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Abstract In this paper, we study the uniqueness of meromorphic functions

that share two small functions with their derivatives. We prove the following
N(r.f)
T <
%8, and let a, b be two distinct small functions of f with a Z oo and b # oo.
If f and f’ share a and b IM, then f = f'.

result: Let f be a nonconstant meromorphic function such that lim
T— 00
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1. Introduction and Main Results

Throughout this paper, we assume that the reader is familiar with the basic notions
of Nevanlinna value distribution theory, see [5-7,9,18,19]. In the following, a
meromorphic function always means meromorphic in the whole complex plane. By
S(r, f), we denote any quantity satisfying S(r, f) = o(T'(r, f)) as r — oo outside of
an exceptional set of finite linear measure. Let f(z) and a be meromorphic functions
and a is said a small function of f if and only if T'(r,a) = S(r, f).

Let a be both a small function of f and a small function of g. We say that two
nonconstant meromorphic functions f and g share the small function a IM(CM) if
f —aand g — a have the same zeros ignoring multiplicities (counting multiplicities)
[14,16]. If @ is a constant, then we say that f and g share the value a IM(CM) [15].
Moreover, we introduce the following denotations: S, »)(a) = {z|z is a common
zero of f —a and f’ — a with multiplicities m and n respectively}. N(m7,,,) (r, ﬁ)
denotes the counting function of f with respect to the set S, »)(a). Nn) (r, ﬁ)
denotes the counting function of all zeros of f — a with multiplicities n at most.

N(n(r, ﬁ) denotes the counting function of all zeros of f — a with multiplicities

n at least. N,(r, ﬁ) denotes the counting function of all zeros of f — a with
multiplicities n.
In 1977, Rubel and Yang [13] proved
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Theorem 1.1. Let f be a monconstant entire function, and let a and b be two
distinct finite values. If f and f’ share a, b CM, then f = f’.

Since then, there were a lot of researches on this topic, such as [1,2,4,10-12,20].
In 1979, Mues and Steinmetz [10] improved Theorem 1.1 and obtained

Theorem 1.2. Let f be a monconstant entire function, and let a and b be two
distinct finite values. If f and f' share a, b IM, then f = f'.

In 1983, Gundersen [4] and Mues and Steinmetz [11] improved Theorem 1.1 and
obtained

Theorem 1.3. Let f be a nonconstant meromorphic function, and let a and b be
two distinct finite values. If f and [’ share a, b CM, then f = f'.

In 1992, Zheng and Wang [20] considered the case of sharing small functions
and proved

Theorem 1.4. Let f be a nonconstant entire function, and let a and b be two
distinct small functions of f with a Z co and b # oco. If f and f' share a and b
CM, then f = f'.

In 2000, Qiu [12] improved Theorem 1.2, Theorem 1.4 and proved

Theorem 1.5. Let f be a monconstant entire function, and let a and b be two
distinct small functions of f with a % oo and b # co. If f and f' share a and b IM,
then f = f'.

Example 1.1 ( [8]). Let f =8+ (8 —«a)/(h — 1), where

Set a = 8',b =a'. Then T(r,a) = S(r, f) and T(r,b) = S(r, f). It is easy to verify
that

ff—a=e¢*(f—a)(f-B), f —b=e**(f-b)(f—-a).

Thus f and f’ share a and b IM, but f # f’. This example shows that the conclusion
in Theorem 1.5 is not valid for meromorphic functions.

Example 1.2. Let f = 1_%22 Then f and f’ share 0 CM and share 1 IM, but
VN

This example shows that for meromorphic functions, the conclusion doesn’t hold
any more when they share one constant CM and another constant IM.

In this paper, using the methods different from [12], we improve Theorem 1.5
and prove the following result.
N(r.f)
() <
3, and let a, b be two distinct small functions of f with a % oo and b # oo. If f

1287
and [’ share a and b IM, then f = f'.

Theorem 1.6. Let f be a nonconstant meromorphic function such that lim
T—>00
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2. Some Lemmas

Lemma 2.1 ( [17]). Let f be a nonconstant meromorphic function, and let P =
aof™ + -+ an—1f + an(ap #0), where a,(n =0,1,2,---) are constants. Then

T(r,P)=nT(r, f)+ S(r, f).

