‖2

−1+ < u >2).

(3.8)

We thus deduce from the above that

d

dt
‖u‖2

−1 + ‖∇u‖2 ≤ c(‖u1‖
4
L4(Ω) + ‖u2‖

4
L4(Ω) + 1)(‖u‖2

−1+ < u >2),

and, noting again that

d

dt
< u >2≤ 0,

we finally obtain
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d

dt
(‖u‖2

−1+ < u >2) + ‖∇u‖2 ≤ c(‖u1‖
4
L4(Ω) + ‖u2‖

4
L4(Ω) + 1)(‖u‖2

−1+ < u >2).

(3.9)
It follows from (2.10), (3.9) and Gronwall’s lemma that

‖u(t)‖H−1(Ω) ≤ cec′t‖u0‖H−1(Ω), (3.10)

where c and c′ only depend on ‖u0,i‖H−1(Ω), i = 1, 2, and M (and are, in particular,
independent of ǫ).

Next, we derive a smoothing property on the difference of two solutions which
is the key estimate to prove the existence of exponential attractors (see [6]).

Keeping the above notation, we multiply (3.1) by tu to find, owing to (2.15),

d

dt
(t‖u‖2) ≤ ‖u‖2 + ct‖∇u‖2. (3.11)

Integrating (3.11) between 0 and t, we have

‖u(t)‖2 ≤ c
1 + t

t

∫ t

0

‖u‖2
H1(Ω)ds, t > 0. (3.12)

It now follows from (2.10), (3.9) and (3.10) that

∫ t

0

‖∇u‖2ds ≤ cec′t‖u0‖
2
H−1(Ω). (3.13)

Furthermore, recalling again that

‖u‖2 ≤ c(‖∇u‖2+ < u >2)

and noting that

< u >2≤< u0 >
2, (3.14)

we deduce from (3.12) and (3.13) that

‖u(t)‖2 ≤ c
1 + t

t
ec′t‖u0‖

2
H−1(Ω), (3.15)

where all constants are independent of ǫ.
Let finally uǫ and u0 be two solutions to (1.1) for ǫ > 0 and ǫ = 0, respectively,

with the same initial datum u0. We set u = uǫ − u0. We then have

∂u

∂t
+ ǫu+ ∆2u− ∆(f(uǫ) − f(u0)) = −ǫu0, (3.16)

∂u

∂ν
=
∂∆u

∂ν
= 0 on Γ, (3.17)

u|t=0 = u0. (3.18)

We recall that

d < uǫ >

dt
+ ǫ < uǫ >= 0 (ǫ > 0)
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and we have

d < u0 >

dt
= 0,

which yields

d < u >

dt
+ ǫ < u >= −ǫ < u0 > . (3.19)

We thus deduce from (3.16) and (3.19) that

∂u

∂t
+ ǫu+ ∆2u− ∆(f(uǫ) − f(u0)) = −ǫu0. (3.20)

We multiply (3.20) by (−∆)−1u to have

1

2

d

dt
‖u‖2

−1 + ǫ‖u‖2
−1 + ‖∇u‖2 + ((f(uǫ)− f(u0), u)) = −ǫ(((−∆)−

1
2u0, (−∆)−

1
2u)),

(3.21)
which yields, owing to (2.15) and recalling that

‖(−∆)−
1
2u‖ ≤ c‖∇u‖,

the following inequation:

d

dt
‖u‖2

−1 + ‖∇u‖2 ≤ cǫ2‖u0‖2
−1 + c′‖u‖2 + 2 < u >

∫
Ω

(f(uǫ) − f(u0))dx. (3.22)

We then recall that

‖u‖2 ≤ 2(‖u‖2+ < u >2) ≤ c(‖u‖−1‖∇u‖+ < u >2) (3.23)

≤ γ‖∇u‖2 + c(‖u‖2
−1+ < u >2), ∀γ > 0,

hence

| < u >
∫
Ω(f(uǫ) − f(u0))dx|

≤ c| < u > |
∫
Ω(|uǫ|2 + |u0|2 + 1)|u|dx

≤ c(‖u‖2 + (‖uǫ‖4
L4(Ω) + ‖u0‖4

L4(Ω) + 1) < u >2)

≤ 1
2‖∇u‖

2 + c(‖uǫ‖4
L4(Ω) + ‖u0‖4

L4(Ω) + 1)(‖u‖2
−1+ < u >2).

(3.24)

We thus deduce from (3.22), (3.23) and (3.24) that

d

dt
‖u‖2

−1 ≤ cǫ2‖u0‖2
−1 + c′(‖uǫ‖4

L4(Ω) + ‖u0‖4
L4(Ω) + 1)(‖u‖2

−1+ < u >2). (3.25)

Noting finally that

d

dt
< u >2= 2 < u > (−ǫ < u > −ǫ < u0 >) ≤ −2ǫ < u >< u0 > (3.26)



Cahn-Hilliard-Oono equation 531

≤ ǫ2 < u0 >2 + < u >2,

we find

d

dt
(‖u‖2

−1+ < u >2)

≤ cǫ2(‖u0‖2
−1+ < u0 >2)

+c′(‖uǫ‖4
L4(Ω) + ‖u0‖4

L4(Ω) + 1)(‖u‖2
−1+ < u >2).

