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ON THE NUMBER OF LIMIT CYCLES BY
PERTURBING A PIECEWISE SMOOTH

HAMILTON SYSTEM WITH TWO STRAIGHT
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Abstract This paper deals with the problem of limit cycle bifurcations for
a piecewise smooth Hamilton system with two straight lines of separation.
By analyzing the obtained first order Melnikov function, we give upper and
lower bounds of the number of limit cycles bifurcating from the period annulus
between the origin and the generalized homoclinic loop. It is found that the
first order Melnikov function is more complicated than in the case with one
straight line of separation and more limit cycles can be bifurcated.
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1. Introduction and main results

Since the non-smooth phenomena exist widely in various practical applications and
natural fields, such as automatic control, neural network, electrical engineering,
economics, ecosystem, a big interest has appeared for studying bifurcation theory,
especially bifurcation of limit cycles for planar piecewise smooth differential systems.

As pointed out by Kukucka [13], it is usually a nontrivial task to extend the bi-
furcation theory of smooth differential systems to non-smooth differential systems.
So in recent years, the bifurcation of limit cycles for non-smooth differential systems
with a straight line of separation has been investigated intensively and many inno-
vative methods have been established. The Melnikov function method was extended
to piecewise smooth differential system in [9, 17]. In [17], Liu and Han derived the
first order Melnikov function for planar piecewise smooth Hamilton systems which
can be used to study the number of limit cycles for these systems. By using the
Melnikov function method, Liang, Han and Romanovski [15] studied the number
of limit cycles by perturbing a piecewise smooth linear Hamilton system with a
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generalized homoclinic loop around the origin, which takes the form{
ẋ = −y,
ẏ = 1− x,

x ≥ 0,

{
ẋ = −y,
ẏ = x,

x < 0. (1.1)

For more results about this method, one can see [1, 6, 16, 23, 24, 26–28] and the
references therein. Another important method called the averaging method which
can be used to detect limit cycles for non-smooth differential systems is developed
in [8, 19, 20]. More results on this topic can be found in [2, 3, 5, 7, 14, 18, 21]. Re-
cently, Yang and Zhao [29] extended the Picard-Fuchs method to study the limit
cycle bifurcations for piecewise smooth differential systems with a straight line of
separation.

However, as far as we know, there are a few papers for estimating the number
of limit cycles of piecewise smooth differential systems with two straight lines of
separation. In [11,22], Wang, Han and Constantinescu considered the general form
of a piecewise near-Hamiltonian system with two straight lines of separation{

ẋ = H1
y (x, y) + εf1(x, y),

ẏ = −H1
x(x, y) + εg1(x, y),

x > 0, y > 0, (1.2){
ẋ = H2

y (x, y) + εf2(x, y),

ẏ = −H2
x(x, y) + εg2(x, y),

x < 0, y > 0, (1.3){
ẋ = H3

y (x, y) + εf3(x, y),

ẏ = −H3
x(x, y) + εg3(x, y),

x < 0, y < 0 (1.4)

and {
ẋ = H4

y (x, y) + εf4(x, y),

ẏ = −H4
x(x, y) + εg4(x, y),

x > 0, y < 0. (1.5)

or {
ẋ = Hy(x, y) + εf(x, y),

ẏ = −Hx(x, y) + εg(x, y),
(1.6)

where 0 < |ε| � 1, Hi(x, y), f i(x, y), gi(x, y) ∈ C∞, i = 1, 2, 3, 4,

H(x, y) =


H1(x, y), x > 0, y > 0,

H2(x, y), x < 0, y > 0,

H3(x, y), x < 0, y < 0,

H4(x, y), x > 0, y < 0,

f(x, y) =


f1(x, y), x > 0, y > 0,

f2(x, y), x < 0, y > 0,

f3(x, y), x < 0, y < 0,

f4(x, y), x > 0, y < 0,

g(x, y) =


g1(x, y), x > 0, y > 0,

g2(x, y), x < 0, y > 0,

g3(x, y), x < 0, y < 0,

g4(x, y), x > 0, y < 0.

In order that system (1.6) has a family of periodic orbits near the origin for ε = 0,
the following two assumptions are necessary, see [17,22].

Assumption (I). There exist an interval Σ, and four points A = (a(h), 0), B =
(0, b(h)), C = (c(h), 0) and D = (0, d(h)) such that for all h ∈ Σ

H1(A) = H1(B) = h, H2(B) = H2(C), H3(C) = H3(D), H4(D) = H4(A)
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with a(h) 6= c(h) and b(h) 6= d(h).

Assumption (II). The system (1.2)|ε=0 has an orbital arc L1
h starting from A and

ending at B defined by H1(x, y) = h, h ∈ Σ, x > 0, y > 0; the system (1.3)|ε=0

has an orbital arc L2
h starting from B and ending at C defined by H2(x, y) =

H2(B), x < 0, y > 0; the system (1.4)|ε=0 has an orbital arc L3
h starting from C and

ending at D defined by H3(x, y) = H3(C), x < 0, y < 0, and the system (1.5)|ε=0

has an orbital arc L4
h starting from D and ending at A defined by H4(x, y) =

H4(D), x > 0, y < 0. Thus, Lh = L1
h ∪L2

h ∪L3
h ∪L4

h is a periodic orbit of (1.6)|ε=0

surrounding the origin for h ∈ Σ.

