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EXISTENCE OF NONZERO POSITIVE

SOLUTIONS OF SYSTEMS OF

SECOND ORDER ELLIPTIC
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Abstract Existence of nonzero positive solutions of systems of second order
elliptic boundary value problems under sublinear conditions is obtained. The
methodology is to establish a new result on existence of nonzero positive
solutions of a fixed point equation in real Banach spaces by using the well-
known theory of fixed point index for compact maps defined on cones, where
the fixed point equation involves composition of a compact linear operator
and a continuous nonlinear map. The conditions imposed on the nonlinear
maps involve the spectral radii of the compact linear operators. Moreover, the
nonlinear maps are not required to be increasing in ordered Banach spaces.
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1. Introduction

We study existence of nonzero positive solutions of systems of second order elliptic
equations

Lzi(x) = gi(x)fi(x, z(x)) on Ω, i ∈ In := {1, · · · , n} (1.1)

subject to boundary conditions involving first order boundary operators, where L is
a strongly uniformly elliptic differential operator and Ω is a suitable bounded open
set in Rm.

When n = 1 and f1 satisfies suitable monotonicity conditions, (1.1) was studied
by Amann in [1, 2].

A special case of (1.1) with the Dirichlet boundary condition is the system of
semilinear elliptic equations of the form

{
−4zi(x) = λfi(z(x)) on Ω, i ∈ In,

zi(x) = 0 on ∂Ω.
(1.2)

An open question proposed by Lions in [19] is whether (1.2) with λ = 1 has a
nonzero positive solution under sublinear or superlinear conditions which involve
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the principal eigenvalues of the corresponding linear systems (see [19, question (c)
in section 4.2]).

There have been some results on the above question in more general settings
under the sublinear cases. Hai and Wang [12] proved that (1.2) has a nonzero
positive solution for each λ ∈ (0,∞) under the following sublinear condition:

(i) lim|z|1→0
fi0(z)
|z|1 = ∞ for some i0 ∈ In and fi0(z) > 0 for z ∈ Rn

+ and

(ii) lim|z|1→∞
fi(z)
|z|1 = 0 for each i ∈ In,

where |z|1 =
∑n

i=1 |zi| and p-Laplacian systems are considered (see [12, Theorem
1.2]). Recently, Lan [15] used the theory of fixed point index for compact maps
defined on cones [1] to prove that (1.1) with gi ≡ 1 has a nonzero positive solution
under a sublinear condition which contains, as a special case, the following condition:

(i)′ lim|z|→0
fi0(z)
|z| > µ1 for some i0 ∈ In and

(ii)′ lim|z|→∞
fi(z)
|z| < µ1 for each i ∈ In,

where µ1 is the largest characteristic value of the linear system corresponding to
(1.1) with gi ≡ 1 and |z| = max{|zi| : i ∈ In}. The above result improves the results
in [12]. However, it is essential in [15] to require gi ≡ 1 and thus, the approach used
in [15] can not be used to treat the case when gi 6= 1. We refer to [9, 10, 11] for the
existence and uniqueness of elliptic systems related to (1.2) under some sublinear
conditions and to [4, 5, 6, 10, 16, 17, 18, 20, 23, 24] for the study of such systems
under the superlinear cases and some related problems for similar systems.

In this paper, we improve results in [15] and allow gi 6= 1. The largest charac-
teristic values involved in our results depend on g = (g1, · · · , gn). Our approach is
to change (1.1) into a special form of the following general fixed point equation

z = LFz := Az, (1.3)

where L is a compact linear operator and F is a continuous nonlinear map defined
on cones in real Banach spaces. We shall establish a new result on the existence of
nonzero positive solutions of (1.3) by utilizing the well-known theory of fixed point
index for compact maps. The existence of one or several solutions of (1.3) was
studied by Amann [2], where F is an increasing map defined on an order interval.
Our result does not require F to be increasing and we impose suitable conditions on
the nonlinear map F which involve the spectral radius and the principle eigenvalue
of the compact linear operator L. These conditions imposed on F correspond to the
sublinear conditions in applications. As illustrations, we apply our result to (1.1)
with some specific nonlinearities.