(3.27)

Now, it follows from (2.10) that

∫ t

0

‖uǫ‖4
L4(Ω)ds ≤ cec′t, (3.28)

and it is well-known that (see, e.g., [9], [15] and [21]; recall that, for ǫ = 0, (1.1)
reduces to the Cahn-Hilliard equation)

∫ t

0

‖u0‖4
L4(Ω)ds ≤ cec′t. (3.29)

We further have (this is again well-known)

‖u0‖H−1(Ω) ≤ c. (3.30)

Here, all constants only depend on M and ‖u0‖H−1(Ω). We finally deduce from
(3.27), (3.28), (3.29), (3.30) and Gronwall’s lemma that

‖u(t)‖H−1(Ω) ≤ cǫec′t, (3.31)

where the constants c and c′ only depend on M and ‖u0‖H−1(Ω).

4. The dissipative semigroup

First, it follows from the a priori estimates obtained in Section 2, (3.10) and standard
techniques that we have the existence and uniqueness of solutions to (1.1)-(1.3).
Here, the proof essentially is the same as that of the classical Cahn-Hilliard equation
(see, e.g., [7], [15] and [21]). In particular, this allows to define the family of solution
operators

Sǫ(t) : H−1(Ω) → H−1(Ω), u0 7→ u(t), t ≥ 0, ǫ ≥ 0,

which maps the initial datum onto the solution at time t. This family of operators
forms a continuous semigroup, i.e.,

x 7→ Sǫ(t)x is continuous, t ≥ 0,

Sǫ(0) = I, Sǫ(t+ s) = Sǫ(t) ◦ Sǫ(s), t, s ≥ 0,

where I denotes the identity operator. Finally, we have

S(t) : H−1(Ω) → H1(Ω), t > 0.
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Setting now

ΦM = {v ∈ H−1(Ω), | < v > | ≤M}, M ≥ 0,

it follows from the uniform estimates obtained in Section 2 that we have the dissi-
pative semigroup (still denoted by Sǫ(t)) acting on the phase space ΦM ,

Sǫ(t) : ΦM → ΦM , t ≥ 0.

Finally, it follows, again from the uniform estimates obtained in Section 2 and
from standard results (see, e.g., [1], [14] and [21]), that we have the

Theorem 4.1. The semigroup Sǫ(t) possesses the global attractor AM
ǫ on the phase

space ΦM which is compact in L2(Ω) and bounded in H1(Ω).

Remark 4.1. We recall that the global attractor AM
ǫ is the smallest (for the

inclusion) compact set of the phase space which is invariant by the flow (i.e.,
Sǫ(t)A

M
ǫ = AM

ǫ , ∀t ≥ 0) and attracts all bounded sets of initial data as time
goes to infinity; it thus appears as a suitable object in view of the study of the
asymptotic behavior of the system.

5. Robust exponential attractors

We first recall the following result concerning the construction of a robust family
of exponential attractors for a discrete dynamical system (see [7]; see also [8], [10],
[11], [12] and [13] for generalizations):

Proposition 5.1. Let H and H1 be two Banach spaces such that the injection
H1 ⊂ H is compact, B be a bounded subset of H and Lǫ : B → B, ǫ ∈ [0, ǫ0],
ǫ0 > 0, be a family of operators such that
a) For every x1, x2 ∈ B and every ǫ ∈ [0, ǫ0],

‖Lǫx1 − Lǫx2‖H1
≤ c‖x1 − x2‖H ,

where the constant c is independent of ǫ.
b) For every ǫ ∈ [0, ǫ0], every i ∈ N and every x ∈ B,

‖Li
ǫx− Li

0x‖H ≤ ciǫ,

where the constant c is independent of ǫ.
Then, there exists a family Mǫ ⊂ B, ǫ ∈ [0, ǫ0], such that Mǫ is an exponential
attractor for the discrete dynamical system generated by Lǫ, i.e.,
(i) The set Mǫ is compact in H and has finite fractal dimension in H,

dimFMǫ ≤ c.

(ii) The set Mǫ is positively invariant,

LǫMǫ ⊂ Mǫ.

(iii) The set Mǫ attracts B exponentially fast,

distH(LiB,Mǫ) ≤ ce−c′i, i ∈ N, c′ > 0,
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where distH denotes the Hausdorff semidistance between sets defined by

distH(A,B) = sup
a∈A

inf
b∈B

‖a− b‖H .

(iv) Furthermore, the family Mǫ is Hölder continuous at ǫ = 0,

distsym(Mǫ,M0) ≤ cǫc
′

, c′ ∈ (0, 1),

where distsym denotes the Hausdorff symmetric distance between sets defined by

distsym(A,B) = max(distH(A,B), distH(B,A)).