Lemma 2.2 ( [18]). Let f be a nonconstant meromorphic function, and let ¢p =
aof +arf' 4+ +apf®(ap #0, k> 1), where ar(k = 0,1,2,---) are constants.
Then

and
T(r,) < T(r, f) + kN (r, f) + S(r, ).

Lemma 2.3 ( [3]). Let f be a nonconstant meromorphic function, and let f*P(f) =
Q(f), where P(f) and Q(f) are differential polynomials in f and the degree of Q(f)
is at most n. Then

m(r, P(f)) = S(r, f)-

Lemma 2.4 ( [12]). Let f be a nonconstant meromorphic function, and let a and
b be two distinct small functions of f with a #Z oo and b # co. Set

f—a a—-2» f—b a—0»

A(f) = - .
f/_a/a/_b/ f/_b/a/_b/
Then
(1) A(f) #0,
A, _ TN
(2) (nf_a)—S(J% (,f_b) S(r, f),
NG
(3) m(r’(f—a)(f—b))_s(’f)’
AN =) | _ g
(@) w0 Gp o) = S0 ),

where B is a small function of f.

Lemma 2.5. Let f be a nonconstant meromorphic function, and let a and b be
two distinct small functions of f with a £ oo and b # oo. Assume that ¢, =
a+k(a—0b), (k=1,2,---,n). Then

= 1 - 1 =\ 1 =
(VT ) < N G N g+ N 4N )50 1)
Proof. It is easy to see from ¢y = a + k(a — b) that ¢ #Z a, ¢, Z b and ¢ (k =
1,2,-+- ,n) are distinct small functions of f. Let
pod=a

b—a’
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then
T(r,F)=T(r, )+ S(r f).

By the Second Fundamental Theorem, we have

(n+1)T(r,F) SN(r,F)—!—N(r,%)—i—]\_f(r,Fl_1)+ZN(T,%M)+S(T,F)

=

1 - 1 L
< (Tym)‘FN(Tam)‘F;N(’Vm

Thus
(n+1)T(r, f') < N(r, ﬁ)—&-ﬁ(r, fllb)—&-zn: N(r, HHN(?«, I+S(r, f).

This completes the proof of Lemma 2.5.

3. The proof of Theorem 1.6

We prove Theorem 1.6 by contradiction.
Assume that f # f’. Since f and f’ share a and b IM, then by the Second
Fundamental Theorem, we get

(r,ﬁ)—i—]\_f(r,fib

)+ N )+ N ) £ S0 )

b
<3T(r, f) + S(r, f),

=

T(r, f) < )+ N(r, f)+S(r, f)

= N(r

and

)+ Nl ) + NG ) + 50 £)
= N ) + N )+ N )+ (0. f)

<3T(r, )+ S(r, ).

T(r,f') < N(r

Therefore
S(r, f) = 5(r, f). (3.1)
Set
_ANU S
(f —a)(f =)’
where A(f) is defined by Lemma 2.4.

Obviously, ¢ # 0. It follows from the fact that f and f’ share a and b IM and
(3.2) that N(r,¢) = 2N(r, f) + S(r, f). By Lemma 2.2 and Lemma 2.4, we have

ADF
Faf—p) Tt ) =500,

m(r, o) < m(r, 7
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Thus
T(r,p) < 2N(r, f) + S(r, f).

Since f and f’ share a and b IM, we get

_ 1 _ 1
N(r,m)—i—N(r,ﬁ

1
)+ S )
<T( [~ )+ 5(r, )
:N(ﬂf*f/)er(Taf*f/)+S(Taf)
= N(r. ') +m(r f(1 - %)) S0 f)
< N(.f) + N(r, f) + mlr, f) + S(r. f)
=T(rf) -l—N(r,f) + S(r, f). (3.3)

By (3.2), we have

)

<N,

p(f —a)(f =b) = AN = f)
From the definition of A(f), we get
[o— (@ = V)f? = bif +baf + b3 f '+ ba(f')* +bs, (3-4)

where by = ab/ —ba’ + (a+b)p, bog =ba’ —ab', b3 =b+V —a—a’, by =a—b, bs =
—abp. Next, we discuss the following two cases.
Case 1. ¢ — (a/ = V') £0. By (3.4), we have