2. Nonzero positive solutions of fixed point equa-
tions in ordered Banach spaces

In this section, we consider existence of nonzero positive solutions of fixed point
equations of the form

z = LFz := Az, (2.1)

where L is a linear operator and F is a nonlinear map defined in real Banach spaces.
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The existence of one or several solutions of (2.1) was studied in ordered Banach
spaces by Amman [2], where F was assumed to be an increasing map defined on
order intervals. In the following we do not assume that F is increasing, but impose
suitable conditions on F . In the applications given in the following sections, these
conditions on F become the sublinear conditions involving the principal eigenvalues
of the linear operators L.

Recall that a nonempty closed convex subset P in a real Banach space X is
called a cone if δP ⊂ P for each δ ≥ 0 and P ∩ (−P ) = {0}. A cone P defines a
partial order ≤ in X by

x ≤ y if and only if y − x ≥ 0.

A cone P is said to be reproducing if X = P − P , to be total if X = P − P and to
be normal if there exists σ > 0 such that 0 ≤ x ≤ y implies ‖x‖ ≤ σ‖y‖. σ is called
the normality constant of P . We refer to [1] for other cones.

Recall that a real number λ is called an eigenvalue of the linear operator L : X →
X if there exists ϕ ∈ X \{0} such that λϕ = Lϕ. The reciprocals of eigenvalues are
called characteristic values of L. The radius of the spectrum of L in X, denoted by
r(L), is given by the well-known spectral radius formula

r(L) = lim
m→∞

m
√
‖L‖m, (2.2)

where ‖L‖ is the norm of L.
Let ρ > 0 and let Pρ = {x ∈ P : ‖x‖ < ρ}, P ρ = {x ∈ P : ‖x‖ ≤ ρ} and

∂Pρ = {x ∈ P : ‖x‖ = ρ}.
We need some results from the theory of fixed point index for compact maps

defined on cones in X (see [1, 8]). Recall that a map A : D ⊂ X → X is said to be
compact if A is continuous and A(S) is compact for each subset S ⊂ D.

Lemma 2.1. Assume that A : P ρ → P is a compact map. Then the following
results hold.

(1) If there exists x0 ∈ P \ {0} such that z 6= Az + νx0 for z ∈ ∂Pρ and ν ≥ 0,
then iP (A,Pρ) = 0.

(2) If there exists z0 ∈ Pρ such that z 6= %Az+(1−%)z0 for x ∈ ∂Pρ and % ∈ (0, 1],
then iP (A,Pρ) = 1.

(3) Let ρ0 ∈ (0, ρ). If iP (A,Pρ) = 1 and iP (A,Pρ0) = 0, then A has a fixed point
in Pρ \ P ρ0 .

Let X, Y be real Banach spaces with norms ‖ · ‖ and ‖ · ‖Y and with cones P
and PY , respectively. We denote by ¹ the partial order in Y induced by PY .

We always assume that the following conditions hold.

(H0) X ⊂ Y , P ⊂ PY and there exists ξ > 0 such that ‖x‖Y ≤ ξ‖x‖ for x ∈ X.

(H1) L : Y → X is a compact linear operator such that L(PY ) ⊂ P.

(H2) F : P → PY is a continuous map.

We write
L := L|X , (2.3)
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where L|X is the restriction of L on X. By (H0) and (H1), L : X → X is a compact
linear operator such that L(P ) ⊂ P . We write

µ1 =
1

r(L)
. (2.4)

The following result gives conditions which ensure that the fixed point index of
A is zero.

Lemma 2.2. Assume that the following conditions hold.
(E) r(L) ∈ (0,∞) and there exists ϕ ∈ P \ {0} such that ϕ = µ1Lϕ.
(F0)ρ0 There exist ε > 0 and ρ0 > 0 such that

F (z) º (µ1 + ε)z for z ∈ ∂Pρ0 .

Then if z 6= Az for z ∈ ∂Pρ0 , then iP (A,Pρ0) = 0.