Under assumptions (I) and (II), {Lh |h ∈ Σ} is a family of periodic orbits
of system (1.6)|ε=0 and each Lh is piecewise smooth. Without loss of generality,
suppose that Lh has an anticlockwise orientation, as shown in Fig. 1. From [22],

Figure 1. The closed orbits of system (1.6)|ε=0.

the first order Melnikov function M(h) of system (1.6) has the following form

M(h) =
H1
x(A)H2

y (B)H3
x(C)H4

y (D)

H4
x(A)H1

y (B)H2
x(C)H3

y (D)

∫
ÂB

g1(x, y)dx− f1(x, y)dy

+
H1
x(A)H3

x(C)H4
y (D)

H4
x(A)H2

x(C)H3
y (D)

∫
B̂C

g2(x, y)dx− f2(x, y)dy

+
H1
x(A)H4

y (D)

H4
x(A)H3

y (D)

∫
ĈD

g3(x, y)dx− f3(x, y)dy

+
H1
x(A)

H4
x(A)

∫
D̂A

g4(x, y)dx− f4(x, y)dy, h ∈ Σ.

(1.7)
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Further, we know from [11,22] that ifM(h) has at most k zeros in h on the interval Σ,
then (1.6) has at most k limit cycles bifurcated from the period annulus ∪h∈ΣLh. In
[12], by using the averaging method of first order, Itikawa et al. obtained the upper
bounds of the number of limit cycles bifurcating from the periodic orbits of two kind
of isochronous systems, when they are perturbed inside the discontinuous quadratic
and cubic polynomials differential systems with two straight lines of separation,
respectively. In [25], Xiong investigated the limit cycle bifurcation in perturbations
of non-smooth Hamiltonian systems with 4 switching lines via multiple parameters.

In the present paper, motivated by the above references, we will study the
number of limit cycles for a piecewise smooth Hamilton system with a generalized
homoclinic loop under the perturbations of piecewise polynomials of degree n. More
precisely, we consider the following piecewise smooth near-Hamilton system with
two straight lines of separation

 ẋ

ẏ

 =



(
−y + εf1(x, y)

1− x+ εg1(x, y)

)
, x > 0, y > 0,

(
−y + εf2(x, y)

x+ εg2(x, y)

)
, x < 0, y > 0,

(
−y + εf3(x, y)

x+ εg3(x, y)

)
, x < 0, y < 0,

(
−y + εf4(x, y)

1− x+ εg4(x, y)

)
, x > 0, y < 0,

(1.8)

where

fk(x, y) =

n∑
i+j=0

aki,jx
iyj , gk(x, y) =

n∑
i+j=0

bki,jx
iyj , k = 1, 2, 3, 4.

A first integral of system (1.8)|ε=0 is

H1(x, y) =
1

2
[(x− 1)2 − y2] =

h

2
, x > 0, y > 0,

H2(x, y) = −1

2
[x2 + y2] =

h− 1

2
, x < 0, y > 0,

H3(x, y) = −1

2
[x2 + y2] =

h− 1

2
, x < 0, y < 0,

H4(x, y) =
1

2
[(x− 1)2 − y2] =

h

2
, x > 0, y < 0

(1.9)

with h ∈ (0, 1). When ε = 0, (1.8) has a family of piecewise smooth periodic orbits
as follows

Lh ={(x, y)|H1(x, y) =
h

2
, x > 0, y > 0}

∪ {(x, y)|H2(x, y) =
h− 1

2
, x < 0, y > 0}

∪ {(x, y)|H3(x, y) =
h− 1

2
, x < 0, y < 0}
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∪ {(x, y)|H4(x, y) =
h

2
, x > 0, y < 0}

:=L1
h ∪ L2

h ∪ L3
h ∪ L4

h

with h ∈ (0, 1). If h→ 1, Lh approaches the origin which is an elementary center of
parabolic-focus type, see [4,10]. If h→ 0, Lh approaches the generalized homoclinic
loop L0 with a saddle S(1, 0), see Fig. 2.

Figure 2. The phase portrait of system (1.8)|ε=0.

Applying the above first order Melnikov function (1.7), we obtain the upper and
lower bounds of the number of limit cycles which bifurcate from the period annulus
of system (1.8)|ε=0. Our main results are as follows:

Theorem 1.1. The first order Melnikov function of system (1.8) is

M(h) = P[n2 ](h)
√

1− h+ Pn+1(
√
h) + Pn+1(

√
1− h) + P[n−1

2 ](h)Θ(h), (1.10)

where h ∈ (0, 1), Pl(u) is a polynomial of u with degree l and

Θ(h) =

∫ √1−h

0

√
h+ y2dy. (1.11)

Theorem 1.2. Consider system (1.8) with |ε| small enough. Using the first order
Melnikov function (1.7), the number of limit cycles bifurcating from the period an-
nulus is no more than 2n+ 5[n−1

2 ] + 15, if n ≥ 2; 4 if n = 1, and at least 2n+ 1 if
n ≥ 1.

