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COUPLED SYSTEMS WITH TIME DELAY

AND STOCHASTIC DISTURBANCE UNDER
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Abstract This paper proposes a framework for finite-time synchronization
of coupled systems with time delay and stochastic disturbance under feedback
control. Combining Kirchhoff’s Matrix Tree Theorem with Lyapunov method
as well as stochastic analysis techniques, several sufficient conditions are de-
rived. Differing from previous references, the finite time provided by us is
related to topological structure of networks. In addition, two concrete ap-
plications about stochastic coupled oscillators with time delay and stochastic
Lorenz chaotic coupled systems with time delay are presented, respectively.
Besides, two synchronization criteria are provided. Ultimately, two numerical
examples are given to illustrate the effectiveness and feasibility of the obtained
results.
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1. Introduction

Since the pioneering work of Watts and Strogatz [31], interest on complex networks
has grown rapidly for their applications are not only extended to physical, mechan-
ical, ecological, and electronic engineering fields, but also existing in our daily life
with examples including the Internet, the World Wide Web, the World Trade Web,
disease transmission networks [5], etc. Besides, coupled systems, as a vital class
of complex networks, have been investigated widely in recent years, and numerous
valuable results have been obtained [27,43,46], which can be used in traffic systems,
electric systems and so on. As a matter of fact, coupled systems are influenced in-
evitably by stochastic disturbance which exists extensively in external environment.
Thus, taking stochastic disturbance into account in the process of researching cou-
pled systems is crucial, and many scholars admitted it and published some useful
results [18,28,30,40]. Furthermore, it is worthy of noting that time delay is unavoid-
able in real life. For example, in the telephone communication network, receiver
hears at time t while the transmitter often makes a sound at time t − τ . So time
delay has been attached great importance, and lots of previous references took time
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delay into consideration [9,23]. And there are also some references about stochastic
coupled systems with time delay (SCSTD) [6,34].

On the other hand, plenty of scholars have focused on a variety of dynamical
properties of complex networks, such as stability [12,19,26], synchronization [38,45],
stationary distribution [16], etc. Among them, synchronization, as a major dynami-
cal property of SCSTD, is one of the key issues that has been extensively researched
owing to its ubiquity in real life. For instance, in traffic system, synchronization
can be used to reduce congestion by designing applicable regional traffic signal [14].
Besides, as is known, synchronization is the process between two or more dynamical
systems to attain a common behavior, which is in connection with drive-response
systems in different communities called external synchronization. Corresponding
with external synchronization, synchronization of subsystems in one community is
called internal synchronization, which is commonly used in electric system. There-
fore, it is also of a significant meaning to study internal synchronization in practical
applications. For example, in power system, when synchronization signals of the
power grid hardware are lost, the system can run in accordance with the origi-
nal grid by means of the designed synchronization system. Hence, many problems
about internal synchronization have been investigated, see [3,4,42]. Moreover, syn-
chronization problems can be classified into several types: exponential synchroniza-
tion [10,36], asymptotical synchronization [33], finite-time synchronization [37], etc.
However, from a practical point of view, finite-time synchronization, which means
that synchronization can be achieved in a setting time, is optimal because machines
and humans life spans are limited and one may expect to achieve synchronization as
fast as possible. Therefore, it is meaningful to research finite-time synchronization,
and many efficient methodologies to clarify the finite-time synchronization problem
have been developed [8, 25, 37]. Compared with these references, the finite time
provided by us is related to topological structure of the networks.

Moreover, influenced by stochastic disturbance and time delay, synchronization
of complex networks is difficult to achieve, sometimes. In order to research this
issue, some scholars determine to employ control technique to synchronize complex
networks based on pinning control, quantized control, feedback control, etc. Among
those control approaches, feedback control acts on the difference between the input
value and output value of systems and it has been verified to be a serviceable tool
to study synchronization problem of different kinds of systems [13, 21, 35, 41]. In
addition, Lyapunov method, as a powerful tool to research dynamical properties of
complex networks, has secured growing attention among the research community
and plenty of scholars concentrate on utilizing Lyapunov method to solve prob-
lems. However, constructing a suitable Lyapunov function directly is an enormous
challenge due to the intricate relatives between the topological structure of com-
plex networks and diverse dynamical properties of the coupled nodes. Fortunately,
in [15], Li et al. put forward a novel method, which combines Kirchhoff’s Matrix
Tree Theorem with Lyapunov method, to cope with this problem. By utilizing this
method, each subsystem in coupled systems can be described as a vertex system of
digraph while the coupling structures of two subsystems can be performed by direct-
ed arcs between two vertex systems of digraph. Inspired by this method, amounts
of results were obtained in [7, 11, 16, 28, 44]. Though there are many references re-
lating with finite-time internal synchronization of systems, none of them researched
this problem by making use of the method mentioned above, which makes our work
valuable.
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Based on the discussion above, in this paper, we consider a general SCSTD
under feedback control. And some sufficient criteria are derived to guarantee finite-
time synchronization of SCSTD by combining Kirchhoff’s Matrix Tree Theorem,
Lyapunov method and stochastic analysis techniques. What is noteworthy is that
finite time estimated by us is connected with topological structure of SCSTD. In
addition, two concrete applications about stochastic coupled oscillators with time
delay and stochastic Lorenz chaotic coupled systems with time delay are presented.
Meanwhile, two numerical examples are given to demonstrate the effectiveness and
practicability of our theoretical results.

The rest of this paper is arranged in the following. In Section 2, some prelim-
inaries and our model description are introduced. Besides, our main results are
discussed in Section 3. Besides, two applications and the corresponding numerical
simulations are provided in Section 4.

2. Preliminaries and model formulation

2.1. Preliminaries

To begin with, for convenience, unless the special cases, some useful notation-
s used throughout this paper are introduced in the following. Define notations
L = {1, 2, . . . , N}, Z+ = {1, 2, . . .}, R+ = [0,+∞). Besides, R and Rm stand for
real numbers and m-dimensional Euclidean space, respectively. The superscript “T”
denotes the transpose of a vector. We define ‖ · ‖ is the Euclidean norm. And the
family of all nonnegative functions V (x, t) on R(N−1)m×R+, which are continuously
twice differentiable in x and once in t, are denoted by C2,1

(
R(N−1)m × R+;R+

)
.