2m(r, f) < m(r, T_W)—Fm(r,f(bl—kbgj; +bs f'+baf ]}’))—Fm(r bs)+S(r, f)
< T(r,p) +m(r, f) +m(r, f'(bs +b4§))+5(r f)

<2N(r, f) +m(r, f) +m(r, f') + S(r, f).
It follows that
m(r, f) S2N(r, f) + m(r, f') + S(r, f).
Since N(r, f') = N(r, f) + N(r, f), then we get
T(r,f) ST(r f')+ N(r. f) + S(r, f). (3.5)

Let ¢ = a+ k(a —b) (k # 0,—1). By the First Fundamental Theorem, Lemma
2.5, (3.3) and (3.5), we have

N, f,l_a

— 1 - 1
<N(Tam)+N( = b)
<T(r, f)+ N(r, f) +T(r, f') — m(r, =

o)+ 50.0).

27°(r, f') ) TN )+ S0 )

N

1 1
)+ N ) + N
+ N(r, fl Y+ N(r, f)+S(r, f)
1

)+ N 1) + 50, )

<20(r, f') + 3N (r, f) — m(r,
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Thus )
ﬁ)<3]\7(7”’f)+5(7“7f)~ (3.6)

On the other hand, it follows from the First Fundamental Theorem, Lemma 2.2,
(3.5) and (3.6) that we get

m(r,

m(r, J{,:CC) =T(r, J}:Cc) — N(r, J{,:CC) +0(1)
(e, Y _Cf)j_(fc —C)HN(nJ}__CC)—N(T7J{,__CC)+0(1)
<mr L2y 4 ) 4 N ) + N -
— N(r, f —¢)— N(r, fll_c)—i-S(r,f)
< T )+ N ) = N 5r0) + (0. )
=T 0) + N ) = T )+l 57) + 50)
gT(r,f)—T(r,f’)—|—4]\_f(r,f)+5(r,f)
<BN(r, f) + S(r, f). (3.7)
Set

o A1)
(f' —a)(f' = b)’
where A(f’) is defined by Lemma 2.4. B
Obviously, x # 0. It is easy to see from (3.8) that N(r,x) = N(r, f) + S(r, f).
From (3.8), we have

Ca—e AY) b-c AU, S
Al ey iy gy AL

—1).

By Lemma 2.4 and (3.7), we get

m(r,x) <5N(r, f) + S(r, f).
Thus
T(r,x) <6N(r, f) + S(r, f).

Let
Hn,m =ny —mx,

where n and m are positive integers. Next, we consider two cases.
Case 1.1 np —myx = 0. By (3.2) and (3.8), we have

r AR "o "ol
pl= SV e
f—a f—0b ff—a =90
Solving the above equation, which means
f_an f/_a’m
(ffb) Ecl(f,ib) , (3.9)
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where C1 is a nonzero constant. In the following, we discuss three subcases.
Case 1.1.1 n = m. By (3.9), we get

T :Cgf/ 5 (3.10)
where C5 is a nonzero constant. Since f # f’, thus Cy # 1. So by (3.10) we have
T(r,f) = Tlr, ')+ S(r, ), (3.11)
and
f[(l - Cg)f/ + Cha — b] = (a — Cgb)f/ — (1 — Cg)ab. (3.12)
Case 1.1.1.1 (1 — Cy) f' 4+ Coa — b # 0. It follows from (3.12) that
N(r, f)=5(r ). (3.13)

By Lemma 2.3 and (3.12), we get
m(r, (1 = Co)f' + Coa — b) = S(r, f),

which means m(r, f') = S(r, f). Combining this with (3.11) and (3.13), we have

T(r,f)=T(r f")+S(r, f) =N(r, )+ S(r, f)
=N(r,f)+ N(r, f) + S(r. f)
ZS(T,f),

a contradiction.
Case 1.1.1.2 (1 — C)f' + Coa —b=0. Then f' = %=3%. So by (3.1) and (3.11)
we get

T(T,f):T(T,f/)—‘rS(?”,f):S(T,f/)—l-S(T,f):S(’I“,f),

a contradiction.

Case 1.1.2n > m. Set n =1lym + Iy, where [ > 1, 0 < Iy < m, and Iy, Iy are
integers.