Proof. It is clear that under the hypotheses (H1)-(H2) the map A defined in (2.1)
maps P into P and is compact. We prove that

z 6= Az + νϕ for all z ∈ ∂Pρ0 and ν ≥ 0. (2.5)

In fact, if not, there exist z ∈ ∂Pρ0 and ν > 0 such that

z = Az + νϕ = LF (z) + νϕ. (2.6)

Then z ≥ νϕ. Let τ1 = sup{τ > 0 : z ≥ τϕ}. Then 0 < ν ≤ τ1 < ∞ and z ≥ τ1ϕ.
This, together with (2.6), (F0)ρ0 and (H1) implies that

z ≥ LF (z) ≥ L((µ1 + ε)z) = L((µ1 + ε)z) ≥ (µ1 + ε)τ1Lϕ = (µ1 + ε)τ1(ϕ/µ1).

Hence, we have τ1 ≥ (µ1 + ε)τ1/µ1 > τ1, a contradiction. It follows from (2.5) and
Lemma 2.1 (1) that iP (A,Pρ0) = 0.

Condition (E) of Lemma 2.2 requires r(L) to be a positive eigenvalue of L with
a positive eigenvector.

The following result is the well-known Krein-Rutman theorem which requires
P to be total and shows that if r(L) > 0, then (E) holds (see [1, Theorem 3.1] or
[14, 22]).

Lemma 2.3. Assume that P is a total cone in X and L : X → X is a compact
linear operator such that L(P ) ⊂ P and r(L) > 0. Then there exists an eigenvector
ϕ ∈ P \ {0} such that ϕ = µ1Lϕ.

In some applications, it is not easy to show r(L) > 0 by using the spectral
radius formula (2.2) directly. The following result provides sufficient conditions
which ensure that r(L) > 0 and will be used in section 3.

Proposition 2.1. Let P be a total cone in X and let L : X → X be a compact
linear operator such that L(P ) ⊂ P . Assume that there exist u ∈ P − P with
−u 6∈ P , m ∈ N and α > 0 such that

Lmu ≥ αu.

Then Lemma 2.2 (E) holds.
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Proof. By [13, Theorem 2.5], there exist λ0 ≥ α
1
m > 0 and x0 ∈ P \ {0} such that

Lx0 = λ0x0. Since r(L) ≥ λ0, it follows that r(L) > 0. The result follows from
Lemma 2.3.

The following result provides conditions which ensure that the fixed point index
of A is 1, where r(L) is not required to be an eigenvalue of L, but P needs to be
normal.

Lemma 2.4. Assume that P is a normal cone, r(L) ∈ (0,∞) and the following
condition holds.

(F∞) There exist y0 ∈ Y and ε > 0 such that

F (z) ¹ y0 + (µ1 − ε)z for z ∈ P .

Then there exists ρ∗ > 0 such that iP (A,Pρ) = 1 for ρ > ρ∗.

Proof. Since r((µ1 − ε)L) = (µ1 − ε)r(L) < 1, (I − (µ1 − ε)L)−1 exists and is a
bounded linear operator such that (I − (µ1 − ε)L)−1(P ) ⊂ P . Let z0 ∈ P and let
σ be the normality constant of P and

ρ∗ = max{‖z0‖, σ‖(I − (µ1 − ε)L)−1(Ly0 + z0)‖}.

Then ρ∗ ∈ (0,∞). Let ρ > ρ∗. Then z0 ∈ Pρ. We prove that

z 6= %Az + (1− %)z0 for z ∈ ∂Pρ and % ∈ (0, 1]. (2.7)

In fact, if not, there exist z ∈ ∂Pρ and % ∈ (0, 1] such that z = %Az + (1 − %)z0.
This, together with (F∞) and (H1) implies

z ≤ Az + z0 = LFz + z0 ≤ Ly0 + (µ1 − ε)Lz + z0.

and
(I − (µ1 − ε)L)z ≤ Ly0 + z0.

This, together with (I − (µ1 − ε)L)−1(P ) ⊂ P , implies

z ≤ (I − (µ1 − ε)L)−1(Ly0 + z0).

Since P is normal,

‖z‖ ≤ σ‖(I − (µ1 − ε)L)−1(Ly0 + z0)‖ ≤ ρ∗.