Denote notations S
(N−1)m
ρ =

{
x ∈ R(N−1)m : ||x|| < ρ

}
and a ∧ b represents the

minimum of a and b. Moreover, let (Ω,F ,F,P) be a complete probability space
with a filtration F = {Ft}t≥0 satisfying the usual conditions (i.e., it is right con-
tinuous and F0 contains all P-null sets). In addition, B(t) is a one-dimensional
Brownian motion defined on the probability space and the mathematical expecta-
tion with respect to the given probability measure P is denoted by E(·). For τ > 0,
C([−τ, 0];R(N−1)m) is the family of continuous function x from [−τ, 0] to R(N−1)m.
A digraph G = (V,U), containing a set V of N vertices and a set U of arcs (i, j)
leading from initial vertex i to terminal vertex j, is weighted if each arc (j, i) is
assigned a positive weight aij and we call A = (aij)N×N as the weighted matrix.
Besides, a weighted digraph (G, A) is strongly connected if and only if the weighted
matrix A is irreducible. And P is the Laplacian matrix of (G, A), in which P is
defined as P = (pkh)N×N , where pkh = −akh for k 6= h, pkh =

∑
j 6=k akj for k = h.

And some other basic concepts of graph theory are introduced in references [22,32].
Next, some vital lemmas are provided in the following.

Lemma 2.1 (Kirchhoff’s Matrix Tree Theorem, [15]). Assume that N ≥ 2. Let
ci denote the cofactor of the ith diagonal element of P. Then the following equlity
holds:

N∑
i,j=1

ciaijFij(xi, xj) =
∑
Q∈Q

W (Q)
∑

(s,r)∈U(CQ)

Frs(xr, xs).

Here Fij(xi, xj) : Rm×Rm → R, 1 ≤ i, j ≤ N is an arbitrary function, Q is the set
of all spanning unicyclic graphs of (G, A), W (Q) is the weight of Q, and CQ denotes
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the directed cycle of Q. In particular, if (G, A) is strongly connected, then ci > 0
for i ∈ L.

Lemma 2.2 (Lemma 2, [37]). If c ∈ (0, 1), for positive constants a1, a2, . . . , an,
there is an inequality

n∑
k=1

ack ≥

(
n∑
k=1

ak

)c
.

2.2. Model formulation

To begin with, consider the following SCSTD established on a digraph G with N
(N ≥ 2) vertices

dxi(t) =

(
f(xi(t), xi(t− τ), t) +

N∑
k=1

aikHik(xi(t), xk(t)) + I(t)

)
dt

+g(xi(t), t)dB(t), i ∈ L, t ≥ 0, (2.1)

where xi(t) =
(
x
(1)
i (t), x

(2)
i (t), . . . , x

(m)
i (t)

)T
∈ Rm for m ∈ Z+ represents the state

of the ith vertex system. Besides, f : Rm × Rm × R+ → Rm, g : Rm × R+ → Rm
are continuous functions, in which g stands for the disturbance intensity. And
τ ≥ 0 stands for time delay, and I(t) is external input vector. In addition, Hik :
Rm × Rm → Rm is coupling term and aik ≥ 0 is coupling coefficient.

For convenience, we denote

xij(t) = xj(t)− xi(t),

where xij(t) =
(
x
(1)
ij (t), x

(2)
ij (t), . . . , x

(m)
ij (t)

)T
. Suppose i (i ∈ L) is any fixed. For

the sake of investigating finite-time synchronization of SCSTD, a feedback controller
u(xij(t), t) is designed in the jth (j ∈ L, j 6= i) vertex system. Then the jth vertex
system with feedback control can be described as

dxj(t) =

(
f(xj(t), xj(t− τ), t) +

N∑
k=1

ajkHjk(xj(t), xk(t)) + I(t) + u(xij(t), t)

)
dt

+g(xj(t), t)dB(t), t ≥ 0,

thereinto, the controller u(xij(t), t) is designed as follows:

u(xij(t), t) = −αijxij(t)− sign(xij(t))|xij(t)|b

−
(∫ t

t−τ
θij‖xij(s)‖2ds

) 1+b
2 xij(t)

‖xij(t)‖2
, (2.2)

where αij , θij > 0, 0 < b < 1, and

sign(xij(t)) = diag
{

sign
(
x
(1)
ij (t)

)
, sign

(
x
(2)
ij (t)

)
, . . . , sign

(
x
(m)
ij (t)

)}
,

in which sign(·) is a sign function, and

|xij(t)|b =
(
|x(1)ij (t)|b, |x(2)ij (t)|b, . . . , |x(m)

ij (t)|b
)T

.
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Hence finite-time synchronization problem of system (2.1) is substituted by finite-
time stability problem of the following synchronization error system:

dxij(t) = (f(xj(t), xj(t− τ), t)− f(xi(t), xi(t− τ), t) + u(xij(t), t)) dt

+

(
N∑
k=1

ajkHjk(xj(t), xk(t))−
N∑
k=1

aikHik(xi(t), xk(t))

)
dt

+ (g(xj(t), t)− g(xi(t), t)) dB(t), i, j ∈ L, j 6= i, t ≥ 0.

(2.3)

Furthermore, define x(t)=
(
xTi1(t), . . . , xTi,i−1(t), xTi,i+1(t), . . . , xTiN (t)

)T∈R(N−1)m

and the initial conditions for system (2.3) are given by

x(t) = ψ(t), t ∈ [−τ, 0],

where ψ =
(
ψT
i1, . . . , ψ

T
i,i−1, ψ

T
i,i+1, . . . , ψ

T
iN

)T ∈ C ([−τ, 0];R(N−1)m) .
We end this subsection by introducing two definitions.

Definition 2.1. System (2.1) is said to be finite-time synchronized in probability,
if the trivial solution of system (2.3) is finite-time stable in probability, which means
system (2.3) admits a unique solution for any initial data ψ(t), denoted by x(t, ψ(t)),
moreover, the following statements hold:

(i) Finite-time attractiveness in probability: for every initial value ψ(t)∈R(N−1)m\
{0}, the first hitting time qψ(t) = inf{t : x(t, ψ(t)) = 0}, which is called the
stochastic settling time, is finite almost surely, which is P(qψ(t) <∞);

(ii) Stability in probability: for every pair of ε ∈ (0, 1) and κ > 0, there exists
a constant δ = δ(ε, κ) > 0 such that P (‖x(t, ψ(t))‖ < 0, t > 0) ≥ 1 − ε,
whenever sup−τ≤t≤0 ‖ψ(t)‖ < δ.

