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Abstract In this paper, using the method of Picard-Fuchs equation and Ric-
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1. Introduction and Main Result
Consider

ẋ =
Hy(x, y)

µ(x, y)
+ εP (x, y), ẏ = −Hx(x, y)

µ(x, y)
+ εQ(x, y), (1.1)

and
ẋ =

Hy(x, y)

µ(x, y)
, ẏ = −Hx(x, y)

µ(x, y)
, (1.2)

where ε (0 < ε≪ 1) is a real parameter, Hy(x, y)/µ(x, y), Hx(x, y)/µ(x, y), P (x, y),
Q(x, y) are all polynomials of x and y, with max {deg(P (x, y)),deg(Q(x, y))} = n
and max {deg (Hy(x, y)/µ(x, y)) ,deg (Hx(x, y)/µ(x, y))} = m. We suppose that
the system (1.2) is an integrable system, it has at least one center. The function
H(x, y) is a first integral with the integrating factor µ(x, y), that is, we can define
a continuous family of periodic orbits

{Γh} ⊂
{
(x, y) ∈ R2 : H(x, y) = h, h ∈ ∆

}
,

which are defined on a maximal open interval ∆ = (h1, h2). The problem to be
studied in this paper is: for any small number ε, how many limit cycles in the
system (1.1) can be bifurcated from the family of periodic orbits {Γh}. It is well
known that in any compact region of the periodic orbits, the number of limit cycles
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of the system (1.1) is no more than the number of isolated zeros for the following
Abelian integrals A(h),

A(h) =

∮
Γh

µ(x, y) [Q(x, y) dx− P (x, y) dy] , h ∈ ∆. (1.3)

A) If the system (1.2) is a Hamiltonian system, i.e., the µ(x, y) is constant, then
the H(x, y) is a polynomial of x and y with deg(H(x, y)) = m + 1. Finding the
least upper bound Z(m,n) of the number of isolated zeros for Abelian integrals
A(h) is an important and difficult problem, where the upper bound Z(m,n) only
depends on m, n, and does not depend on the specific forms of H(x, y), P (x, y),
and Q(x, y). This problem is called the weakened Hilbert’s 16th problem, it is also
called the Hilbert-Arnold problem [1], which has been studied diffusely, such as, for
the following system

ẋ = y, ẏ = −g(x) + εf(x)y, (1.4)
Atabaigi [2] showed that the upper bound of the number of zeros is 3 when g(x) =
x3(x − 1)2 and f(x) = α + βx + γx3; Moghimi et al. [16] showed that the upper
bound is 2 when g(x) = e−x(1−e−x) and f(x) = α+βx+γx2. For the system (1.1),
Rebollo-Perdomo et al. [18] showed the upper bound when H(x, y) = y(x2y − 1);
for other specially planar systems, researchers obtain plentiful important results
[3, 5, 12, 15, 20], and more specific situations can be found in the books [4, 7], the
review article [13], and the references therein.

B) If the system (1.2) is an integrable non-Hamiltonian system, then the µ(x, y)
is not constant. When H(x, y) or µ(x, y) are not polynomials, the research work
of the associated Abelian integrals A(h) becomes much more difficult. Thus, re-
searchers consider this problem by starting from the simplest case, namely m is
low. For the specific case of m = 2, people conjecture that the upper bound Z(2, n)
of the number of zeros for associated Abelian integrals A(h) linearly depends on
n. For the system (1.1), Novikov et al. [17] showed that the upper bound of the
number of zeros is 7n/4 + 9 when H(x, y) = x2y(1− x− y) and µ(x, y) = x; Sui et
al. [19] showed the upper bound when H(x, y) = x2+y2 and µ(x, y) = 1/(x2+1)m.
Unfortunately, this conjecture is still far from being solved. For quadratic reversible
centers of genus one, in reference [6], Gautier et al. showed that there are essentially
22 types in the classification, divided into (r1)–(r22) specifically. For the linear de-
pendence of the upper bound of the number of zeros, case (r1) was studied in [21];
case (r2) is a Hamiltonian system; cases (r3)–(r6) were studied in [14]; cases (r9),
(r13), (r17), and (r19) were studied in [11]; cases (r11), (r16), (r18), and (r20) were
studied in [10]; cases (r12) and (r21) were studied in [9]; case (r10) was studied
in [8]. All of these upper bounds linearly depend on n. In this paper, we consider
the case (r22), and obtain that the upper bound is 2 [(n+ 1)/2]+ [n/2]+2 (n ≥ 1).
Our result shows that the upper bound linearly depends on n.