Corollary 1.1. If f1(x, y) = f4(x, y), g1(x, y) = g4(x, y), f2(x, y) = f3(x, y) and
g2(x, y) = g3(x, y), that is, the straight line of separation is x = 0, then, using the
first order Melnikov function (1.7), the number of limit cycles bifurcating from the
period annulus is no more than 2[n2 ] + 3[n−1

2 ] + 3 (resp. 5[n−1
2 ] + 4) if n is an even

(resp. odd) number.
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Remark 1.1. If f1(x, y) = f4(x, y), g1(x, y) = g4(x, y), f2(x, y) = f3(x, y) and
g2(x, y) = g3(x, y), then (1.8) becomes (1.1) for ε = 0. The lower bound of the
number of limit cycles bifurcating from the period annulus between the origin and
the generalized homoclinic loop is n + [n+1

2 ], see Theorem 1.1 in [15]. The upper
bound of the number of limit cycles also can be found in [15], but here we provide
an alternative proof which is much more digestible.

The layout of the rest of this paper is as follows. The algebraic structure of the
first order Melnikov function M(h) and the proof of Theorem 1.1 will be given in
section 2. The Theorem 1.2 and Corollary 1.3 will be proved in sections 3 and 4.

2. Algebraic structure of M(h)

In the following, we will obtain the algebraic structure of M(h) of system (1.8).
Noting that (1.7) and

H1
x(A)H2

y (B)H3
x(C)H4

y (D)

H4
x(A)H1

y (B)H2
x(C)H3

y (D)
=
H1
x(A)H3

x(C)H4
y (D)

H4
x(A)H2

x(C)H3
y (D)

=
H1
x(A)H4

y (D)

H4
x(A)H3

y (D)
=
H1
x(A)

H4
x(A)

=1,

we obtain that the first Melnikov function M(h) has the form

M(h) =

∫
L1
h

g1(x, y)dx− f1(x, y)dy +

∫
L2
h

g2(x, y)dx− f2(x, y)dy

+

∫
L3
h

g3(x, y)dx− f3(x, y)dy +

∫
L4
h

g4(x, y)dx− f4(x, y)dy.

(2.1)

For h ∈ (0, 1) and i, j ∈ N, we denote

Ii,j(h) =

∫
L1
h

xiyjdy, Ji,j(h) =

∫
L2
h

xiyjdy,

Ĵi,j(h) =

∫
L3
h

xiyjdy, Îi,j(h) =

∫
L4
h

xiyjdy.

It is easy to check that

Îi,j(h) = (−1)jIi,j(h), Ĵi,j(h) = (−1)jJi,j(h). (2.2)

Lemma 2.1. For h ∈ (0, 1) and n ≥ 2,

M(h) =α1(h)I0,0(h) + β1(h)I1,0(h) + γ1(h)I0,1(h) + δ1(h)I1,1(h)

+ α2(h)J0,0(h) + β2(h)J1,0(h) + γ2(h)J0,1(h) + δ2(h)J1,1(h)

+ ϕn+1(
√
h) + ψn+1(

√
1− h),

(2.3)

where ϕn+1(u) is a polynomial in u of degree n + 1, ψn+1(u) is a polynomial in
u of degree n + 1 without constant term, and αk(h), βk(h), γk(h) and δk(h) are
polynomials of h with

degαk(h) ≤ [
n

2
], deg βk(h),deg γk(h) ≤ [

n− 1

2
], deg δk(h) ≤ [

n− 2

2
], k = 1, 2.
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Proof. For the sake of clearness, we split the proof into two steps.

(1) We first assert that

M(h) =

n∑
i+j=0

τi,jIi,j(h) +

n∑
i+j=0

σi,jJi,j(h) + ϕn+1(
√
h) + ψn+1(

√
1− h), (2.4)

where τi,j and σi,j are arbitrary real constants, ϕn+1(u) is a polynomial in u of
degree n + 1 and ψn+1(u) is a polynomial in u of degree n + 1 without constant
term.

In fact, Let Ω be the interior of L1
h ∪
−−→
BO ∪

−→
OA, see Fig. 1. Using the Green’s

Formula, we have for i ≥ 0 and j ≥ 1∫
L1
h

xiyjdx =

∮
L1
h∪
−−→
BO∪

−−→
OA

xiyjdx = j

∫∫
Ω

xiyj−1dxdy

= − j

i+ 1

∮
L1
h

−−→
BO∪

−−→
OA

xi+1yj−1dy

= − j

i+ 1
Ii+1,j−1(h).

(2.5)

In a similar way, we have for i ≥ 0 and j ≥ 1∫
L2
h

xiyjdx = − j

i+ 1
Ji+1,j−1(h),∫

L3
h

xiyjdx = − j

i+ 1
Ĵi+1,j−1(h),∫

L4
h

xiyjdx = − j

i+ 1
Îi+1,j−1(h).

(2.6)

On the other hand, we have for i ≥ 0 and j = 0∫
L1
h

xidx =

∮
L1
h∪
−−→
BO∪

−−→
OA

xidx−
∫
−−→
BO

xidx−
∫
−−→
OA

xidx = −
∫
−−→
OA

xidx,∫
L2
h

xidx =

∮
L2
h∪
−−→
CO∪

−−→
OB

xidx−
∫
−−→
CO

xidx−
∫
−−→
OB

xidx =

∫
−−→
OC

xidx,∫
L3
h

xidx =

∮
L3
h∪
−−→
DO∪

−−→
OC

xidx−
∫
−−→
DO

xidx−
∫
−−→
OC

xidx = −
∫
−−→
OC

xidx,∫
L4
h

xidx =

∮
L4
h∪
−−→
AO∪

−−→
OD

xidx−
∫
−−→
AO

xidx−
∫
−−→
OD

xidx =

∫
−−→
OA

xidx.