(1) There exists a simple zero zg of f' — a, and a(zg) — b(zg) # 0. Then z; is a
zero of both sides of (3.9), but the multiplicity of z — 2z are different. This is a
contradiction.

(2) There exists a zero zg of f' — a with multiplicity two, and a(zg) — b(zg) # 0.
Then from (3.9) we have n = 2m. By Lemma 2.2, we get

2mT(r, f) = mT(r, [') + S(r, f) < mT(r, f) + mN(r, f) + S(r, f),

that is

T(r,f) < N(r, f) +5(r, f)-
Thus 1 = Tli%o ;E:}cg < rli_frgO J:\FI((:]{)) + rli%lo ?E:J;; < 135, a contradiction.
(3) There exists a simple zero zg of f/ — b, and a(zg) — b(zp) # 0. Then zy is a
pole of both sides of (3.9), but the multiplicity of z — 2y are different. This is a
contradiction.
(4) There exists a zero zg of f' — b with multiplicity two, and a(zp) — b(zg) # 0.
Then from (3.9) we have n = 2m. As mentioned above, this is a contradiction.
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(5) All simple zeros and zeros with multiplicities two of f' —a and f’ — b are the
zeros of (a —b). Then

Ny (. 57) < NG =) = (), Nalrs ) < 2N =) = S(0. ),
and
Ny (r =) < N —) = S(r, £), Na(r, ——) < 2N (r, ——) = S(r, f)
DA ) S g ) T N R eSS a—b ’

By the Second Fundamental Theorem, we get
T, ) < Nl 5rms) + N5 + N ) + (1)
1 1 1
N(T,ﬂ)‘i‘gN( f’—
T(r. f)+ (,f’)+N(7‘,f)+S(7“,f’)
T(r. f)+ (,f)+5(7“7f')-

VAN
zl

oo\woo\»—uoo\»—*

=) TN+ S0 )

N(r.f) < 4

When 7 is sufficiently large, we have ) < 128

fim M) 3
by Tlggo ) < 128 . Then

T(r, )< T(r f) + N(r, ) + S(r, f')

T(r, ) + 5T f) + 50, )

4
< gT( f)+§8T(7” )+ S0, f)
67

— s T L) + S f).

Thus T'(r, f') = S(r, f), a contradiction.

Case 1.1.3 n < m. We use the argument similar to Case 1.1.2 and can also get a
contradiction.

Case 1.2 np — mx # 0, for all n and m.

Let 20 € S(mn)(a) U Sem,n)(b), then 2z is a common zero of f —a (or f —b) and
f"—a (or f' —b) with multiplicities m and n respectively. Suppose a(zy) # oo,
b(zo) # o0, and a(zp) — b(zp) # 0. It is easy to see from

f/ —y f// -y f/ —ad f// —a

<

WD Wl N

i —mx = (f = Pl = m7—) = (07— = m Tl
that ne(z0) — mx(z0) = 0. Then
_ 1 - 1
N(m,n) (7”, m) + N(m,n) (T’, ﬂ)
1 1
<N(r,m)+N(r,a)+N(r,b)+N(r,a_b)

T(r,np —mx) + S(r, f)
(7"7 @) +T(r,x) +S(r, f)
N(r, f) + S(r, f). (3.14)

//\ //\ //\
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Case 1.2.1 a=da' and b =¥'. Let 29 be a zero of f —a (or f —b) with multiplicity
I, then zy is a zero of f' —a’ (or f' —b') with multiplicity { — 1. Since f and f’
share a and b IM, then z is also a zero of ' —a (or f' —b) with multiplicity [ — 1.

Obviously, there exists no simple zero of f —a (or f — b).
By the Second Fundamental Theorem, Lemma 2.2 and (3.14), we have