The quadratic reversible type (QR
3 ) has the form as follows:

ż = −iz + az2 + 2 |z|2 + bz̄2, z = x+ yi,

or
ẋ = (a+ b+ 2)x2 − (a+ b− 2)y2 + y, ẏ = −x [1− 2(a− b)y] .

Let x̃ = 1− 2(a− b)y, ỹ = x, dτ = −2(a− b)dt. Using x, y, t instead of x̃, ỹ, τ ,
thus we obtain a new system

ẋ = −xy, ẏ = −a+ b+ 2

2(a− b)
y2 +

a+ b− 2

8(a− b)3
x2 − b− 1

2(a− b)3
x− a− 3b+ 2

8(a− b)3
. (1.5)
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From the system (1.5), when (a, b) = (−2, 0), we can get the case (r22) as
follows:

(r22) ẋ = −xy, ẏ =
1

24
x2 − 1

24
x. (1.6)

The system (1.6) is an integrable non-Hamiltonian quadratic system. It has a
center (1, 0), a family of periodic orbits {Γh} (−1/25 < h < 0), an integral curve
x = 0 (see Figure 1), and a first integral as follows:

H(x, y) =
1

2
y2 +

1

25
x2 − 1

24
x = h, h ∈

(
− 1

25
, 0

)
, (1.7)

with an integrating factor µ(x, y) = 1/x.

0.5 1.0 1.5 2.0

-0.2

-0.1

0.1

0.2

Figure 1. The periodic orbits of the system (r22)

In this paper, our main result is the following theorem.

Theorem 1.1. If P (x, y) and Q(x, y) are any polynomials of x and y, then the
upper bound of the number of zeros of Abelian integrals A(h) for the system (r22)
depends linearly on n. Concretely, the upper bound is 2 [(n+ 1)/2] + [n/2] + 2 for
n ≥ 1; and the upper bound is 0 for n = 0.

The rest part of this paper is structured as follows. In Section 2, we seek a
simple expression of Abelian integrals A(h), prove Proposition 2.1. In Section 3,
we study relations among functions Jm(h) and their derivatives J ′

m(h) for m = 0, 1;
relation between J0(h) and J1(h), obtain two Picard-Fuchs equations and a variable
coefficient first order linear ordinary differential equation. In Section 4, we consider
relation between J(h) and J1(h), obtain a variable coefficient first order linear or-
dinary differential equation. Finally, we prove Theorem 1.1 using the method of
Picard-Fuchs equation and Riccati equation. In Section 5, we give a short conclu-
sion.

2. Simple Expression of Abelian Integrals A(h)

In this section, we give a simple expression of Abelian integrals A(h), obtaining
Proposition 2.1.
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We suppose P (x, y) =
∑

0≤i+j≤n ai,jx
iyj and Q(x, y) =

∑
0≤i+j≤n bi,jx

iyj .
From (1.3), the Abelian integrals A(h) in Theorem 1.1 have the form

A(h) =

∮
Γh

x−1

 ∑
0≤i+j≤n

bi,jx
iyjdx−

∑
0≤i+j≤n

ai,jx
iyjdy

 , h ∈
(
− 1

25
, 0

)
,

where x−1 is an integrating factor.
For conciseness, we introduce functions Ii,j(h) as follows:

Ii,j(h) =

∮
Γh

xi−1yjdx,

where i = −1, 0, 1, · · · , n − 1, n; j = 0, 1, 2, · · · , n, n + 1, and 0 ≤ i + j ≤ n. When
j = 1, we write Ii,1(h) as Ji(h).

Note that∮
Γh

xi−1yjdy =

∮
Γh
xi−1dyj+1

j + 1
=

1− i

j + 1

∮
Γh

xi−1−1yj+1dx =
1− i

j + 1
Ii−1,j+1(h).

Thus, A(h) can be written as

A(h) =
∑

0≤i≤n,
0≤j≤n,
0≤i+j≤n

bi,jIi,j(h) +
∑

0≤i≤n,
0≤j≤n,
0≤i+j≤n

ai,j
i− 1

j + 1
Ii−1,j+1(h) =

∑
−1≤i≤n,
0≤j≤n+1,
0≤i+j≤n

b̃i,jIi,j(h),

(2.1)
where b̃i,j = bi,j + i/jai+1,j−1.