(2.7)

From (2.1), (2.2) and (2.5)-(2.7), we obtain

M(h) =

n∑
i=0

b1i,0

∫
L1
h

xidx−
n∑

i+j=1,
i≥0,j≥1

j

i+ 1
b1i,jIi+1,j−1(h)−

n∑
i+j=0

a1
i,jIi,j(h)

+

n∑
i=0

b2i,0

∫
L2
h

xidx−
n∑

i+j=1,
i≥0,j≥1

j

i+ 1
b2i,jJi+1,j−1(h)−

n∑
i+j=0

a2
i,jJi,j(h)
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+

n∑
i=0

b3i,0

∫
L3
h

xidx−
n∑

i+j=1,
i≥0,j≥1

j

i+ 1
b3i,j Ĵi+1,j−1(h)−

n∑
i+j=0

a3
i,j Ĵi,j(h)

+

n∑
i=0

b4i,0

∫
L4
h

xidx−
n∑

i+j=1,
i≥0,j≥1

j

i+ 1
b4i,j Îi+1,j−1(h)−

n∑
i+j=0

a4
i,j Îi,j(h)

=

n∑
i+j=0

τi,jIi,j(h) +

n∑
i+j=0

σi,jJi,j(h)

+

n∑
i=0

(b4i,0 − b1i,0)

∫
−−→
OA

xidx+

n∑
i=0

(b2i,0 − b3i,0)

∫
−−→
OC

xidx, (2.8)

where

τ0,j = −a1
0,j − a4

0,j , σ0,j = −a1
0,j − a4

0,j , j ≥ 0,

τi,j = −[a1
i,j + (−1)ja4

i,j ]−
j + 1

i
[b1i,j + (−1)jb4i,j ], i ≥ 1, j ≥ 0,

σi,j = −[a1
i,j + (−1)ja4

i,j ]−
j + 1

i
[b1i,j + (−1)jb4i,j ], i ≥ 1, j ≥ 0.

Thus, τi,j and σi,j can be chosen arbitrarily. By direct computation, we have

n∑
i=0

(b4i,0 − b1i,0)

∫
−−→
OA

xidx =

n∑
i=0

(b4i,0 − b1i,0)

∫ 1−
√
h

0

xidx

=

n∑
i=0

b4i,0 − b1i,0
i+ 1

(1−
√
h)i+1

:=ϕn+1(
√
h), (2.9)

n∑
i=0

(b2i,0 − b3i,0)

∫
−−→
OC

xidx =

n∑
i=0

(b2i,0 − b3i,0)

∫ −√1−h

0

xidx

=

n∑
i=0

b2i,0 − b3i,0
i+ 1

(−1)i+1(1− h)
i+1
2

:=ψn+1(
√

1− h),

where ϕn+1(u) is a polynomial of u with degree n+ 1 and ψn+1(u) is a polynomial
of u with degree n + 1 without constant term. Substituting (2.9) into (2.8) gives
(2.4).

(2) We assert that

n∑
i+j=0

τi,jIi,j(h)=α1(h)I0,0(h)+β1(h)I1,0(h)+γ1(h)I0,1(h)+δ1(h)I1,1(h),

n∑
i+j=0

σi,jJi,j(h)=α2(h)J0,0(h)+β2(h)J1,0(h)+γ2(h)J0,1(h)+δ2(h)J1,1(h),

(2.10)

where αk(h), βk(h), γk(h) and δk(h) are polynomials of h with

degαk(h) ≤ [
n

2
], deg βk(h),deg γk(h) ≤ [

n− 1

2
], deg δk(h) ≤ [

n− 2

2
], k = 1, 2.
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Without loss of generality, we only prove the first equality in (2.10), and the
other one can be shown in a similar way. Differentiating H1(x, y) = h

2 defined in
(1.9) with respect to y, we have

−y + x
∂x

∂y
− ∂x

∂y
= 0. (2.11)

Multiplying (2.11) by xiyj−1dy, integrating over L1
h and noting that (2.5), we have

Ii,j(h) =
j − 1

i+ 1
Ii+1,j−2(h)− j − 1

i+ 2
Ii+2,j−2(h), i ≥ 0, j ≥ 2. (2.12)

On the other hand, multiplying H1(x, y) = h
2 defined in (1.9) by xi−2yjdy and

integrating over L1
h yield

Ii,j(h) = (h− 1)Ii−2,j(h) + Ii−2,j+2(h) + 2Ii−1,j(h), i ≥ 0, j ≥ 0. (2.13)

From (2.12) and (2.13), we have

Ii,j(h) = − j − 1

i+ j + 1

[
(h− 1)Ii,j−2(h) +

i

i+ 1
Ii+1,j−2(h)

]
, i ≥ 0, j ≥ 2 (2.14)

and

Ii,j(h) =
i

i+ j + 1

[
(h− 1)Ii−2,j(h) +

2i+ j − 1

i− 1
Ii−1,j(h)