Definition 2.2. For function V (ij)(xij , t) ∈ C2,1(Rm ×R+;R+), i, j ∈ L, differen-
tial operator LV (ij)(xij , t) is defined by

LV (ij)(xij , t) = V (ij)
xij (f(xj , xj(t− τ), t)− f(xi, xi(t− τ), t) + u(xij , t))

+V (ij)
xij

(
N∑
k=1

ajkHjk(xj , xk)−
N∑
k=1

aikHik(xi, xk)

)

+
1

2
trace

(
(g(xj , t)− g(xi, t))

T
V (ij)
xijxij (g(xj , t)− g(xi, t))

)
+
∂V (ij)(xij , t)

∂t

where

V (ij)
xij =

(
∂V (ij)(xij , t)

∂x
(1)
ij

,
∂V (ij)(xij , t)

∂x
(2)
ij

, . . . ,
∂V (ij)(xij , t)

∂x
(m)
ij

)

and

V (ij)
xijxij =

(
∂2V (ij)(xij , t)

∂x
(p)
ij ∂x

(q)
ij

)
m×m

.
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3. Finite-time synchronization of SCSTD

First of all, a theorem that combines Kirchhoff’s Matrix Tree Theorem with Lya-
punov method will be put forward as follows.

Theorem 3.1. Assume that i (i ∈ L) is any fixed, for j ∈ L, j 6= i, there exists a
function V (ij)(xij , t) ∈ C2,1 (Rm × R+;R+). If the following conditions hold,

A1 There exist constants µij > 0, 0 < η < 1, ϑijk ≥ 0 and a function Mijk such
that

LV (ij)(xij , t) ≤ −µij
(
V (ij)(xij , t)

)η
+

N∑
k=1,k 6=i

ϑijkMijk(xik, xij),

in which V (ij)(xij , t) is a positive-definite and radially unbounded function.

A2 Digraph (G, C) is strongly connected in which C = (ϑijk)(N−1)×(N−1), and
along each directed cycle CQ of weighted digraph (G, C), there is∑

(s,r)∈U(CQ)

Mirs(xis, xir) ≤ 0.

then system (2.1) achieves synchronization in finite time t1 and the finite time
satisfies

E(t1) ≤ V 1−η(x(0), 0)

µ(1− η)
,

where µ = minj∈L,j 6=i

{
c1−ηij µij

}
and V (x(0), 0) =

∑N
j=1,j 6=i cijV

(ij)(xij(0), 0), in

which cij represents the cofactor of the jth diagonal element of Laplacian matrix of
(G, C).

Proof. For ease of exposition, we split the proof into the following two steps.

Step 1: We will prove that the trivial solution of system (2.3) is globally stable in
probability.
According to condition A1, we know that there are functions dij(·) (j ∈
L, j 6= i) such that

V (ij)(xij , t) ≥ dij(||xij ||).

Since digraph (G, C) is strongly connected, combined with Lemma 2.1, then
we can obtain cij > 0. Define Lyapunov function in the following:

V (x, t) =

N∑
j=1,j 6=i

cijV
(ij)(xij , t). (3.1)

Therefore, one can obtain

V (x, t) ≥
N∑

j=1,j 6=i

cijdij(||xij ||) ≥ cd
(

1

N
||x||

)
, d?(||x||),
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where c = minj∈L,j 6=i{cij} and d(·) = minj∈L,j 6=i {dij(·)}. Let ε ∈ (0, 1) and
κ ≥ 0 be arbitrary constants. Then, we choose a sufficiently small ρ > 0 such
that

1

ε
sup

x∈S(N−1)m
ρ

V (x, t) ≤ d?(κ). (3.2)

Define q = inf
{
t ≥ 0 : x(t) 6∈ S(N−1)m

κ

}
. According to condition A1, we get

LV (x, t) =

N∑
j=1,j 6=i

cijLV
(ij)(xij , t)

≤
N∑

j=1,j 6=i

cij

−µij (V (ij)(xij , t)
)η

+

N∑
k=1,k 6=i

ϑijkMijk(xik, xij)


≤

N∑
j=1,j 6=i

N∑
k=1,k 6=i

cijϑijkMijk(xik, xij). (3.3)

Owing to Lemma 2.1, it has

N∑
j=1,j 6=i

N∑
k=1,k 6=i

cijϑijkMijk(xik, xij) =
∑
Q∈Q

W (Q)
∑

(s,r)∈U(CQ)

Mirs(xir, xis).(3.4)

Combining equality (3.4) with condition A2, we have

N∑
j=1,j 6=i

N∑
k=1,k 6=i

cijϑijkMijk(xik, xij) ≤ 0. (3.5)

Hence, LV (x, t) ≤ 0. Besides, by the Itô’s formula, we have

E (V (x(q ∧ t), t)) ≤ V (x(0), 0). (3.6)

Moreover, we attain

E (V (x(q ∧ t), t)) ≥ E(Iq<tV (x(q), q)) ≥ d?(κ)E(Iq<t). (3.7)

Deriving from inequalities (3.6) and (3.7), there is P (q <∞) < ε, which means
P (||x(t)|| < κ, t ≥ 0) ≥ 1 − ε. Further, since function V (ij)(xij , t) is radially
unbounded, one has

lim
||x||→∞

inf
t≥0

V (x, t) = lim
||x||→∞

inf
t≥0


N∑

j=1,j 6=i

cijV
(ij)(xij , t)

 =∞.

According to reference [20], we can get that the trivial solution of system (2.3)
is globally stable in probability.

Step 2: We will prove that E(t1) < +∞.
Considering the definition of V (x, t) and condition A1, we obtain

LV (x, t)
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≤
N∑

j=1,j 6=i

cij

−µij (V (ij)(xij , t)
)η

+

N∑
k=1,k 6=i

ϑijkMijk(xik, xij)


≤ −

N∑
j=1,j 6=i

cijµij

(
V (ij)(xij , t)

)η
+

N∑
j=1,j 6=i

N∑
k=1,k 6=i

cijϑijkMijk(xik, xij). (3.8)

Combining inequality (3.5) with equality (3.1), inequality (3.8) can be substi-
tuted by

LV (x, t) ≤ −
N∑

j=1,j 6=i

cijµij

(
V (ij)(xij , t)

)η
≤ − min

j∈L,j 6=i

{
c1−ηij µij

}
V η(x, t) (3.9)

= −µV η(x, t).

