SOME SIMPLE GROUPS OF LIE TYPE CON-STRUCTED BY THE INNER-AUTOMORPHISM

CHENG CHONHU
(Xiangtan University)

1

C. Chevalley constructed some simple groups and obtained for them the structure theorems^[1]. Using the graph automorphism of simple Lie algebra L and the automorphism of the field \mathcal{K} , R. Steinberg and R. Ree constructed some twisted simple group of Lie type^[2,3]. It is analogous to the construction of real form of L by the outer-automorphism of L and the conjugation of complex number field \mathcal{C} .

From the theory of Symmetric Rieman Space^[4], we know that the real form of L can be constructed by the involutive inner-automorphism of L and the conjugation of the field \mathscr{C} . In this paper, we denote by L the simple Lie algebra C_l where l is even and $l \ge 4$ and denote by \mathscr{K} the field $\mathscr{K}_0(\sqrt{-1})$ where \mathscr{K}_0 is an ordering field. Using the involutive inner-automorphism of L and the involutive automorphism of the field \mathscr{K} , we construct the simple group of Lie type which is denoted by ${}^2C_l(\mathscr{K})$. The construction of ${}^2C_l(\mathscr{K})$ is connected with the theory of the classification of the real form of $L^{[5]}$ and the theory of the conjugation between the cartan subalgebra of the real form of $L^{[5]}$ and the theory of the conjugation between the cartan subalgebra of the real form of $L^{[6]****}$.

Let Φ be the system of roots of L, Φ can be expressed in the form: Φ : $\{\pm e_i \pm e_j, \pm 2e_i, 1 \le i < j \le l\}$. Let $\Gamma = (\Phi)_{\mathscr{R}}$ be the vector space generated by Φ over the real number field \mathscr{R} . Obviously, \mathscr{R} : $\{e_1, e_2, \dots, e_l\}$ is a basis of Γ , we define an ordering \mathscr{E} of the space Γ , let $r \in \Gamma$, the first non-zero coefficient of r for the basis \mathscr{R} is positive, then r is called positive, i. e., r > 0. For the ordering \mathscr{E} , he positive system of roots Φ^+ : $\{e_i \pm e_j, 2e_i, 1 \le i < j \le l\}$ and the fundamental system of roots Π : $\{\alpha_1, \alpha_2, \dots, \alpha_l\}$, where $\alpha_i = e_i - e_{i+1}$ for $i = 1, 2, \dots, l-1$ and $\alpha_l = 2e_l$. Let \mathscr{D} : $\{1, 3, \dots, l-1\}$ and let $w_0 = w_{\alpha_1} w_{\alpha_2} \cdots w_{\alpha_{l-1}}$, obviously, $w_0 e_i = e_{i+1}$, $w_0 e_{i+1} = e_i$ for each $i \in \mathscr{D}$. Let Π° : $\{\alpha_1, \alpha_3, \dots, \alpha_{l-1}\}$ and let $\Phi^* = \Phi^+ \setminus \Pi^\circ$.

Lemma 1.1 For each $r \in \Phi^+$, $r \in \Pi^{\circ}$ if and only if w_0 $r \in \Phi^-$

Manuscript received, December 28, (1979).

The author expresses his sincere thanks to prof. Yen Chih-Ta who has made many valuable suggestions.

^{***} In this paper, we use the definitions and the symbols given by [7] without explanation.

Proof If α_i , $\alpha_j \in \Pi^{\circ}$, $j \neq i$, then $(\alpha_i, \alpha_j) = 0$. Thus, $w_0 r = -r \in \Phi^-$ for each $r \in \Pi^{\circ}$. Conversely, let $W_i = w_{\alpha_i} w_{\alpha_{i+2}} \cdots w_{\alpha_{l-1}}$ and let $W_{l+1} = I$, then there exists an element k of $\{\mathcal{D}, l+1\}$ such that $W_k r = \beta \in \Phi^+$ and $W_{k-2} r = W_{\alpha_{k-2}} \beta \in \Phi^-$. It follows from $\alpha_{k-2} \in \Pi$ that $\beta = \alpha_{k-2} \in \Pi^{\circ}$. Obviously, $W_k^2 = I$, therefore, $r = W_k \beta = W_k \alpha_{k-2}$. If $j \neq k-2$, then $(\alpha_j, \alpha_{k-2}) = 0$, thus $w_{\alpha_j} \alpha_{k-2} = \alpha_{k-2}$. Therefore, $W_k \alpha_{k-2} = \alpha_{k-2}$, hence, $r = \alpha_{k-2} \in \Pi^{\circ}$.