The following Proposition 2.1 gives a simple expression of Abelian integrals A(h).

Proposition 2.1. The Abelian integrals A(h) can be expressed as

A(h) =


1

h
[α(h)J0(h) + β(h)J1(h)] , (n ≥ 1),

γ(h)J−1(h), (n = 0),
(2.2)

where α(h), β(h), and γ(h) are polynomials of h with deg(α(h)) ≤ [(n+ 1)/2],
deg(β(h)) ≤ [n/2], for n ≥ 1; deg(γ(h)) = 0, for n = 0.

Proof. Since the periodic orbits Γh are symmetric about x-axis, thus, Ii,j(h) = 0
as j is even, so, we only need to consider the case of j is odd.

From (1.7), we obtain
y
∂y

∂x
+ 2Cx− 2C = 0, (2.3)

where C = 1/25.
Multiplied the equality (2.3) by xiyj−2dx and integrated it over Γh, we see that

i

j
Ii,j(h) = 2C [Ii+2,j−2(h)− Ii+1,j−2(h)] , (2.4)

where j = 1, 3, 5, · · · , 2[n/2] + 1. We restrict i = −1, 0, 1, 2, · · · , n − 1, and 0 ≤
i+ j ≤ n.
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(i) For i = 0, that is, (i, j) = (0, 1), (0, 3), · · · , (0, 2[(n+ 1)/2]− 1), from (2.4), we
obtain

I2,j−2(h) = I1,j−2(h). (2.5)
From (2.5), let j = 3, one has

J2(h) = J1(h). (2.6)

(ii) For i ̸= 0, that is, (i, j) ̸= (0, 1), (0, 3), · · · , (0, 2[(n+ 1)/2]− 1), from (2.4), we
have

Ii,j(h) =
2jC

i
[Ii+2,j−2(h)− Ii+1,j−2(h)] , (2.7)

which indicates that Ii,j(h) can be expressed in terms of Ii+2,j−2(h) and Ii+1,j−2(h).
Then step by step, since j is a positive odd number, we use (j−1)/2 times (2.7) and
obtain that Ii,j(h) can be written as a linear combination of Jk(h)(k = −1, 0, · · · )
and I0,j(h) (j = 1, 3, · · · , 2 [n/2]− 1) with the form

Ii,j(h) =



Ji, (i ̸= 0, j = 1),
j−1
2∑

k=0

c(i,j), i+ j−1
2 +kJi+ j−1

2 +k(h), (i ≥ 1, j ≥ 3),

j−3
2∑

k=0

c(−1,j), 1+ j−3
2 +kJ1+ j−3

2 +k(h) + d(−1,j),0I0,j−2(h),(
i = −1, 3 ≤ j ≤ 2

[
n
2

]
+ 1

)
,

(2.8)

where c(i,j),i+(j−1)/2+k represents the coefficient obtained when Ii,j(h) generates
Ji+(j−1)/2+k(h), and d(−1,j),0 represents the coefficient obtained when I−1,j(h) gen-
erates I0,j−2(h), they are all real number.

From (2.1) and (2.8), we have

A(h) = A0(h) +A1(h) +A2(h) +A3(h), (2.9)

where

A0(h) =

[(n+1)/2]∑
k=1

b̃0,2k−1I0,2k−1(h) +

[n/2]∑
k=1

b̃−1,2k+1d(−1,2k+1),0I0,2k−1(h),

A1(h) = b̃−1,1J−1(h) +

n−1∑
k=1

b̃k,1Jk(h),

A2(h) =
∑

1≤i≤n,
4≤i+j≤n

b̃i,j

(j−1)/2∑
k=0

c(i,j),i+(j−1)/2+kJi+(j−1)/2+k(h),

A3(h) =
∑

i=−1,
2≤i+j≤n

b̃−1,j

(j−3)/2∑
k=0

c(−1,j),1+(j−3)/2+kJ1+(j−3)/2+k(h).