Hence, we have ρ = ‖z‖ ≤ ρ∗ < ρ, a contradiction. The result follows from (2.7)
and Lemma 2.1 (2).

Now, we are in a position to give our main result on existence of nonzero positive
solutions of (2.1).

Theorem 2.1. Assume that P is a normal cone and the following conditions hold.
(i) (E) and (F0)ρ0 of Lemma 2.2 hold.
(ii) (F∞) of Lemma 2.4 holds.

Then (2.1) has a nonzero positive solution in P .

Proof. We may assume that x 6= Ax for x ∈ ∂Pρ0 . By (i), (ii) and Lemmas 2.2
and 2.4, iP (A,Pρ0) = 0 and there exists ρ > ρ0 such that iP (A,Pρ) = 1. The result
follows from Lemma 2.1 (3).
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3. Nonzero positive solutions of systems of elliptic
boundary value problems

In this section we study existence of nonzero positive solutions of systems of second
order elliptic boundary value problems of the form

Lzi(x) = gi(x)fi(x, z(x)) on Ω, i ∈ In (3.1)

subject to the following boundary condition

Bzi(x) = 0 on ∂Ω, (3.2)

where z(x) = (z1(x), · · · , zn(x)), L is a strongly uniformly elliptic differential oper-
ator and B is a first order boundary operator.

When n = 1, (3.1) was studied in [1, 2] and the references therein, where gi ≡ 1
and fi satisfies suitable monotonicity conditions. We refer to [3, 7] and the references
therein for the study of systems similar to (3.1).

Recently, Lan [15] studied existence of nonzero positive solutions of system (1.1)
with gi ≡ 1 under a sublinear condition using the theory of fixed point index for
compact maps defined on cone [1]. However, the approach used in [15] can not be
used to treat the case when gi 6= 1. We shall apply results obtained in the above
section to obtain results on existence of nonzero positive solutions of system (1.1),
where gi is not required to be 1.

Following [1, section 4 of Chapter 1], if m = 1, let Ω = (x0, x1), where x0, x1 ∈ R
with x0 < x1. If m ≥ 2, the boundary ∂Ω of Ω is assumed to be an (m − 1)-
dimensional C2+µ-manifold for some µ ∈ (0, 1) such that Ω lies locally on one side
of ∂Ω.

Let µ̂ = 0 if m = 1 and µ̂ = µ if m ≥ 2. Recall that a second order elliptic
differential operator L defined by

Lu = −
m∑

k,j=1

akj(x)
∂2u

∂xk∂xj
+

m∑

k=1

bk(x)
∂u

∂xk
+ c(x)u (3.3)

is called to be strongly uniformly elliptic if akj , bk, c ∈ Cµ̂(Ω) for k, j ∈ Im and
c(x) ≥ 0 for x ∈ Ω; akj(x) = ajk(x) for x ∈ Ω and k, j ∈ Im, and there exists
µ0 > 0 such that

m∑

k,j=1

akj(x)ξkξj ≥ µ0|ξ|2 for x ∈ Ω and ξ = (ξ1, ..., ξm) ∈ Rm.

If m = 1, the first order boundary operator B is

Bu(x) =

{
α0u(x0)− β0u

′(x0) if x = x0,
α1u(x1)− β1u

′(x1) if x = x1,
(3.4)

where α0, α1, β0, β1 ∈ [0,∞) satisfy (α0 + β0)(α1 + β1) > 0. If m ≥ 2, then

Bu = bu + δ
∂u

∂v
, (3.5)
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where v is an outward pointing, nowhere tangent vector field on ∂Ω of C1+µ, ∂u/∂v
denotes the directional derivative of u with respective to v, and δ and b satisfy one
of the following conditions: (i) δ = 0 and b ≡ 1 (Dirichlet boundary operator);
(ii) δ = 1, b ≡ 0 and c 6≡ 0 on Ω (Neumann boundary operator) or (iii) δ = 1,
b ∈ C1+µ(∂Ω), b(x) ≥ 0 and b 6≡ 0 on ∂Ω (Regular oblique derivative boundary
operator).