Since $w_0^2 = I$, $\Gamma = \Gamma^+ + \Gamma^-$ where Γ^+ : $\{r \in \Gamma \mid w_0 r = r\}$ and Γ^- : $\{r \in \Gamma \mid w_0 r = -r\}$. Obviously, $(\Gamma^+, \Gamma^-) = 0$. For each $r \in \Gamma$, we denote by r' the projection of r onto the subspace Γ^+ . Clearly, \mathscr{B}^+ : $\{e'_1, e'_2, \cdots, e'_{l-1}\}$ is a basis of the subspace Γ^+ where $e'_i = \frac{1}{2}(e_i + e_{i+1})$, $i \in \mathscr{D}$. We can define an ordering \mathscr{E}' of the subspace Γ^+ : let $r \in \Phi^*$. The first non-zero coefficient of r for the basis \mathscr{B} is positive, then r' is called positive, i.e., r' > 0. and if $r \in \Phi$, r > 0 for the ordering \mathscr{E} , then r' > 0 for the ordering \mathscr{E}' , moreover if $\alpha \in \Pi^\circ$, then $\alpha' = 0$ and $\Gamma^- = (\Pi^\circ)_{\mathscr{F}}$. Let Φ' , $\Phi^{+\prime}$ and Π' be the projections of Φ , Φ^+ and Π onto the subspace Γ^+ respectively. It is easy to verify that Φ' is a system of roots and $\Phi^{+\prime}$ (Π') is a positive (fundamental) system of roots of Φ' . Obviously, $\Phi^{+\prime} = \Phi^{*\prime}$ and $\Pi' = \Pi^{*\prime}$ where $\Pi^{*\prime}$ is the projection of $\Pi^* = \Pi \setminus \Pi^\circ$ onto the subspace Γ^+ . It is easy to verify:

Lemma 1.2 1) If $\alpha \in \Pi^{\circ}$ and $r \in \Phi^{*}$ and if $\alpha \pm r \in \Phi$, then $\alpha \pm r \in \Phi^{*}$; 2) Π' and $\Pi(C_{m})$ are isomorphic where $\Pi(C_{m})$ is the fundamental system of roots of C_{m} , m=l/2.

Let us denote by \overline{r} the w_0r for each $r \in \Phi$. It follows from 1.1 that if $r \in \Phi^*$, then $\overline{r} \in \Phi^*$. Let Φ_1^* : $\{r \in \Phi^* \mid r \leqslant \overline{r}\}$ and let J_r : $\{r, \overline{r}\}$ for each $r \in \Phi_1^*$. For each $r \in \Phi_1^*$, let $\overline{W}_r^1 = w_r$ or $\overline{W}_r^1 = w_r w_{\overline{r}}$ according as $r = \overline{r}$ or $r \neq \overline{r}$. For each $\alpha \in H^\circ$, let J_α : $\{\alpha\}$ and let $\overline{W}_\alpha^1 = W_\alpha$. Obviously, for each $r \in \Phi_1^+ = \Phi_1^* \cup H^\circ$, $w_r w_{\overline{r}} = w_{\overline{r}} w_r$, $(\overline{W}_r^1)^2 = I$ and $\overline{W}_r^1 J_r = -J_r$: $\{-r, -\overline{r}\}$.

Definition 1.3 $W^1: \{w \in w \mid w_0 w = w w_0\}.$

It is easy to verify the following lemma:

Lemma 1.4 For each $r \in \Phi_1^+$, then $W_r^1 \in W^1$.