For A0(h), we can get

A0(h) =

[(n+1)/2]∑
k=1

e0,2k−1I0,2k−1(h), (2.10)
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where e0,2k−1 = b̃0,2k−1 + b̃−1,2k+1d(−1,2k+1),0 (k = 1, 2, · · · , n/2), for n is even;
e0,2k−1 = b̃0,2k−1 + b̃−1,2k+1d(−1,2k+1),0 (k = 1, 2, · · · , (n− 1)/2), e0,2k−1 = b̃0,2k−1

(k = (n+ 1)/2), for n is odd.
For A2(h), the maximum number of i+ (j − 1)/2 + k for k = 0, 1, · · · , (j − 1)/2

is i + (j − 1)/2 + (j − 1)/2 = i + j − 1 = n − 1, and the minimum number is
1 + (3− 1)/2 + 0 = 2, that is, {i+ (j − 1)/2 + k} = {2, 3, 4, · · · , n− 2, n− 1}.

For A3(h), the maximum number of 1+ (j − 3)/2+ k for k = 0, 1, · · · , (j − 3)/2
is 1+ (j − 3)/2+ (j − 3)/2 = j − 2 = 2[n/2]− 1 ≤ n− 1, and the minimum number
is 1 + (3− 3)/2 + 0 = 1, that is, {i+ (j − 3)/2 + k} = {1, 2, 3, · · · , 2[n/2]− 1}.

Suppose that A4(h) := A1(h)+A2(h)+A3(h), so A4(h) is a linear combination
of J−1(h), J1(h), J2(h), · · · , Jn−1(h). Thus, we have that

A4(h) = b̃−1,1J−1(h) +

n−1∑
k=1

ekJk(h), (2.11)

where ek ∈ R (k = 1, 2, 3, · · · , n− 1).
From (2.9), we have

A(h) = A0(h) +A4(h). (2.12)
Again, from (1.7), we have

1

2
y2 + Cx2 − 2Cx = h. (2.13)

Multiplied the equality (2.13) by xi−1yj−2dx and integrated it over Γh, we see
that

1

2
Ii,j(h) = hIi,j−2(h)− CIi+2,j−2(h) + 2CIi+1,j−2(h). (2.14)

(i) For i ̸= 0, let j = 3, by the equality (2.7), the equality (2.14) becomes

(i+ 3)CJi+2(h) = ihJi(h) + (2i+ 3)CJi+1(h), (i ̸= 0). (2.15)

A) For i ≥ 3, we can rewrite equality (2.15) as

hJi(h) =
i− 2

(i+ 1)C
h2Ji−2(h) +

2i− 1

i+ 1
hJi−1(h),

which indicates that hJi(h) can be expressed in terms of h2Ji−2(h) and hJi−1(h).
Then step by step, moreover J2(h) = J1(h), we obtain that hJi(h) can be written
as a linear combination of J0(h) and J1(h) with polynomial coefficients of h,

hJi(h) = αi(h)J0(h) + βi(h)J1(h),

where αi(h) and βi(h) are polynomials of h with αi(h) = 0, deg(βi(h)) ≤ [(i+ 1)/2].
B) For i = 2, by the equality (2.6), one has

hJ2(h) = hJ1(h).

C) For i = 1, hJ1(h) can also be a linear combination of J0(h) and J1(h) as
hJ1(h) = hJ1(h).

D) For i < 0, from the equality (2.15), we obtain

hJi(h) = −2i+ 3

i
CJi+1(h) +

i+ 3

i
CJi+2(h). (2.16)
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From the equality (2.16), let i = −1, we have

hJ−1(h) = CJ0(h)− 2CJ1(h).

As a consequence, all hJi(h) (i = −1, 1, 2, · · · , n− 1) can be written as a linear
combination of J0(h) and J1(h) with polynomial coefficients of h,

hJi(h) = αi(h)J0(h) + βi(h)J1(h), (2.17)

where αi(h) and βi(h) are polynomials of h with αi(h) = 0, deg(βi(h)) ≤ [(i+ 1)/2],
for i ≥ 1; and deg(αi(h)) = 0, deg(βi(h)) = 0, for i = −1.

Substituting these formulae into hA4(h), we obtain

hA4(h) = α̃1(h)J0(h) + β̃1(h)J1(h), (2.18)

where α̃1(h), β̃1(h) are polynomials of h with deg(α̃1(h)) = 0, deg(β̃1(h)) ≤ [n/2],
for n ≥ 2; and deg(α̃1(h)) = 0, deg(β̃1(h)) = 0, for n = 0, 1.
(ii) For i = 0, from (2.14) and (2.5), we have

hI0,j(h) =

hJ0(h), (j = 1),

2h2I0,j−2(h) + 2ChI1,j−2(h),
(
3 ≤ j ≤ 2

[
n+1
2

]
− 1

)
.