]
, i ≥ 2, j ≥ 0.(2.15)

We will prove the conclusion by induction on n. It could be noticed that n = 2
corresponds to (i, j) = (0, 2) and (2, 0) and n = 3 corresponds to (i, j) = (0, 3), (1, 2),
(2, 1) and (3, 0). Hence, in view of (2.14) and (2.15), we have for n = 2, 3

I0,2(h) = − 1
3 (h− 1)I0,0(h),

I2,0(h) = 2
3 (h− 1)I0,0(h) + 2I1,0(h),

I0,3(h) = − 1
2 (h− 1)I0,1(h),

I1,2(h) = − 1
4 (h− 1)I1,0(h)− 1

8I2,0(h),

I2,1(h) = 1
2 (h− 1)I0,1(h) + 2I1,1(h),

I3,0(h) = 3
4 (h− 1)I1,0(h) + 15

8 I2,0(h),

(2.16)

which yield the conclusion for n = 2, 3. Now assume that the result holds for all
i + j ≤ n − 1 (n ≥ 5). Then, for i + j = n, taking (i, j) = (0, n), (1, n − 1), (2, n −
2), · · · , (n − 2, 2) in (2.14) and (i, j) = (n − 1, 1), (n, 0) in (2.15), respectively, we
obtain

I0,n(h)

I1,n−1(h)

I2,n−2(h)

...

In−2,2(h)

In−1,1(h)

In,0(h)


= − 1

n+ 1



(n− 1)(h− 1)I0,n−2(h)

(n− 2)
(
(h− 1)I1,n−3(h) + 1

2I2,n−3(h)
)

(n− 3)
(
(h− 1)I2,n−4(h) + 2

3I3,n−4(h)
)

...

(h− 1)In−2,0(h) + n−2
n−1In−1,0(h)

(1− n)
(
(h− 1)In−3,1(h) + 2n−2

n−2 In−2,1(h)
)

−n
(
(h− 1)In−2,0(h) + 2n−1

n−1 In−1,0(h)
)


, (2.17)
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which implies the first equality in (2.10) holds for i+ j = n.
Now we discuss the degree of polynomials α1(h), β1(h), γ1(h) and δ1(h) defined

in (2.10). In view of (2.17), we have for (i, j) = (0, n)

I0,n(h)=h
[
α(n−2)(h)I0,0(h)+β(n−2)(h)I1,0(h)+γ(n−2)(h)I0,1(h)+δ(n−2)(h)I1,1(h)

]
:=α(n)(h)I0,0(h) + β(n)(h)I1,0(h) + γ(n)(h)I0,1(h) + δ(n)(h)I1,1(h),

where α(n−2)(h), β(n−2)(h), γ(n−2)(h) and δ(n−2)(h) are polynomials of h satisfying

degα(n−2)(h) ≤ [
n− 2

2
], deg δ(n−2)(h) ≤ [

n− 4

2
],

deg β(n−2)(h),deg γ(n−2)(h) ≤ [
n− 3

2
].

It is easy to check that

degα(n)(h) ≤ [
n

2
], deg β(n)(h),deg γ(n)(h) ≤ [

n− 1

2
], deg δ(n)(h) ≤ [

n− 2

2
].

If (i, j) = (1, n− 1), (2, n− 2), · · · , (n, 0), then, by (2.17), we have

Ii,j(h) =α(n−1)(h)I0,0(h) + β(n−1)(h)I1,0(h) + γ(n−1)(h)I0,1(h) + δ(n−1)(h)I1,1(h)

+h
[
α(n−2)(h)I0,0(h)+β(n−2)(h)I1,0(h)+γ(n−2)(h)I0,1(h)+δ(n−2)(h)I1,1(h)

]
:=α(n)(h)I0,0(h) + β(n)(h)I1,0(h) + γ(n)(h)I0,1(h) + δ(n)(h)I1,1(h),

where α(n−s)(h), β(n−s)(h), γ(n−s)(h) and δ(n−s)(h) are polynomials of h satisfying

degα(n−s)(h) ≤ [
n− s

2
], deg δ(n−s)(h) ≤ [

n− 2− s
2

],

deg β(n−s)(h),deg γ(n−s)(h) ≤ [
n− 1− s

2
], s = 1, 2.

Hence, we have

degα(n)(h) ≤ [
n

2
], deg β(n)(h),deg γ(n)(h) ≤ [

n− 1

2
], deg δ(n)(h) ≤ [

n− 2

2
].

To sum up, substituting (2.10) into (2.4), we obtain (2.3). The proof is com-
pleted.

Proof of the Theorem 1.1. By some straightforward calculations, we have

I0,0(h) =
√

1− h, I1,0(h) =
√

1− h−Θ(h),

I0,1(h) =
1

2
(1− h), I1,1(h) =

1

2
(1− h)− 1

3
(1− h 3

2 ),

J0,0(h) = −
√

1− h, J1,0(h) =
π

4
(1− h),

J0,1(h) = −1

2
(1− h), J1,1(h) =

1

3
(1− h)

3
2 ,

(2.18)

where Θ(h) is defined in (1.11). Substituting (2.18) into (2.3) gives (1.10). This
completes the proof of Theorem 1.1.
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3. Proof of the Theorem 1.2

In the following, we denote by Pl(h) the polynomial of h with degree no more than
l and by #{φ(h) = 0, h ∈ (%1, %2)} the number of zeros of φ(h) on the open interval
(%1, %2), taking into account the multiplicity.