For each $W \in W^1$, then $w\Gamma^+ = \Gamma^+$ and $w\Gamma^- = \Gamma^-$. Let w' be the restriction of w onto T^+ , it is easy to verify that for each $r \in \Phi_1^*$, $\overline{W}_r^{1l} = w_{r'}$, where $w_{r'}$ is the reflection in the hyperplane orthogonal to the root r' of Φ' operating on the subspace Γ^+ , If $r \in \Pi^\circ$, then $\overline{W}_r^{1l} = I'$ where I' is the identity mapping on the subspace Γ^+ .

Theorem 1.5 $W^1 = \langle \overline{W}'_r, r \in \mathcal{I} \rangle$.

Proof We denote by W'_1 the restriction of W' operating on the subspace Γ^+ and let $W(\Phi')$: $\{w_{r'}, r' \in \Phi'\}$. It follows from 2) of 1.2 that $W'_1 = W(\Phi')$. Therefore, by 2.1.8 of [7], every element w' of W'_1 can be expressed in the form

 $w' = w_{r_i} w_{r_i} \cdots w_{r_o}$ where $r_i' \in \Pi'$, $1 \le i \le p$.

Let $w \in W^1$ and $W_1 = W^{-1}\overline{W}_{r_1}^1\overline{W}_{r_2}^1\cdots\overline{W}_{r_p}^1$ where $r_i \in H^*$ and the projection of r_i on Γ^+

is r'_i , $1 \le i \le p$. Clearly, for each $r \in \Phi_1^*$, $\overline{W}_r^{1\prime} = W_{r'}$, therefore, $W'_1 = I'$, where w'_1 is the restriction of w_1 onto the subspace Γ^+ . Clearly, for each $\alpha \in \Pi^\circ$, $w_1\alpha = \pm \beta$, where $\beta \in \Pi^\circ$. Therefore, there exist β_1 , β_2 , ..., $\beta_q \in \Pi^\circ$ such that $w_2 = w_1 \overline{W}_{\beta_1}^1 \overline{W}_{\beta_2}^1 \cdots \overline{W}_{\beta_q}^1$ leaves Π° invariant. Obviously, $w'_{\alpha} = I'$ for all $\alpha \in \Pi^\circ$, then $w'_2 = I'$, where w'_2 is the restriction of w_2 onto the subspace Γ^+ . In the following, we shall prove that W_2 leaves all elements of Γ^- invariant. Assume the contrary, there exist $\alpha = e_i - e_{i+1}$ and $\beta = e_j - e_{j+1}$, $i, j \in \mathcal{D}$, $i \neq j$ such that $w_2\alpha = \beta$. Let $r_i = 2e_i$, $r_j = 2e_j$ and $r_{j+1} = 2e_{j+1}$, then either $w_2r_i = r_j$ or $w_2r_i = -r_{j+1}$. Obviously, r_i , r_j , $r_{j+1} \in \Phi^*$ and $r'_i \neq r'_j$, $r'_i \neq -r'_{j+1}$. Hence we have a contradiction. Therefore, w_2 leaves all elements of Γ^- invariant. Thus, $w = \overline{W}_{r_1}^1 \overline{W}_{r_1}^1 \cdots \overline{W}_{r_n}^1$, where $r_i \in \Pi$, $1 \leq i \leq n$, n = p + q. This proves the theorem.

Corollary 1.6 If $w \in W'$, then $w\Pi^{\circ} \subset \{\Pi^{\circ}, -\Pi^{\circ}\}, w\Phi^{*} \subset \{\Phi^{*}, -\Phi^{*}\}.$

Obviously, we can separate all elements of Φ_1^* into the following three types of the partition \mathscr{A} : ① $r = \overline{r}$; ② $r \neq \overline{r}$, r is long; ③ $r \neq \overline{r}$, r is short.

Lemma 1.7 1) Any two elements r and s of the same type in $\mathscr A$ are conjugate with each other under W^1 , moreover, there exists r, belonging to $\mathfrak G$ type of $\mathscr A$ such that $(r, r_i) \neq 0$, i=1, 2, 3, 2) Any two elements α and β of Π° are conjugate with each other under W^1 .