Lemma 3.1. [1, 21] For every v ∈ Cµ̂(Ω), the linear boundary value problem
{
Lu(x) = v(x) on Ω,
Bu(x) = 0 on ∂Ω

(3.6)

has a unique solution u ∈ C2+µ̂(Ω).

For every v ∈ Cµ̂(Ω), we denote by T ∗v the unique solution of (3.6). It is known
that T ∗ : Cµ̂(Ω) → C2+µ̂(Ω) is a bounded and surjective linear operator and has a
unique extension, denote by T , to C(Ω). We write

e = T ∗v0, where v0(x) ≡ 1. (3.7)

It is known that e is an interior point of the positive cone in C(Ω):

C+(Ω) = {z ∈ C(Ω) : z(x) ≥ 0 for x ∈ Ω}.
The following result gives the properties of T which are contained in [1, Theorem
4.2] and [2, Lemma 5.3].

Lemma 3.2. T : C(Ω) → C1(Ω) ⊂ C(Ω) is a compact linear operator such that
T (C+(Ω)) ⊂ C+(Ω) and for each v ∈ C+(Ω) \ {0}, there exists αv > 0 such that
Tv ≥ αve.

We always assume the following conditions on gi and fi: For each i ∈ In,

(C1) gi ∈ Cµ̂(Ω) with gi(x) > 0 for x ∈ Ω.

(C2) fi : Ω× Rn
+ → R+ is continuous.

We denote by C(Ω;Rn) the Banach space of continuous functions from Ω into Rn

with norm ‖z‖ = max{‖zi‖ : i ∈ In}, where

z(x) = (z1(x), · · · , zn(x)) for x ∈ Ω.

We shall use the standard positive cone in C(Ω;Rn) defined by

P = C(Ω;Rn
+). (3.8)

It is well known that P is a normal and reproducing cone in C(Ω;Rn).
We define L : C(Ω,Rn) → C(Ω,Rn) by

(Lz)(x) = ((L1z1)(x), · · · , (Lnzn)(x)), (3.9)

where Li : C(Ω) → C2+µ̂(Ω) is defined by (Liu)(x) = (Tgiu)(x).
By (C1), giu ∈ Cµ̂(Ω) for u ∈ C(Ω). Hence, we have for u ∈ C(Ω),

Liu = T (giu) = T ∗(giu) ∈ C2+µ̂(Ω).

The following result gives the properties of L defined in (3.9).
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Lemma 3.3. The linear operator L defined in (3.9) has the following properties:
(i) L : C(Ω,Rn) → C(Ω,Rn) is compact and satisfies L(P ) ⊂ P .
(ii) r(L) ∈ (0,∞) and there exists ϕ ∈ P \ {0} such that ϕ = µgLϕ, where

µg = 1/r(L).

Proof. (i) By Lemma 3.2, for each i ∈ In, Li : C(Ω) → C(Ω) is compact and
Li(C+(Ω)) ⊂ C+(Ω). The results follows.

(ii) By Lemma 3.2, for each i ∈ In, there exists αi > 0 such that Lie ≥ αie. Let
α = min{αi : i ∈ In}. Then α > 0 and

Le = (L1e, · · · , Lne) ≥ (α1e, · · · , αne) ≥ αe.

This, together with Lemma 2.1 implies that (ii) holds.
We define a Nemytskii operator F : P → P by

(Fz)(x) = (f1(x, z(x)), · · · , fn(x, z(x))). (3.10)

It is easy to see that (3.1) is equivalent to the following fixed point equation:

z(x) = (LFz)(x) := Az(x) for x ∈ Ω. (3.11)

Now, we give our main result of this section.

Theorem 3.1. Assume that the following conditions hold.
((fi)0)ρ0 There exist ε > 0 and ρ0 > 0 such that for each i ∈ In,

fi(x, z) ≥ (µg + ε)zi for x ∈ Ω and all z ∈ Rn
+ with |z| ∈ [0, ρ0].