If n ≥ 2, let λ =
√

1− h, λ ∈ (0, 1), then we have

Θ(λ) =

∫ λ

0

√
1− λ2 + y2dy, (3.1)

and

M̃(λ) = P[n2 ](λ
2)λ+Pn+1(

√
1− λ2) +Pn+1(λ) +P[n−1

2 ](λ
2)Θ(λ), λ ∈ (0, 1). (3.2)

Let y =
√

1− λ2x, we have

Θ(λ) = (1− λ2)

∫ λ√
1−λ2

0

√
1 + x2dx := (1− λ2)Θ1(λ). (3.3)

Hence, M̃(λ) can be written as

M̃(λ) =P[n2 ](λ
2)λ+ Pn+1(

√
1− λ2) + Pn+1(λ) + P[n−1

2 ](λ
2)(1− λ2)Θ1(λ)

:=Pn+1(λ) + Pn+1(
√

1− λ2) + P[n−1
2 ]+1(λ2)Θ1(λ).

(3.4)

Clearly, M(h) and M̃(λ) have the same number of zeros on (0, 1). Suppose that
Σ = (0, 1) \ {λ ∈ (0, 1)|P[n−1

2 ]+1(λ2) = 0}. By direct computation, we obtain for

h ∈ Σ

M1(λ) =
d

dλ

( M̃(λ)

P[n−1
2 ]+1(λ2)

)

=
1

(1− λ2)2
+
(Pn+1(λ) + Pn+1(

√
1− λ2)

P[n−1
2 ]+1(λ2)

)′

=
Pn+2[n−1

2 ]+6(λ)
√

1−λ2+P2[n−1
2 ]+7(λ)Pn(

√
1−λ2)+P2[n−1

2 ]+5(λ)Pn+2(
√

1−λ2)

P 2
[n−1

2 ]+1
(λ2)(1− λ2)2

=


P

[n+2
2

]
(λ2)+P

n+2[n−1
2

]+6
(λ)
√

1−λ2

P 2

[n−1
2

]+1
(λ2)(1−λ2)2

, n even,

P
[n+1

2
]
(λ2)+P

n+2[n−1
2

]+6
(λ)
√

1−λ2

P 2

[n−1
2

]+1
(λ2)(1−λ2)2

, n odd.

(3.5)

Next we will estimate the upper bound for the number of zeros of M̃(λ) on (0,1).
When n is an even number, we have

M1(λ) =
P[n+2

2 ](λ
2) + Pn+2[n−1

2 ]+6(λ)
√

1− λ2

P 2
[n−1

2 ]+1
(λ2)(1− λ2)2

.
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Let P[n+2
2 ](λ

2) + Pn+2[n−1
2 ]+6(λ)

√
1− λ2 = 0. That is,

P[n+2
2 ](λ

2) = −Pn+2[n−1
2 ]+6(λ)

√
1− λ2.

By squaring the above equation, we can deduce that the function
P[n+2

2 ](λ
2) + Pn+2[n−1

2 ]+6(λ)
√

1− λ2 has at most 2n + 4[n−1
2 ] + 14 zeros on (0, 1).

Therefore,

#{M(h) = 0, h ∈ (0, 1)} =#{M̃(λ) = 0, λ ∈ (0, 1)}

≤2n+ 5[
n− 1

2
] + 15.

When n is an odd number, following the lines of the discussion above, we have

#{M(h) = 0, h ∈ (0, 1)} =#{M̃(λ) = 0, λ ∈ (0, 1)}

≤2n+ 5[
n− 1

2
] + 15.

If n = 1, then we have

M(h) = a0 + a1

√
h+ a2h+ a3

√
1− h+ a4Θ(h), (3.6)

where

a0 =
1

2
b21,0 −

1

2
b31,0 −

1

2
a1

0,1 +
1

2
a2

0,1 −
1

2
a3

0,1 +
1

2
a4

0,1 − a2
1,0 − a3

1,0

− b20,1 − b30,1 − b10,0 + b40,0 +
1

2
b41,0 −

1

2
b11,0,

a1 =b10,0 − b40,0 − b41,0 + b11,0,

a2 =
1

2
b31,0 −

1

2
b21,0 +

1

2
a1

0,1 −
1

2
a2

0,1 +
1

2
a3

0,1 −
1

2
a4

0,1 + a2
1,0 + a3

1,0

+ b20,1 + b30,1 +
1

2
b41,0 −

1

2
b11,0,

a3 =b30,0 − b20,0 + a2
0,0 − a1

0,0 + a3
0,0 − a4

0,0 − a4
1,0 − a1

1,0 − b10,1 − b40,1,
a4 =a4

1,0 + a1
1,0 + b10,1 + b40,1.

Similar to (3.4), equality (3.6) becomes

M̃(λ) = a0 + a2 + a1

√
1− λ2 + a3λ− a2λ

2 + a4(1− λ2)

∫ λ√
1−λ2

0

√
1 + x2dx.

Similar to the proof of the case n ≥ 2, we obtain that M(h) has at most 4 zeros on
(0,1).