Next, let us define a function

Q(V (x, t)) =

∫ V (x,t)

0

1

µsη
ds.

Because of x(0) 6= 0, there exists p ∈ Z+ such that 1
p < ‖x(0)‖ < p. Then,

denote

qp = inf

{
t ≥ 0 : ‖x(t, x(0))‖ 6∈

(
1

p
, p

)}
.

It is clear that qp is an increasing stopping time sequence. For t ≤ qp, accord-
ing to Definition 2.2, one has

LQ(V (x, t)) =
LV (x, t)

µV η(x, t)
− η

2µV η+1(x, t)
trace

(
N∑
k=1

[(
∂Vk
∂x

g

)T

·
(
∂Vk
∂x

g

)])
.

Combined with inequality (3.9), we derive that LQ(V (x, t)) ≤ −1. Hence,
under the theory of stochastic differential equations [20], we obtain that

E(Q(V (x(p ∧ qp), t)))− E(Q(V (x(0), 0))) ≤ −E(p ∧ qp),

which means that
E(p ∧ qp) ≤ Q(V (x(0), 0)).

Let p→∞, then we have p ∧ qp → t1, a.s. Moreover,

E(t1) ≤ Q(V (x(0), 0)) =

∫ V (x(0),0)

0

1

µsη
ds ≤ V 1−η(x(0), 0)

µ(1− η)
< +∞.

Therefore, it is derived that system (2.3) is finite-time stable, which means
synchronization of system (2.1) can be reached in finite time. The proof is complete.

Remark 3.1. In [29], authors combined Lyapunov-Krasovskii functional method
with matrix theory to research the finite-time global synchronization for a class
of Markovian jump complex networks and obtain the estimation of finite-time t∗.
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In this paper, by using Kirchhoff’s Matrix Tree Theorem method and Lyapunov
method, finite-time synchronization of SCSTD via feedback control is ensured by
conditions A1 and A2 in Theorem 3.1, and the finite time t1 is estimated by

E(t1) ≤ V 1−η(x(0),0)
µ(1−η) . Compared with [29], the finite time derived by us is relat-

ed to topological structure of SCSTD.

Next, for establishing the synchronization criteria employed easily, some general
assumptions are provided as follows.

Assumption 1. For the vector-valued function f , there exist positive constants ν
and λ, such that f satisfies the semi-Lipschitz condition:

(xj − xi)T (f(xj , yj , t)− f(xi, yi, t)) ≤ ν‖xj − xi‖2 + λ‖yj − yi‖2.

Assumption 2. For vector-valued function Hik (i, k ∈ L), there exists a positive
constant δik such that

‖Hik(xi, xk)‖ ≤ δik‖xik‖.

Assumption 3. Suppose vector-valued function g is Lipschitz continuous with a
Lipschitz constant ε > 0, such that

‖g(xj , t)− g(xi, t)‖ ≤ ε‖xij‖.

Then, a theorem based on Theorem 3.1 is provided to ensure the finite-time
synchronization of system (2.1) in the following.

Theorem 3.2. For any fixed i (i ∈ L), if Assumptions 1, 2, 3 and the following
conditions hold,

B1 For any j ∈ L, j 6= i, the following inequalities hold,

θij + 2ν + 3

N∑
k=1,k 6=i

ιijk + 2ajiδji − 2αij + ε2 < 0, 2λ− θij < 0,

where ιijk = 2(ajkδjk + aikδik).

B2 Assume that digraph (G, C) is strongly connected, where C = (ϑijk)(N−1)×(N−1),

with ϑijk =

 ιijk, j 6= k,

0, j = k.

then system (2.1) achieves finite-time synchronization. Denote η = 1+b
2 , µ =

minj∈L,j 6=i

{
c1−ηij µij

}
, and the finite time t1 is estimated by

E(t1) ≤ V 1−η(x(0), 0)

µ(1− η)
,

where V (x(0), 0) =
∑N
j=1,j 6=i cijV

(ij)(xij(0), 0) in which V (ij)(xij(0), 0) = ‖xij(0)‖2+

θij
∫ 0

−τ ‖xij(s)‖
2ds.
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Proof. Define function

V (ij)(xij(t), t) = ‖xij(t)‖2 + θij

∫ t

t−τ
‖xij(s)‖2ds.

It is obvious that V (ij)(xij(t), t) is a positive-definite and radially unbounded func-
tion. According to Definition 2.2, we derive

LV (ij)(xij(t), t)

= θij‖xij(t)‖2 − θij‖xij(t− τ)‖2 + ‖g(xj(t), t)− g(xi(t), t)‖2 + 2xTij(t)u(xij(t), t)

+2xTij(t)

(
f(xj(t), xj(t−τ), t)−f(xi(t), xi(t− τ), t) +

N∑
k=1

ajkHjk(xj(t), xk(t))

)

−2xTij(t)

N∑
k=1

aikHik(xi(t), xk(t)).

From Assumption 2, we have

2xTij(t)

(
N∑
k=1

ajkHjk(xj(t), xk(t))−
N∑
k=1

aikHik(xi(t), xk(t))

)

≤ 2‖xij(t)‖
N∑

k=1,k 6=i

(ajk‖Hjk(xj(t), xk(t))‖+ aik‖Hik(xi(t), xk(t))‖)

+2‖xij(t)aji‖Hji(xj(t), xi(t))‖

≤ 2‖xij(t)‖

 N∑
k=1,k 6=i

(ajkδjk‖xjk(t)‖+ aikδik‖xik(t)‖) + ajiδji‖xij(t)‖


≤

N∑
k=1,k 6=i

(
ajkδjk

(
‖xij(t)‖2 + ‖xjk(t)‖2

)
+ aikδik

(
‖xij(t)‖2 + ‖xik(t)‖2

))
+2ajiδji‖xij(t)‖2

≤
N∑

k=1,k 6=i

(ajkδjk + aikδik) ‖xij(t)‖2 + 2ajiδji‖xij(t)‖2

+

N∑
k=1,k 6=i

(ajkδjk + aikδik)
(
‖xjk(t)‖2 + ‖xik(t)‖2

)

≤

3

N∑
k=1,k 6=i

ιijk + 2ajiδji

 ‖xij(t)‖2 +

N∑
k=1,k 6=i

ιijk
(
‖xik(t)‖2 − |xij(t)‖2

)
.