(f∞i )ρ1 There exist ε > 0 and ρ1 > 0 such that for each i ∈ In,

fi(x, z) ≤ (µg − ε)zi for x ∈ Ω and all z ∈ Rn
+ with |z| ≥ ρ1.

Then (3.1) has a nonzero positive solution in P .

Proof. Let X = Y = C(Ω;Rn). Then (H0) holds. By Lemma 3.3 (i) and the
continuity of fi, (H1) and (H2) hold. By Lemma 3.3 (ii), Lemma 2.4 (E) holds.
It is easy to verify that ((fi)0)ρ0 implies that Lemma 2.4 (F0)ρ0 with F defined in
(3.10) holds. By (C2), there exists b > 0 such that for each i ∈ In,

fi(x, z) ≤ b for x ∈ Ω and z ∈ Rn
+ with |z| ≤ ρ1.

This, together with (f∞i )ρ1 implies for each i ∈ In,

fi(x, z) ≤ b + (µg − ε)zi for x ∈ Ω and all z ∈ Rn
+.

Hence, F defined in (3.10) satisfies Lemma 2.4 (F∞) with y0 = (b, · · · , b). By
Theorem 2.1, (3.11) has a nonzero solutions in P . The result follows from the
equivalence between (3.1) and (3.11).

When n = 1, (3.1) can be written as follows.
{
Lz(x) = g(x)f(x, z(x)) on Ω,

Bz(x) = 0 on ∂Ω
(3.12)

and g and f satisfy (C1) and (C2).
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Let

f(z) = inf
x∈Ω

f(x, z), f(z) = sup
x∈Ω

f(x, z);

f0 = lim inf
z→0+

f(z)/z, f∞ = lim sup
z→∞

f(z)/z.

The following result shows that when n = 1, the conditions: ((fi)0)ρ0 and (f∞i )ρ1

in Theorem 3.1 can be replaced by suitable stronger limit conditions.

Corollary 3.1. Assume that the following condition holds.
(H) f∞ < µg < f0.

Then (3.12) has a nonzero positive solution in P .

When Lu = −4u and B is the Dirichlet boundary operator, Corollary 3.1
improves [19, Theorem 1.3], where g ≡ 1, f : R→ R is locally Lipschitz continuous
satisfying f(0) = 0, and [5, Corollary II.1], where f satisfies the Carathéodory
conditions, but the positive solutions are in W 2,p(Ω) for every 1 < p < ∞.

When m = 1, Lz = −z′′ and [x0, x1] = [0, 1], the boundary operator B in (3.12)
becomes (3.4) and Corollary 3.1 can be obtained by Theorem 4.1 (H2) in [25].

As illustration, we consider existence of nonzero positive solutions of systems of
second order elliptic boundary value problems of the form

Lzi(x) = gi(x)
ai

1 + |z(x)|αi
zi(x) for x ∈ Ω and i ∈ In (3.13)

subject to the boundary condition (3.2).

Theorem 3.2. Assume that the following conditions hold.
(i) For each i ∈ In, gi satisfies (C1).
(ii) For each i ∈ In, αi > 0 and ai > µg.

Then (3.13)-(3.2) has a nonzero positive solution in P.

Proof. For each i ∈ In, we define a function fi : Ω× Rn
+ → R+ by

fi(x, z) =
ai

1 + |z|αi
zi.

Let ε > 0 be such that ai > (µg + ε) for i ∈ In. Let ρ0 > 0 satisfy

ρ0 ≤ min{( ai

µg + ε
− 1

) 1
αi : i ∈ In}.

Then for x ∈ Ω and z ∈ Rn
+ with |z| ∈ [0, ρ0],

fi(x, z) ≥ ai

1 + ραi
0

zi ≥ (µg + ε)zi.

Hence, ((fi)0)ρ0 holds. Let ρ1 > ρ1 and ρ1 ≥ max{( ai

µg − ε
− 1

) 1
αi : i ∈ In}. Then

for x ∈ Ω and z ∈ Rn
+ with |z| ∈ [ρ1,∞),

fi(x, z) ≤ ai

1 + ραi
1

zi ≤ (µg − ε)zi.

The result follows from Theorem 3.1.
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