Next we will give the lower bound for the number of zeros of M(h). For the
sake of simplicity, we choose

f1(x, y) =

n∑
i=0

a1
i,0x

i, gk(x, y) =

n∑
i=0

bki,0x
i, k = 1, 2,

f i(x, y) = gj(x, y) = 0, i = 2, 3, 4, j = 3, 4.
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Hence,

M(h) =

n∑
i=0

b1i,0

∫
L1
h

xidx+

n∑
i=0

b2i,0

∫
L2
h

xidx−
n∑
i=0

a1
i,0Ii,0(h)

=

n∑
i=0

(−1)i+1
b2i,0
i+ 1

(1− h)
i+1
2 −

n∑
i=0

b1i,0
i+ 1

(1−
√
h)i+1 −

n∑
i=0

a1
i,0Ii,0(h).

(3.7)

From (1.9), H1(x, y) = 1
2 [(x− 1)2 − y2] = h

2 is equivalent to

2x− x2 = 1− h− y2 , z. (3.8)

Consider (3.8) in x near x = 0. There is a unique C∞ solution

x = p(z) =

∞∑
j=1

µjz
j ,

where µ1 = 1
2 , µ2 = 1

8 , µ3 = 1
16 , · · · . Then, we have

n∑
i=0

a1
i,0x

i =

n∑
i=0

a1
i,0

( ∞∑
j=1

µjz
j
)i

=

∞∑
i=0

ρiz
i,

where

ρ0 = a1
0,0, ρ1 =

1

2
a1

1,0, ρ2 =
1

4
a1

2,0 +
1

8
a1

1,0, · · · ,

ρn =
1

2n
a1
n,0 + L(a1

1,0, a
1
2,0, · · · , a1

n−1,0), · · · ,

L(·) denotes a linear combination of a1
1,0, a

1
2,0, · · · , a1

n−1,0. Thus,

n∑
i=0

a1
i,0Ii,0(h) =

∫
L1
h

n∑
i=0

a1
i,0x

idy =

∞∑
i=0

ρi

∫
L1
h

zidy

=

∞∑
i=0

ρi

∫ √1−h

0

(1− h− y2)idy.

Let y =
√

1− hu, we have

n∑
i=0

a1
i,0Ii,0(h) =

∞∑
i=0

ρi

∫ 1

0

(1− u2)idu(1− h)i+
1
2

,
∞∑
i=0

ρiAi(1− h)i+
1
2 ,

(3.9)

where Ai =
∫ 1

0
(1− u2)idu. The expansion of 1−

√
h for 0 < 1− h� 1 is

1−
√
h =

∞∑
j=1

σj(1− h)j ,
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where σ1 = 1
2 , σ2 = 1

8 , σ3 = 1
16 , · · · . Thus,

n∑
i=0

b1i,0
i+ 1

(1−
√
h)i+1 =

n∑
i=0

b1i,0
i+ 1

( ∞∑
j=1

σj(1− h)j
)i+1

=

∞∑
i=1

νi(1− h)i,

(3.10)

where

ν1 =
1

2
b10,0, ν2 =

1

8
b11,0 +

1

8
b10,0, ν3 =

1

24
b12,0 +

1

16
b11,0 +

1

16
b10,0, · · · ,

νn+1 =
1

2n+1(n+ 1)
b1n,0 + L(b10,0, b

1
1,0, · · · , b1n−1,0), · · · .

Then inserting (3.9) and (3.10) into (3.7) gives

M(h) =

n∑
i=0

(−1)i+1
b2i,0
i+ 1

(1− h)
i+1
2 −

∞∑
i=0

ρiAi(1− h)i+
1
2 −

∞∑
i=1

νi(1− h)i

,
2n+1∑
i=0

ξi(1− h)
i+1
2 + · · · ,

(3.11)

where

ξ0 = −b20,0 − a1
0,0,

ξ1 =
1

2
b21,0 −

1

2
b10,0,

ξ2 = −1

3
b22,0 −

A1

2
a1

1,0,

ξ3 =
1

4
b23,0 −

1

8
b11,0 −

1

8
b10,0,

...

ξn =

−
1

n+1b
2
n,0 −

An
2

2
n
2
a1
n
2 ,0

+ L(a1
1,0, · · · , a1

n−2
2 ,0

), n even,

1
n+1b

2
n,0 − 1

(n+1)2
n−1
2

b1n−1
2 ,0
− L(b10,0, · · · , b1n−3

2 ,0
), n odd,

ξn+1 =

−
1

(n+2)2
n
2
b1n

2 ,0
− L(b10,0, · · · , b1n−2

2 ,0
), n even,

−
An+1

2

2
n+1
2

a1
n+1
2 ,0

+ L(a1
1,0, · · · , a1

n−1
2 ,0

), n odd,

ξn+2 =

−
An+2

2

2
n+2
2

a1
n+2
2 ,0

+ L(a1
1,0, · · · , a1

n
2 ,0

), n even,

− 1

(n+3)2
n+1
2

b1n+1
2 ,0
− L(b10,0, · · · , b1n−1

2 ,0
), n odd,

...

ξ2n−1 = − 1

n2n
b1n−1,0 − L(b10,0, · · · , b1n−2,0),

ξ2n = −An
2n
a1
n,0 + L(a1

1,0, · · · , a1
n−1,0),
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ξ2n+1 = − 1

(n+ 1)2n+1
b1n,0 − L(b10,0, · · · , b1n−1,0),

...