(2.19)

From equalities (2.8) and (2.17), we get

hI1,j−2(h) = α̃2(h)J0(h) + β̃2(h)J1(h), (j ≥ 3), (2.20)

where α̃2(h), β̃2(h) are polynomials of h with α̃2(h) = 0 and deg(β̃2(h)) ≤ (j−1)/2.
From equalities (2.19) and (2.20), and then step by step, we have

hI0,j(h) = α̃3(h)J0(h) + β̃3(h)J1(h), (2.21)

where α̃3(h), β̃3(h) are polynomials of h with deg(α̃3(h)) ≤ (j+1)/2, deg(β̃3(h)) ≤
(j − 1)/2 for j ≥ 3; and deg(α̃3(h)) = 1, β̃3(h) = 0 for j = 1.

From (2.10) and (2.21), we obtain

hA0(h) = e0,1hJ0(h) + e0,3hI0,3(h) + · · ·+ e0,2[n+1
2 ]−1hI0,2[n+1

2 ]−1(h)

= α̃4(h)J0(h) + β̃4(h)J1(h),
(2.22)

where α̃4(h), β̃4(h) are polynomials of h with deg(α̃4(h)) ≤ [(n+ 1)/2], deg(β̃4(h)) ≤
[(n− 1)/2] for n ≥ 3; deg(α̃4(h)) = 1, β̃4(h) = 0 for n = 1, 2.

For n ≥ 1, we suppose that J(h) := hA(h), from (2.12), (2.18) and (2.22), we
have

hA(h) = J(h) = α(h)J0(h) + β(h)J1(h), (2.23)

where α(h) and β(h) are polynomials of h with deg(α(h)) ≤ [(n+ 1)/2], deg(β(h)) ≤
[n/2].

For n = 0, from (2.1), we obtain A(h) = γ(h)J−1(h), where γ(h) = −a0,0, and
deg(γ(h)) = 0.



A linear estimation to the number of · · · 1541

3. Picard-Fuchs Equations and Riccati Equation
In this section, we give two relations among functions Jm(h) and their derivatives
J ′
m(h) for m = 0, 1; a relation between J0(h) and J1(h), obtaining two Picard-Fuchs

equations and a variable coefficient first order linear ordinary differential equation.
The following two lemmas give two relations among functions Jm(h) and their

derivatives J ′
m(h) for m = 0, 1.

Lemma 3.1. The functions Jm(h) for m = 0, 1 satisfy the following Picard-Fuchs
equation J0(h)

J1(h)

 =

 2h 2C

0 h+ C

J ′
0(h)

J ′
1(h)

 . (3.1)

Proof. By (1.7), we have y2 = 2h − 2Cx2 + 4Cx, ∂y/∂h = 1/y, and ydy =
(2C − 2Cx)dx. Since Ji(h) =

∮
Γh
xi−1ydx, J ′

i(h) =
∮
Γh
xi−1/ydx. Thus

Ji(h) =

∮
Γh

xi−1y2

y
dx =

∮
Γh

xi−1
(
2h− 2Cx2 + 4Cx

)
y

dx

= 2hJ ′
i(h)− 2CJ ′

i+2(h) + 4CJ ′
i+1(h),

(3.2)

and
iJi(h) =

∮
Γh

ixi−1ydx =

∮
Γh

ydxi = −
∮
Γh

xi
2C − 2Cx

y
dx

= 2CJ ′
i+2(h)− 2CJ ′

i+1(h).

(3.3)

From (3.2) and (3.3), we have

(i+ 1)Ji(h) = 2hJ ′
i(h) + 2CJ ′

i+1(h). (3.4)

By (3.4), let i = 0, 1 respectively, we obtain

J0(h) = 2hJ ′
0(h) + 2CJ ′

1(h), (3.5)
J1(h) = hJ ′

1(h) + CJ ′
2(h). (3.6)

From (2.6), one has
J ′
2(h) = J ′

1(h). (3.7)
From three simultaneous equations (3.5)–(3.7), it follows that

J0(h) = 2hJ ′
0(h) + 2CJ ′

1(h), (3.8)
J1(h) = (h+ C)J ′

1(h). (3.9)

From equalities (3.8) and (3.9), we obtain (3.1).