Combine controller (2.2) with Lemma 2.2, then it has

xTij(t)u(xij(t), t)

= −αij‖xij(t)‖2 − xTij(t)sign(xij(t))|xij(t)|b −
(∫ t

t−τ
θij‖xij(s)‖2ds

) 1+b
2

≤ −αij‖xij(t)‖2 −
(
‖xij(t)‖2

) 1+b
2 −

(∫ t

t−τ
θij‖xij(s)‖2ds

) 1+b
2
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≤ −αij‖xij(t)‖2 −
(
‖xij(t)‖2 +

∫ t

t−τ
θij‖xij(s)‖2ds

) 1+b
2

.

Thus, by making use of Assumptions 1 and 3, we obtain

LV (ij)(xij(t), t)

≤ θij‖xij(t)‖2 − θij‖xij(t− τ)‖2 + 2ν‖xij(t)‖2 + 2λ‖xij(t− τ)‖2

+

3

N∑
k=1,k 6=i

ιijk + 2ajiδji

 ‖xij(t)‖2 +

N∑
k=1,k 6=i

ιijk
(
‖xik(t)‖2 − ‖xjk(t)‖2

)

−2αij‖xij(t)‖2 − 2

(
‖xij(t)‖2 +

∫ t

t−τ
θij‖xij(s)‖2ds

) 1+b
2

+ ε2‖xij(t)‖2

=

θij + 2ν + 3

N∑
k=1,k 6=i

ιijk + 2ajiδji − 2αij + ε2

 ‖xij(t)‖2
+(2λ− θij)‖xij(t− τ)‖2 +

N∑
k=1,k 6=i

ιijk
(
‖xik(t)‖2 − ‖xij(t)‖2

)
−2

(
‖xij(t)‖2 +

∫ t

t−τ
θij‖xij(s)‖2ds

) 1+b
2

.

Furthermore, using condition B1, it is easily obtained that

LV (ij)(xij(t), t)

≤
N∑

k=1,k 6=i

ιijk
(
‖xik(t)‖2 − ‖xij(t)‖2

)
− 2

(
‖xij(t)‖2 +

∫ t

t−τ
θij‖xij(s)‖2ds

) 1+b
2

≤ −2
(
V (ij)(xij(t), t)

) 1+b
2

+

N∑
k=1,k 6=i

ιijk
(
‖xik(t)‖2 − ‖xij(t)‖2

)
.

Let µij = 2, η = 1+b
2 , and Mijk(xik(t), xij(t)) = ‖xik(t)‖2 − ‖xij(t)‖2, then, it has

LV (ij)(xij(t), t) ≤ −µij
(
V (ij)(xij(t), t)

)η
+

N∑
k=1,k 6=i

ιijkMijk(xik(t), xij(t)).

From Theorem 3.1, system (2.1) achieves synchronization in finite time t1, here t1
is estimated by

E(t1) ≤ V 1−η(x(0), 0)

µ(1− η)
.

This completes the proof.

Remark 3.2. Considering the practical applications, it is difficult to construct a
global Lyapunov function directly to study finite-time synchronization of stochastic
coupled systems. In Theorem 3.1, by means of the Lyapunov function of each vertex
system, a theoretical framework to construct a proper global Lyapunov function
is obtained, which is proposed in [15]. Besides, we give Theorem 3.2 with novel
sufficient conditions verified more easily to guarantee system (2.1) is synchronized
in finite time.
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4. Applications and numerical examples

4.1. An application to stochastic coupled oscillators with time
delay

It is known that one type of stochastic oscillator equations [17] is

ẍ(t) + ϕẋ(t) + ρ̃x(t) = g(x(t), t)Ḃ(t), t ≥ 0,

where ϕ > 0, and ρ̃ > 0 is the damping constant, g : R × R+ → R represents
the disturbance intensity. Taking time delay, external input and coupling factors
into account, we arrive at stochastic coupled oscillators (SCO) with time delay of
second-order differential equations:

ẍi(t)+ϕẋi(t)+ρ̃xi(t−τ)+

N∑
k=1

aikHik(xi(t), xk(t))+I(t)=g(xi(t), t)Ḃ(t), i ∈ L, t ≥ 0,

(4.1)
where xi(t) ∈ R stands for the state of the ith vertex system, τ ≥ 0 is time delay,
I(t) is external input, Hik : R×R→ R is the coupling term and aik ≥ 0 is coupling
coefficient.

By making a transform of x̃i(t) = ẋi(t) + ξxi(t), in which ξ > 0, system (4.1) is
rewritten as

dxi(t) = (x̃i(t)− ξxi(t))dt,

dx̃i(t) =
(
(ξ − ϕ)x̃i(t) + (ξϕ− ξ2)xi(t)− ρ̃xi(t− τ)− I(t)

)
dt

−
N∑
k=1

aikHik(xi(t), xk(t))dt+ g(xi(t), t)dB(t),

i ∈ L, t ≥ 0.(4.2)

Firstly, we make the following notations: Xi(t) = (xi(t), x̃i(t))
T and let

f̃(Xi(t), Xi(t− τ), t) =

 x̃i(t)− ξxi(t)

(ξ − ϕ)x̃i(t) + (ξϕ− ξ2)xi(t)− ρ̃xi(t− τ)

 , (4.3)

Ĩ(t) =

 0

−I(t)

 , g̃(Xi(t), t) =

 0

g(xi(t), t)


and

H̃ik(Xi(t), Xk(t)) =

 0

−Hik(xi(t), xk(t))

 .

Thus system (4.2) can be substituted by

dXi(t) =

(
f̃(Xi(t), Xi(t− τ), t) +

N∑
k=1

aikH̃ik(Xi(t), Xk(t)) + Ĩ(t)

)
dt

+g̃(Xi(t), t)dB(t), i ∈ L, t ≥ 0. (4.4)
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For convenience, set

Zij(t) , Xj(t)−Xi(t) =

xj(t)

x̃j(t)

−
xi(t)

x̃i(t)

 =

xij(t)

x̃ij(t)

 .