<N 52)+ Nl ) + N )+ 50 1)
= Np(r ! )—1-23:]\7(7" ! )+ N(r ! )
1) ’f—a Pt m 7f (4 ’f—a
3
FN () D Nl )+ Nl ) V) + 50
LA 1 1 1 LA 1
\mz::QNm(rvf_a) 1[ (Taf_a)_mEZ:QmNm(rvf_a)]
L 1 1 1 LA 1 _
+Tn§::2Nm(r’f_b)+Z[N(rvf_b)_mz::QmNm(r?f b)]+N(T,f)+S(T,f)
S 1 > m 1
3 3 ] 3 1
+m§::2nz::l(1_ 4)N(m,n)(r7f_b)+mz::2(1_ 4)N(m,n>4)('raf b)
1 1 1 1 -
Noticing that
5 m., - 1
mz=:2(1 - Z)N(m,n>4) (7'7 7 _7(1)
2 _ 1 1 - 1
=1 (2,n>4) (7 E) + ZN(3,n>4)(7", ﬁ)
1 - 1 - 1 1_ 1
= 1 Nenzy(r, ﬁ) + N@nza)(T, m)] + 1 Nenza m)
1 1 1 - 1 - 1 — 1
< 1= Z{N(r’ ﬂ) — [Nz, (r, m) + Nz, (7, m)} — 2[N(g,2)(r, m)
_ 1 _ 1 _ 1
+N(3,2)(7“7m)] _3[N(2,3)(7’aff)+N(3,3)(7"af_ ik
1 1 1 - 1 = 1 — 1
1% Z{N(T’ ﬂ) — [Nz, (r, m) + N (r, m)] — 2[Ng,2)(r, m)
_ _ 1 - 1
+N(3,2)(Tvm)] _3[N(2,3)(7’aff)+N(3,3)(7”af_ ik

_1y Z[N(r, ﬁ) - Z > 0N ) (1, ﬁ)}. (3.16)
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The same inequality can also be obtained for b.
Thus by (3.15) and (3.16), we get

L m. - 1 1 2 1
T(r,f) <Y, > (1 ZN’"”)( T a)‘*‘z Z[N(r’f’—a)
m=2n=1
3 3 L 3 3
S22 el 2 20 N )
1 2 1 3 1
+t1x 1[ (T,f —b> n;z;nN(mn)( ﬂ)}
+%N( ﬁ)—i—iN(r,ﬁ)—i—N(r,f)—l—S(r,f)
<% _(2,1)(7‘7ﬁ)+166]\721)( flb) 2N(T7ﬁ)+%N(ﬁﬁ)
+3N(r,f—ia)+1N( ! )+N(r )+ S0 f)
<AN(r, f) + iT(r, )+ )+ S(r, f). (3.17)

Since f and f’ share a and b IM, then by the Second Fundamental Theorem, (3.1)
and (3.17), we have

1 1
) N D) + S0 )

T(r,f') < N(r )+ N, f1)+ S(r, )

7, a
N(r, f) + iT(r, )+ %T(nf) + S(r, f).

That is

T(r, ) < G N )+ 5TC, ) + 50, ). (315)

y (3.17) and (3.18), we get

T(r, f) S ARG f) + {70 f) + 570 )+ 50, f)

4
N, )+ %N(r, )+ éT(r, )+ %T(r, £+ St f)
_|_

which means

T(r, f) < 16N(r, f) + S(r, f)-
Thus 1 = T%o ;E:chg <16 Tlggo T((: f)) + 11}111 ?,E: JB < , a contradiction.
Case 1.2.2a=d,bZV oraZd,b=". Wlthout loss of generality, we can
assume that a = o’ and b Z /. Let zo be a zero of f — a with multiplicity [, then
20 is a zero of f’ — o’ with multiplicity  — 1. Since f and f’ share a IM, then zg is
also a zero of f’ — a with multiplicity [ — 1. Obviously, there exists no simple zero
of f—a.
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Let 21 be a zero of f — b with multiplicity I (I > 2). Then by f and f’ share b IM,
we obtain

f(z1) =b(21) = 0, f'(z1) = b(21) =0, f'(21) — V' (21) = 0.
From this, we have b(z1) — b'(z1) = 0. Thus

1 1
SN, —
p) SN =)

]\7(2(7’, ff

+S(r, f)=S(r, f).

By the Second Fundamental Theorem, Lemma 2.2, (3.14) and (3.16), we get

_ 1 _ 1
()< N =) + N ) + N f) + 50m)
_ 1 LA 1 _ 1
:Nl)(raf_a)+7n2::2Nm(rvf_a) (4( ’f—a)
_ 1 — 1 .