Finally, all constants are independent of ǫ and can be computed explicitly.

Based on Proposition 5.1, we can prove the

Theorem 5.1. For every ǫ ∈ [0, ǫ0], ǫ0 > 0, the semigroup Sǫ(t) acting on ΦM

possesses an exponential attractor MM
ǫ on ΦM such that

1. The set MM
ǫ has finite fractal dimension in H−1(Ω),

dimFM
M
ǫ ≤ c.

2. The set MM
ǫ is positively invariant by Sǫ(t),

Sǫ(t)M
M
ǫ ⊂ MM

ǫ , t ≥ 0.

3. The set MM
ǫ attracts all bounded subsets of ΦM exponentially fast, i.e., for every

bounded subset B of ΦM , there exists a constant c = c(B) such that

distH−1(Ω)(Sǫ(t)B,M
M
ǫ ) ≤ ce−c′t, t ≥ 0, c′ > 0.

4. The family of sets MM
ǫ is Hölder continuous at 0,

distsym(MM
ǫ ,MM

0 ) ≤ cǫc
′

, c′ ∈ (0, 1).

Furthermore, all constants are independent of ǫ and can be computed explicitly.

Proof. We first note that, owing to the uniform estimates obtained in Section 2,
we have the existence of a uniform (with respect to ǫ) absorbing set B0 ⊂ ΦM ∩
H1(Ω), i.e., ∀B ⊂ ΦM bounded, ∃t0 = t0(B) > 0 independent of ǫ ∈ [0, ǫ0] such
that

Sǫ(t)B ⊂ B0, t ≥ t0, ǫ ∈ [0, ǫ0].

It is thus sufficient to construct the exponential attractor MM
ǫ on B0.

To do so, as usual (see [5]), we first construct exponential attractors for a proper
family of discrete semigroups and then pass to the continuous case.

It is easy to show that there exists t1 > 0 independent of ǫ ∈ [0, ǫ0] such that

Sǫ(t)B0 ⊂ B0, t ≥ t1, ǫ ∈ [0, ǫ0].

We then set

Lǫ = Sǫ(t1)
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and consider the spaces H = H−1(Ω) and H1 = L2(Ω). It follows from (3.15) and
(3.31) that the assumptions of Proposition 5.1 are satisfied, hence the existence of
a robust family of exponential attractors MM,d

ǫ for the discrete dynamical systems
generated by the operators Lǫ.

We finally set

MM
ǫ = ∪t∈[0,t1]Sǫ(t)M

M,d
ǫ .

To finish the proof, it suffices to prove that the mapping (t, x) 7→ Sǫ(t)x is Hölder
continuous on [0, t1]×B, uniformly with respect to ǫ ∈ [0, ǫ0] (see [5] and [7]). The
Hölder (and, actually, Lipschitz) continuity with respect to x follows from (3.10).
To prove the Hölder continuity with respect to t, we note that

‖Sǫ(t+ s)u0 − Sǫ(t)u0‖H ≤ |s|
1
2 (

∫ t+s

t

‖
∂u

∂t
‖2

H−1(Ω)dτ)
1
2

≤ c|s|
1
2 (

∫ t+s

t

(‖u‖2
H1(Ω) + ‖f(u)‖2)dτ)

1
2

and we easily conclude in view of the estimates obtained in Section 2.

As a consequence of this result, we have the

Corollary 5.1. The global attractor AM
ǫ has finite fractal dimension in H−1(Ω).

Indeed, an exponential attractor always contains the global attractor.

Remark 5.1. (i) The finite dimensionality means, roughly speaking, that, even
though the initial phase space is infinite dimensional, the reduced dynamics is, in
some proper sense, finite dimensional and can be described by a finite number of
parameters. We refer the reader to [1], [14] and [21] for more details and discussions
on this.

(ii) Proceeding as in [7], we can actually prove that all the above results hold for
the topology of L2(Ω) instead of that of H−1(Ω).

Remark 5.2. (i) Here, we have the Hölder continuity only at ǫ = 0. However,
proceeding as in [8], we can construct a robust family of exponential attractors
which is Hölder continuous at every ǫ ∈ [0, ǫ0].

(ii) We can consider more general nonlinearities f , typically, polynomials of the
form

f(s) =

2p+1∑
i=0

ais
i, a2p+1 > 0, p ∈ N.

In that case, it is not difficult to adapt the estimates of Section 2. However, when
p ≥ 2, we are not able to obtain Lipschitz type estimates as in Section 3, but
only Hölder type ones (in particular, in the equivalent of (3.10)). Actually, here
the situation is similar to that in [13] for the Cahn-Hilliard equation with singular
potentials and the construction of a robust family of exponential attractors on ΦM

should be much more involved (see [13], Remark 6.2; one can nevertheless treat the
case when the average of the order parameter vanishes (we recall that, in that case,
the average of the order parameter is conserved)).
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