In order to make system (4.4) be synchronized in finite time, a controller ũ(Zij(t), t)
will be affiliated and the jth (j ∈ L, j 6= i) vertex system is described as:

dXj(t) =

(
f̃(Xj(t), Xj(t−τ), t)+

N∑
k=1

ajkH̃jk(Xj(t), Xk(t))+Ĩ(t)+ũ(Zij(t), t)

)
dt

+ g̃(Xj(t), t)dB(t), t ≥ 0,

where

ũ(Zij(t), t)

= −αijZij(t)− sign(Zij(t))|Zij(t)|b −
(∫ t

t−τ
θij‖Zij(s)‖2ds

) 1+b
2 Zij(t)

‖Zij(t)‖2
,

where αij > 0, 0 < b < 1, θij > 0 and sign(Zij(t)) = diag {sign(xij(t)), sign(x̃ij(t))}
in which sign(·) is a sign function, and |Zij(t)|b = (|xij(t)|b, |x̃ij(t)|b)T. Then, we
can get immediately the following synchronization error system:

dZij(t) =
(
f̃(Xj(t), Xj(t− τ), t)− f̃(Xi(t), Xi(t− τ), t) + ũ(Zij(t), t)

)
dt

+

(
N∑
k=1

ajkH̃jk(Xj(t), Xk(t))−
N∑
k=1

aikH̃ik(Xi(t), Xk(t))

)
dt (4.5)

+ (g̃(Xj(t), t)− g̃(Xi(t), t)) dB(t), i, j ∈ L, j 6= i, t ≥ 0.

Furthermore, we will introduce a theorem about finite-time synchronization of
system (4.4) in the following.

Theorem 4.1. Assume that i (i ∈ L) is any fixed and the following conditions
hold,

C1 For any j ∈ L (j 6= i), there exists a positive constant β such that

‖g(xj , t)− g(xi, t)‖ ≤ β‖xij‖.

C2 For any j, k ∈ L, there exists a positive constant γjk such that

‖Hjk(xj , xk)‖ ≤ γjk‖xjk‖.

C3 Digraph (G, C) is strongly connected, where C = (ςijk)(N−1)×(N−1) with ςijk =2(ajkγik + aikγik), j 6= k,

0, j = k,
and the following inequalities hold.

θij + 2σ + 3

N∑
k=1,k 6=i

ςijk + 2ajiγji − 2αij + β2 < 0, and ρ̃− θij < 0,
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where

σ = max

{
|ξϕ− ξ2 + 1| − 2ξ

2
,
|ξϕ− ξ2 + 1|+ 2(ξ − ϕ) + ρ̃

2

}
> 0.

then system (4.4) achieves synchronization in finite time.

Proof. To begin with, owing to notation (4.3), we have

ZT
ij(t)

(
f̃(Xj(t), Xj(t− τ), t)− f̃(Xi(t), Xi(t− τ), t)

)
= (ξϕ− ξ2 + 1)(xj(t)− xi(t))T(x̃j(t)− x̃i(t))− ξ‖xj(t)− xi(t)‖2

+(ξ − ϕ)‖x̃j(t)− x̃i(t)‖2 − ρ̃(x̃j(t)− x̃i(t))T(xj(t− τ)− xi(t− τ))

≤ |ξϕ− ξ
2 + 1|

2

(
‖xj(t)− xi(t)‖2 + ‖x̃j(t)− x̃i(t)‖2

)
− ξ‖xj(t)− xi(t)‖2

+(ξ − ϕ)‖x̃j(t)− x̃i(t)‖2 +
ρ̃

2

(
‖x̃j(t)− x̃i(t)‖2 + ‖xj(t− τ)− xi(t− τ)‖2

)
≤ |ξϕ−ξ

2 + 1| − 2ξ

2
‖xj(t)−xi(t)‖2+

|ξϕ− ξ2 + 1|+2(ξ−ϕ)+ρ̃

2
‖x̃j(t)−x̃i(t)‖2

+
ρ̃

2
‖xj(t− τ)− xi(t− τ)‖2

≤ σ
(
‖xj(t)− xi(t)‖2 + ‖x̃j(t)− x̃i(t)‖2

)
+
ρ̃

2

(
‖xj(t− τ)− xi(t− τ)‖2 + ‖x̃j(t− τ)− x̃i(t− τ)‖2

)
.

That is to say

ZT
ij(t)

(
f̃(Xj(t), Xj(t−τ), t)−f̃(Xi(t), Xi(t−τ), t)

)
≤ σ‖Zij(t)‖2+

ρ̃

2
‖Zij(t−τ)‖2.

Besides, according to condition C1, we have

‖g̃(Xj(t), t)−g̃(Xi(t), t)‖2 =‖g(xj(t), t)−g(xi(t), t)‖2 ≤ β2‖xij(t)‖2≤β2‖Zij(t)‖2,

namely,
‖g̃(Xj(t), t)− g̃(Xi(t), t)‖ ≤ β‖Zij(t)‖.

In addition, according to condition C2, it is obtained that

‖H̃ik (Xi(t), Xk(t)) ‖2 = ‖Hik(xi(t), xk(t))‖2 ≤ γ2ik‖xi(t)− xk(t)‖2 ≤ γ2ik‖Zik(t)‖2.

Hence, it yields
‖H̃ik (Xi(t), Xk(t)) ‖ ≤ γik‖Zik(t)‖.

Based on the discussion above, we can easily obtain that Assumptions 1, 2 and
3 hold. In addition, from condition C3, we derive that conditions B1 and B2 in
Theorem 3.2 are fulfilled. In other words, all conditions in Theorem 3.2 hold.
Therefore, system (4.4) achieves synchronization in finite time.

Remark 4.1. Stability of stochastic coupled oscillators has been widely studied
recently [17,19, 28, 39]. For example, authors in [17] have investigated global expo-
nential stability for stochastic networks of coupled oscillators with variable delay.
As is known, synchronization problem can be translated into stability problem of
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synchronization error system. However, synchronization, especially finite-time syn-
chronization, plays a more important role in real life. Thus, it is more practical to
consider finite-time synchronization of SCO. In this paper, it is worth noting that
Theorem 4.1 provides us with an easily verifiable sufficient criterion for SCO. To the
best of our knowledge, the approach combining Kirchhoff’s Matrix Tree Theorem
with Lyapunov method is first utilized to consider the finite-time synchronization
problem of SCO.