T *1)(r,fib)+N(r,f)+S(r, )
3 3 m. 1 3 m 1
< 7;::27;(1 - Z) (m,n)(”’, m) + mz:;(l — Z)N(m,n24)(7’, H)
L 1.1 1
+; (1,n)(7"7f b)+N(1,n>4)(7‘,f_b)JrZN(r,f_a)+N(r,f)+S(r,f)
_ 3 3 m 1 1 2N ] 3 3 -
\";;( 74) (mn)(T,f_a)‘i’ZXZ[ (’I"7 f/ a) ";2;71 (mn)( 7f a)]
L 1 1 1 5 1
+; (1,n)(7",f b)+1[ (7’, fl b) ;TLN(Ln)(T,f b)]
43N0 ) + N ) + 5 )
\%N(z,l)(r,#)+3l\7(11( . b)+2]\7(1 2 (r, flb)+iﬁ(1,3)(r,fib)
2 1 1 1 1 1
+T6N(r,f/7)—|—4N( f_b)+ZN(T,H)—I—N(T,J“)—FS(T,]”)
<A6N(r, f) + ST(r, ') + T( f)+S(r, f). (3.19)

8

Since f and f’ share a and b IM, then by the Second Fundamental Theorem, (3.1)
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and (3.19), we have

r ﬁ)%—]v(r,ﬁ)+N(r7f’)+S(r,f')

_ 1 _
)N ﬂ) + N(r, f) + S(r. f)
16N(r, )+ 3T(r, f') + 170 1) + S0 ).

N

That is
RN ) + ST, ) + 50, ) (320)

By (3.19) and (3.20), we get

T(r,f) < 16N, f) + ST(r, ) + 770, 1) + (7, )

4
< 16N (r, f) + %N(r, H+ %T(r, H+ iT(r, H+S0r,f)
_ %N(r, N+ %T(r, £+ S0, f),

which means

T(r,f) < SN, ) + 507, ).

— 1 T(rf) o 128 T N(nf) i S(rf) ot
Thus 1 = lim T F) <55 Tl;ngo ) +TI%I; T f) < 1, a contradiction.

Case 1.2.3 a £ o’ and b £ V. Let zg be a zero of f —a with multiplicity i1 (I; > 2)
and z; be a zero of f — b with multiplicity lo (I3 > 2). Then by f and f’ share a
and b IM, we obtain

f(z0) = a(z0) =0, f'(z0) — a(z0) =0, f'(z0) —a'(20) =0,
and

f(z1) = b(z1) =0, f'(21) =b(z1) =0, f'(21) = V'(21) = 0.
From this, we have a(zo) — a/(z0) = 0, b(z1) — b/ (21) = 0. Thus

. 1 1
]\[(Q(T7 fi) < ZV(T‘7

—a a—a

,)+S(T,f)=5(’l"7f),

and

7)+S(r,f):5’(r7f).
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By the Second Fundamental Theorem, Lemma 2.2 and (3.14), we get

- 1 _ 1 _
T(Taf)\N(T7f_a)+N(r7f_b)+N(Taf)+S(r7f)
1 — 1 _ 1 _
= 1)(T,m)+N(2(7’a E)+Nl)( 7= b)+N(2( f_b)+N(7’,f)+S(7’,f)
1 — 1
< 1)(T,m)+N1)(Taﬁ)+N(7",f)+5(7"7f)
3
- 1
:ZN(L")(T’f )+N(1 nza)(r +ZN(1n f)
n=1
_ 1 _
+ (1,n>4)(T,ﬂ)+N(7’,f)JFS(T’f)
<§:N (r LH}[ ZnN )
\n:1 (1,n) ’f—a 4 P (1, n)
LA 1 1 5
+n§1 (1,n)(raf b)+ [ —b g 1,n) b)]
+N(r, f)+S(r, f)
3 - 1 2 _ 1 - 1
< ZN(l 1)(7"7],; a)—’_ZN(lQ)(T’f a)+1 1,3)( ’ffa)
3 - 1 2 _ 1 1 - 1
+Z (1 1)(7",f b)+1N(1 2)(r’f—b>+i (1,3)(7"af b)
1 1 1 1 —
+ZN(T’f'*a)+ZN<r7f/ b)+N(’I"7 )+S(Taf)
<IN (r, ) + 5T ) + (1, ). (3.21)

Since f and f’ share a and b IM, then by the Second Fundamental Theorem, (3.1)
and (3.21), we have

T(r. ) < Nl ) + N ) + N 1) + 50 )

_ 1 - 1
:N(r,m)%—N(r,m)

SIN(, )+ 570, 0) + S0, ),

+ N(r, f)+ S(r, f)

That is
T(r, f') < 26N (r, f) + S(r, f). (3.22)
By (3.21) and (3.22), we get

T(r, ) S BN, )+ 5T, ) + (0, )

3]\7(7" f)+13N(r, )+ S(r, f)
26N (r, f) + S(r, f).