Therefore, if n is an even number, then we have

∂(ξ0, ξ1, · · · , ξn, ξn+1, ξn+2, · · · , ξ2n, ξ2n+1)

∂(b20,0, b
2
1,0, · · · , b2n,0, b1n

2 ,0
, a1

[n+2
2 ],0

, · · · , a1
n,0, b

1
n,0)

=

−1 0 · · · 0 0 0 · · · 0 0

0 1
2 · · · 0 0 0 · · · 0 0

...
...

...
...

...
...

...
...

...

0 0 · · · − 1
n+1 0 0 · · · 0 0

0 0 · · · 0 − 1

(n+2)2
n
2

0 · · · 0 0

0 0 · · · 0 0 −
An+2

2

2
n+2
2

· · · 0 0

...
...

...
...

...
...

...
...

...

0 0 · · · 0 0 ∗ · · · −An2n 0

0 0 · · · 0 ∗ 0 · · · 0 − 1
(n+1)2n+1



.

Obviously, the rank of the above matrix is 2n+2, which means that ξi, 0 ≤ i ≤ 2n+1
can be chosen as free parameters such that 0 < |ξ0| � |ξ1| � · · · � |ξ2n| �
|ξ2n+1| � 1, and ξiξi+1 < 0, 0 ≤ i ≤ 2n. Hence, M(h) defined by (3.6) has 2n+ 1
simple zeros in (0, 1) near h = 1. Therefore, system (1.8) can have 2n + 1 limit
cycles for 0 < h < 1.

If n is an odd number, we can prove that system (1.8) has 2n + 1 limit cycles
for 0 < h < 1 in a similar way. This ends the proof of Theorem 1.2.

4. Proof of the Corollary 1.1

If f1(x, y) = f4(x, y), g1(x, y) = g4(x, y), f2(x, y) = f3(x, y) and g2(x, y) =
g3(x, y), that is, the straight line of separation is x = 0, then system (1.8) becomes

 ẋ

ẏ

 =



(
−y + εf1(x, y)

1− x+ εg1(x, y)

)
, x > 0,

(
−y + εf2(x, y)

x+ εg2(x, y)

)
, x < 0.

(4.1)

From Theorem 1.1 in [9, 17], we know that the number of limit cycles bifurcating
from the annulus period of system (4.1)|ε=0 is controlled by the following first order
Melnikov function of system (4.1)

M(h) =

∫
L+
h

g1(x, y)dx− f1(x, y)dy +

∫
L−
h

g2(x, y)dx− f2(x, y)dy, (4.2)
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where L+
h = L1

h ∪ L4
h and L−h = L2

h ∪ L3
h; see Fig. 3. Similar to (2.5), we have for

Figure 3. The phase portrait of system (4.1)|ε=0 with a separatrix line x = 0.

i ≥ 0 and j ≥ 0 ∫
L+
h

xiyjdx = − j

i+ 1
Φi+1,j−1(h),∫

L−
h

xiyjdx = − j

i+ 1
Ψi+1,j−1(h),

where

Φi,j(h) =

∫
L+
h

xiyjdy, Ψi,j(h) =

∫
L−
h

xiyjdy.

Since L±h are symmetric with respect to the x-axis, Φi,2j+1(h) = Ψi,2j+1(h) = 0.
Therefore, the Melnikov function in (4.2) can be written as

M(h) =−
n∑

i+j=1,
i≥0,j≥1

j

i+ 1
b1i,jΦi+1,j−1(h)−

n∑
i+j=0

a1
i,jΦi,j(h)

−
n∑

i+j=1,
i≥0,j≥1

j

i+ 1
b2i,jΨi+1,j−1(h)−

n∑
i+j=0

a2
i,jΨi,j(h)

=

n∑
i+j=0

τi,jΦi,j(h) +

n∑
i+j=0

σi,jΨi,j(h).

Following the processes of the analysis of Lemma 2.1, we can obtain the algebraic
structure of M(h).
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Lemma 4.1. For h ∈ (0, 1),

M(h) = α1(h)Φ0,0(h) + β1(h)Φ1,0(h) + α2(h)Ψ0,0(h) + β2(h)Ψ1,0(h), (4.3)

where αk(h) and βk(h) are polynomials of h with

degαk(h) ≤ [
n

2
], deg βk(h) ≤ [

n− 1

2
], k = 1, 2.

Proof of the Corollary 1.3. By direct computation, we have

Φ0,0(h) = 2
√

1− h, Φ1,0(h) = 2
√

1− h− 2Θ(h),

Ψ0,0(h) = −2
√

1− h, Ψ1,0(h) =
π

2
(1− h),

(4.4)

where Θ(h) is defined in (1.11). Substituting (4.4) into (4.3) implies

M(h) = P[n2 ](h)
√

1− h+ P[n−1
2 ]+1(h) + P[n−1

2 ](h)Θ(h), h ∈ (0, 1).

Following the lines of the proof of Theorem 1.2, we obtain that M(h) has at most
2[n2 ] + 3[n−1

2 ] + 3 (resp. 5[n−1
2 ] + 4) zeros if n is an even (resp. odd) number. This

completes the proof of Corollary 1.3.
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