Example 4.1. In succession, a simple example is provided to illustrate the effec-
tiveness of our main results derived above.

For the sake of simplification, we consider aforementioned SCO with time delay
(4.4). Let N = 5, a11 = 0, a12 = 0.01, a13 = 0.008, a14 = 0.005, a15 = 0.003,
a21 = 0.1, a22 = 0, a23 = 0.044, a24 = 0.023, a25 = 0.015, a31 = 0.2, a32 = 0.03,
a33 = 0, a34 = 0.009, a35 = 0.019, a41 = 0.3, a42 = 0.15, a43 = 0.006, a44 = 0,
a45 = 0.025, a51 = 0.4, a52 = 0.02, a53 = 0.006, a54 = 0.019, a55 = 0. Then, we
choose time delay τ = 1 and let Hik(xi, xk) = xi − xk, g(xi, t) = sin(πxi) + xi + t
and I(t) = 20 cos(πt). We can derive that β = 2, γik = 1. Besides, for fixed i = 1,
and j, k = 2, 3, 4, 5, digraph (G, C) is strongly connected since matrix

C = (ς1jk)4×4 =


0 0.104 0.056 0.036

0.08 0 0.028 0.044

0.32 0.028 0 0.056

0.06 0.028 0.048 0


is irreducible. In addition, we make ξ = 0.1, ϕ = 0.05 and ρ̃ = 2.4. Thus, σ =
1.7475.

The synchronization error system without control is shown by Figure 1, from
which, we can get that system (4.4) does not achieve finite-time synchronization.

Figure 1. The trajectory of synchronization error system without control.
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In order to make system (4.4) achieve synchronization within finite time, the
controller is designed as follows (j = 2, 3, 4, 5)

ũ(Z1j(t), t)

= −α1jZ1j(t)− sign(Z1j(t))|Z1j(t)|0.4 −
(∫ t

t−τ
θij‖Z1j(s)‖2ds

)0.7
Z1j(t)

‖Z1j(t)‖2
,

where α12 = 5.5, α13 = 5.5, α14 = 5.7, α15 = 5.4, θ12 = 2.8, θ13 = 3, θ14 = 2.5 and
θ15 = 2.7. Then

max
j=2,3,4,5

{
θ1j + 2σ + 3

5∑
k=2

ς1jk + 2aj1γj1 − 2α1j + β2

}
= max {−0.097,−0.033,−0.183,−0.194} ≤ 0.

It is easy to check that all conditions from Theorem 4.1 are satisfied.
Figure 2 shows the trajectories of synchronization error system (4.5). It is obvi-

ous that the synchronization errors tend to zero. Therefore, system (4.4) achieves
finite-time synchronization. The corresponding numerical results illustrate the ef-
fectiveness and feasibility of our theoretical results.
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Figure 2. The trajectories of synchronization error system (4.5).

4.2. An application to stochastic Lorenz chaotic coupled sys-
tems with time delay

Consider the following time-delay Lorenz chaotic systems [24] as below
ẋi1(t) = 10xi2(t− τ)− 10xi1(t),

ẋi2(t) = 28xi1(t)− xi2(t)− xi1(t)xi3(t), i ∈ L,

ẋi3(t) = xi1(t)xi2(t)− 8
3xi3(t− τ),
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where xi1(t), xi2(t), xi3(t) ∈ R are state variables, τ ≥ 0 stands for time delay. In

the following, for convenience, set xi(t) = (xi1(t), xi2(t), xi3(t))T and f̂(xi(t), xi(t−
τ), t) = (10xi2(t−τ)−10xi1(t), 28xi1(t)−xi2(t)−xi1(t)xi3(t), xi1(t)xi2(t)− 8

3xi3(t−
τ))T.

Taking coupling factors and stochastic disturbance into consideration, the fol-
lowing stochastic Lorenz chaotic coupled systems with time delay can be expressed
as

dxi(t) =

(
f̂(xi(t), xi(t− τ), t) +

N∑
k=1

aikĤik(xi(t), xk(t)) + I(t)

)
dt

+ĝ(xi(t), t)dB(t), i ∈ L, t ≥ 0. (4.6)

where xi(t) represents the state of the ith vertex system, ĝ : R3 × R+ → R3 is
a continuous function, which stands for the disturbance intensity. Function Ĥik :
R3×R3 → R3 is coupling term and aik ≥ 0 is coupling strength. And I(t) is external
input vector. As we all know, the attractor of stochastic Lorenz chaotic coupled
systems with time delay is bounded, that is to say, there are positive constants Mis,
such that |xis(t)| ≤Mis, s = 1, 2, 3, i ∈ L.

Define error vector as

yij(t) = xj(t)− xi(t) =


xj1(t)− xi1(t)

xj2(t)− xi2(t)

xj3(t)− xi3(t)

 ,

where yij(t) = (yij1(t), yij2(t), yij3(t))T, yijs(t) = xjs(t)− xis(t), s = 1, 2, 3.
For the sake of achieving the finite-time synchronization of system (4.6), a suit-

able feedback control û(yij(t), t) is utilized, and the jth vertex system can be de-
scribed as

dxj(t) =

(
f̂(xj(t), xj(t− τ), t) +

N∑
k=1

ajkĤjk(xj(t), xk(t)) + I(t)

)
dt

+ĝ(xj(t), t)dB(t), t ≥ 0,

in which

û(yij(t), t)

= −αijyij(t)− sign(yij(t))|yij(t)|b −
(∫ t

t−τ
θij‖yij(s)‖2ds

) 1+b
2 yij(t)

‖yij(t)‖2
,

where αij > 0, 0 < b < 1, θij > 0. Then, the following synchronization error system
can be derived:

dyij(t) =
(
f̂(xj(t), xj(t− τ), t)− f̂(xi(t), xi(t− τ), t) + û(yij(t), t)

)
dt

+

(
N∑
k=1

ajkĤjk(xj(t), xk(t))−
N∑
k=1

aikĤik(xi(t), xk(t))

)
dt (4.7)

+ (ĝ(xj(t), t)− ĝ(xi(t), t)) dB(t), i, j ∈ L, j 6= i, t ≥ 0.