Lemma 3.2. The functions Jm(h) for m = 0, 1 satisfy the following Picard-Fuchs
equation J ′

0(h)

J ′
1(h)

 =
1

B(h)

h+ C −2C

0 2h

J0(h)

J1(h)

 , (3.10)

where B(h) = 2h
(
h+ 1/25

)
.

Proof. It can be calculated directly from Lemma 3.1.
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Lemma 3.3. Ji
(
−1/25

)
= 0 (i = 0, 1); Ji(h) < 0 (i = −1, 0, 1), when h ∈(

−1/25, 0
)
.

Since Ji(h) =
∮
Γh
xi−1ydx. The proof only requires some simple calculations, so

it is omitted.
For the relation between J0(h) and J1(h), assume that U(h) := J0(h)/J1(h), we

obtain the following corollary.

Corollary 3.1. The function U(h) satisfies the following variable coefficient first
order linear ordinary differential equation

B(h)U ′(h) = (C − h)U(h)− 2C, (3.11)

where B(h) = 2h
(
h+ 1/25

)
.

Proof. Using Lemma 3.2, and differentiated both sides of U(h) with respect to h,
we obtain (3.11).

4. The Number of Zeros for Abelian Integrals A(h)

In this section, we give a relation between function J(h) and J1(h), obtaining a
variable coefficient first order linear ordinary differential equation. Finally, we prove
Theorem 1.1 using the method of Picard-Fuchs equation and Riccati equation.

For the relation between J(h) and J1(h), assume that V (h) := J(h)/J1(h), we
obtain the following lemma.

Lemma 4.1. For n ≥ 1, the function V (h) satisfies the following variable coefficient
first order linear ordinary differential equation

B(h)α(h)V ′(h) = D(h)V (h) +G(h), (4.1)

where D(h) = B(h)α′(h)+ (C −h)α(h), G(h) = B(h)α(h)β′(h)−B(h)α′(h)β(h)−
(C − h)α(h)β(h)− 2Cα2(h). Thus, deg(D(h)) ≤ [(n+ 1)/2] + 1, and deg(G(h)) ≤
[(n+ 1)/2] + [n/2] + 1.

Proof. Using the equality (2.23) and Corollary 3.1, differentiated both sides of
V (h) with respect to h, we obtain (4.1).

We use ♯A(h) to denote the number of zeros of Abelian integrals A(h) in ∆, and
we need the following lemma.

Lemma 4.2 ( [14]). The smooth functions W (h), ϕ(h), ψ(h), ξ(h), and η(h) satisfy
the following Riccati equation

η(h)W ′(h) = ϕ(h)W 2(h) + ψ(h)W (h) + ξ(h),

then
♯W (h) ≤ ♯η(h) + ♯ξ(h) + 1.

Lemma 4.2 is Lemma 5.3 in [14], and the proof can be found in [14], so it is
omitted.

Finally, we complete the proof of Theorem 1.1 using the method of Picard-Fuchs
equation and Riccati equation.
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Proof. Using the equality (2.23), Proposition 2.1, Lemma 4.1 and Lemma 4.2,
therefore

♯A(h) = ♯J(h) = ♯V (h) ≤ ♯B(h) + ♯α(h) + ♯G(h) + 1.

For n ≥ 1, since deg(α(h)) ≤ [(n+ 1)/2], deg(G(h)) ≤ [(n+ 1)/2] + [n/2] + 1,
noticing that B(h) = 2h

(
h+ 1/25

)
and there is no zero in

(
−1/25, 0

)
, we obtain

♯A(h) ≤
[
n+ 1

2

]
+

([
n+ 1

2

]
+
[n
2

]
+ 1

)
+ 1 = 2

[
n+ 1

2

]
+

[n
2

]
+ 2.

For n = 0, since A(h) = γ(h)J−1(h), where deg(γ(h)) = 0, J−1(h) < 0, we have
♯A(h) = 0.

5. Conclusion
In this paper, we study the linear estimation to the number of zeros for Abelian
integrals in the quadratic reversible system (r22) under arbitrary polynomial pertur-
bations of degree n, according to the method of Picard-Fuchs equation and Riccati
equation. At the same time, we prove that the upper bound of the number is
2 [(n+ 1)/2] + [n/2] + 2 (n ≥ 1). Our result shows that the upper bound depends
linearly on n.
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