Thus 1 = lim 2 < 26 Tim N(f) hm T(T B < a contradiction.

ATy S 20 T :n < ot
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Case 2. ¢ — (@' — ') =0. That is

pe=d-V. (3.23)
Next, we discuss three subcases.
Case 2.1 a=ad’ and b="¥". Then
a—b=d —b = A€, (3.24)

where A; is a nonzero constant. Taking (3.2) and (3.24) into (3.23), we get

(f' = a)* = [2(f" = a) + A1e”](f — a). (3.25)

It follows from (3.25) that 2(f/(z) — a) + A1e* # 0 and f is an entire function. By
Theorem 1.5, we have f = f/, a contradiction.

Case 2.2a=ad and bV or a # a’ and b ='. Without loss of generality, we can
assume that ¢ = a’ and b #Z b’. Then by (3.2) and (3.23), we get

(@=0)(f' =0)(f' V) =[la—b+d =b)(f =)= (@ =)’](f —b), (3.26)
Obviously, a’ £ . From (3.26), we have

- 1

1 _ 1
N(r,

oy b’) < Neo(r, T=b b) + N(r, m) + O[N(r,a) + N(r,b)]
- 1
:N(z(ﬁﬂ)—f—s(?“,f)- (3.27)
Let zg be a zero of f — b with multiplicity ! (I > 2). Then by f and f’ share b IM,
we obtain

f(z0) = b(20) = 0, f'(20) = b(z0) =0, f'(20) = b'(20) = 0.
From this, we have b(zy) — V'(z9) = 0. Thus

_ 1 1
N(z(r,ﬂ)\N(Tam)JFS(T,f):S(T,f)- (3.28)
By (3.27) and (3.28), we get
_ 1
In addition, from (3.26), we have
5 a —=b
(f =P = [+ S0 —a)+ (@ D) —a) =0, (3:30)
If1+ a;:z/ =0, then @’ — b = —(a — b) = Age™*, where As is a nonzero constant.
From (3.30), we get
('~ a'y?
—a=—. 31
fa=t (331)

Differentiating both sides of (3.31), we have

2(f" —ad")+ (f' —d') = Age™ . (3.32)
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By solving this linear differential equation, we get
f—a=Ci+ Cre % + Age™?, (3.33)

where C7 and Cy are constants.
From (3.33), we have T'(r, f) = S(r, f), which is a contradiction.

Hence 1 + “(;:g, Z 0, it is easy to see from (3.30) that

_ 1 _ 1 — 1
< N(r,——)+ N(r,
f/ _ (a/ __a =V )) (T a’ _b/)+ (’I’ a—b

o —b7
1+ a—b

)+ N(r,b) = S(r, f). (3.34)

a -9

(3.1), (3.29) and (3.34), we get

Since a’ — b’ # 0, then a’ — J/’flb/ # b'. By the Second Fundamental Theorem,
a—b

T(ﬁf’) < N(rv f, _ (a/_l a’—=b’ ))+N(r7f,1b,) +N(Taf/) +S(Taf/)
14+4=F
<N D)+ 80 ) < gN G ) + S0 f)

Thus T'(r, f') = S(r, f'), a contradiction.
Case 2.3 a £ o’ and b # V. Then (3.26) still holds. As same as the discussion of
Case 2.2, (3.29) still holds. Similarly, we have

Since o’ # b, by the Second Fundamental Theorem, (3.1), (3.29) and (3.35), we get
- 1 - 1 _
T('I",f/) < N(T’m) “rN(T,m)"‘N(T,‘]N) +S(7’7f/)
< N )+ 50 ) < N ) + 501

1

<TG ') + S0 ).

[\)

Thus T'(r, f') = S(r, f'), a contradiction.
According to all the above discussions, we obtain f = f.
This completes the proof of Theorem 1.6. O
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