Subsequently, a theorem which ensures system (4.6) to realize finite-time syn-
chronization is presented.
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Theorem 4.2. Assume that i (i ∈ L) is any fixed and the following conditions
hold,

D1 For any j ∈ L (j 6= i), there is a positive constant β̂ such that

‖ĝ(xj , t)− ĝ(xi, t)‖ ≤ β̂‖yij‖.

D2 For any j, k ∈ L, there is a positive constant γ̂jk such that

‖Ĥjk(xj , xk)‖ ≤ γ̂jk‖yjk‖.

D3 Digraph (G, D) is strongly connected, where D = (εijk)(N−1)×(N−1) with εijk =2(ajkγ̂ik + aikγ̂ik), j 6= k,

0, j = k,
and the following inequalities are satisfied.

θij + 2σ̂ + 3

N∑
k=1,k 6=i

εijk + 2ajiγ̂ji − 2αij + β̂2 < 0, and 10− θij < 0,

where

σ̂ = max

{
9 +

Mi2 +Mi3

2
, 14 +

Mi3

2
,

8 + 3Mi3

6

}
.

then system (4.6) achieves finite-time synchronization.

Proof. According to condition D1 and D2, it is easy to observe that Assumptions
2 and 3 are fulfilled. In the next, we will prove that Assumption 1 can be satisfied.

In fact, notice that

(xj − xi)T(f̂(t, xj)− f̂(t, xi))

= (yij1, yij2, yij3)


10(yij2(t− τ)− yij1)

28yij1 − yij2 − xj1xj3 + xi1xi3

xj1xj2 − xi1xi2 − 8
3yij3(t− τ)


≤
(

9 +
Mi2 +Mi3

2

)
y2ij1 +

(
14 +

Mi3

2

)
y2ij2 +

8 + 3Mi3

6
y2ij3

+5y2ij2(t− τ) +
4

3
y2ij3(t− τ)

≤ σ̂‖yij(t)‖2 + 5‖yij(t− τ)‖2. (4.8)

Hence, from above (4.8), Assumption 1 holds. Combined with condition D3, all
conditions in Theorem 3.2 are satisfied. Therefore, system (4.6) achieves finite-time
synchronization. This ends the proof.

Remark 4.2. Currently, with the development of chaotic synchronization in secure
communication, synchronization of chaotic systems has attracted the increasing
attention of researchers. For example, in [1], finite-time synchronization of two
different chaotic systems with unknown parameters was studied by sliding mode
technique. Robust finite-time anti-synchronization of chaotic systems with different



Finite-time synchronization 19

dimensions was investigated in [2]. In this paper, we consider not only time delay,
but also stochastic disturbance into Lorenz systems, which is more practical. It
is worth pointing out that finite-time synchronization of stochastic Lorenz chaotic
coupled systems with time delay is studied for the first time.

Example 4.2. Next, a numerical example is also given to illustrate the effectiveness
of theoretic results. Consider stochastic Lorenz chaotic coupled systems with time
delay (4.6). Let N = 6, a11 = 0, a12 = 0.1, a13 = 0.8, a14 = 0.5, a15 = 0.3,
a16 = 0.2, a21 = 0.1, a22 = 0, a23 = 0.044, a24 = 0.52, a250.23, a26 = 0.15,
a31 = 0.2, a32 = 0.03, a33 = 0, a34 = 0.9, a35 = 0.2, a36 = 0.13, a41 = 0.3,
a42 = 0.15, a43 = 0.34, a44 = 0, a45 = 0.17, a46 = 0.29, a51 = 0.4, a52 = 0.3,
a53 = 0.37, a54 = 0.9, a55 = 0, a56 = 0.02, a61 = 0.4, a62 = 0.02, a63 = 0.06,
a64 = 0.01, a65 = 0.02, a66 = 0. We set time delay as τ = 0.01, and choose
Hik(xi, xk) = sin(xi − xk), g(xi, t) = sin(πxi). Then we can obtain that β̂ = 1,
γ̂ik = 1. Besides, for convenience, we fixed i = 1. It is obvious that digraph (G, D)
is strongly connected because

D = (ε1jk)5×5 =



0 1.688 2.04 1.06 0.7

0.26 0 2.8 1 0.66

0.5 2.28 0 0.94 0.98

0.8 2.34 2.8 0 0.44

0.24 1.72 1.02 0.64 0


is irreducible.

When i = 1, the following vertex system can be derived as

dx1(t) =

(
f̂(x1(t), x1(t− τ), t) +

N∑
k=1

a1kĤ1k(x1(t), xk(t)) + I(t)

)
dt

+ĝ(x1(t), t)dB(t), t ≥ 0, (4.9)

whose attractor is shown in Figure 3. Hence, we can get M11 = 21.36, M12 =
28.7443, M13 = 54.024 and σ̂ = max{50.3841, 41.012, 28.3453} = 50.3841.
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Figure 3. The attractor of vertex system (4.9).
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Besides, the trajectories of synchronization error system (4.7) without control is
shown by Figure 4. It is evident that system (4.6) is not synchronized.
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x41(t)− x11(t)

x42(t)− x12(t)
x43(t)− x13(t)
x51(t)− x11(t)
x52(t)− x12(t)
x53(t)− x13(t)
x61(t)− x11(t)
x62(t)− x12(t)
x63(t)− x13(t)

Figure 4. The trajectories of synchronization error system (4.7) without control.

For the sake of achieving the finite-time synchronization of system (4.6), feedback
control û(yij(t), t) is utilized as

û(y1j(t), t)

= −α1jy1j(t)− sign(y1j(t))|y1j(t)|0.4 −
(∫ t

t−τ
θ1j‖y1j(s)‖2ds

)0.7
y1j(t)

‖y1j(t)‖2
,

where α1j = 66, θ1j = 10.02.
By simple calculation, we have

max
j=2,3,4,5,6

{
θ1j + 2σ̂1 + 3

N∑
k=2

ε1jk + 2aj1γ̂j1 − 2α1j + β̂2

}
= max{−3.5478,−5.8518,−5.9118,−0.8718,−9.1518} < 0,

and

10− θ1j = −0.02 < 0.

It is easy to know that all conditions of Theorem 4.2 are satisfied.
Figure 5 shows the trajectories of synchronization error system (4.7), which im-

plies that system (4.6) achieves finite-time synchronization. The simulation results
demonstrate the effectiveness and feasibility of our theoretical results.
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