Proof 1) ① If r and s belong to ① type of \mathscr{A} , then r and s can be expressed in the form: $r = e_i + e_{i+1}$, $s = e_j + e_{j+1}$, i, $j \in \mathscr{D}$. If $i \neq j (i < j)$, then $\overline{W}_{\delta}^1 r = s$, where $\delta = e_{i+1} - e_i$. Moreover, let $r_1 = e_i + e_{i+1}$, $r_2 = 2e_{i+1}$ and $r_3 = e_{i+1} - e_{i+2}$ or $r_3 = e_{i-1} - e_i$, then $(r, r_i) \neq 0$ for i = 1, 2, 3. ② If r and s belong to ② type of \mathscr{A} , then r and s can be expressed in the form: $r = 2e_{i+1}$, $s = 2e_{j+1}$, i, $j \in \mathscr{D}$. If $i \neq j (i < j)$, then $\overline{W}_{\delta}^1 r = s$, where $\delta = e_{i+1} - e_i$. Moreover, r_i , i = 1, 2, 3 mentioned in ① satisfy $(r, r_i) \neq 0$, i = 1, 2, 3. ③ If r belongs to ③ type of \mathscr{A} and $r = e_{i+1} + e_{j+1}$, i, $j \in \mathscr{D}$, $i \neq j$, then $\overline{W}_{\delta}^1 r = e_{i+1} - e_j$ where $\delta_0 = 2e_{j+1}$. Therefore, if r and s belong to ③ type of \mathscr{A} , under the conjugation of W^1 , r and s can be expressed in the form $r = e_{i+1} - e_j$, $s = e_{k+1} - e_k$, i, j, k, $k \in \mathscr{D}$. Let $w_1 = I$ or $w_1 = \overline{W}_{\delta_1}^1$, where $\delta_1 = e_{i+1} - e_k$ according as i = k or $i \neq k (i < k)$. Similarly, let $w_2 = I$ or $w_2 = \overline{W}_{\delta_2}^1$, where $\delta_2 = e_{j+1} - e_k$ according as j = k or j = h(j < k). Clearly, $w_1 w_2 r = s$. Let $r_1 = e_i + e_{i+1}$, $r_2 = 2e_{i+1}$, $r_3 = r$, then $(r_1 r_i) \neq 0$ for i = 1, 2, 3.

2) If α , $\beta \in \Pi^{\circ}$, then α and β can be expressed in the form: $\alpha = e_i - e_{i+1}$, $\beta = e_j - e_{j+1}$, $i, j \in \mathcal{D}$. If $i \neq j (i < j)$, then $\overline{W}_{\delta}^1 \alpha = \beta$, where $\delta = e_{i+1} - e_j$.

2

Let $G = L(\mathcal{K})$ be the Chevalley group for the Chevalley basis C_b : $\{h_r, r \in \Pi; \tilde{e}_r, r \in \Phi\}$. For each $\alpha \in \Pi^{\circ}$, let $n_{\alpha} = \exp ad\tilde{e}_{\alpha} \exp(-ad\tilde{e}_{-\alpha}) \exp ad\tilde{e}_{\alpha}$, let $n_0 = n_{\alpha_1}n_{\alpha_2} \cdots n_{\alpha_{l-1}}$, then n_0 corresponds to w_0 under the natural homomorphism from N onto W. Obviously, $n_0^2 = I$, where I is the identity element of G.

Lemma 2.1 There is a Chevalley basis C_b : $\{h_r, r \in \Pi; e_r, r \in \Phi\}$ such that $n_0e_r = k_re_{\bar{r}}, r \in \Phi$ where k_r , $r \in \Phi$ satisfy the following relations: a) If $r \in \Phi^*$, $r = \bar{r}$ or $r \in \Pi^\circ$, then $k_r = -1$; b) If $r \in \Phi^*$, $r \neq \bar{r}$, then $k_r = 1$.

Proof We shall prove that there are $e_r = \eta_r \tilde{e}_r$ for all $r \in \Phi$, where $\eta_r = \pm 1$, by appropriate sign changes of the η_r , such that C_b : $\{h_r, r \in \Pi; e_r, r \in \Phi\}$ is a Chevalley basis of L and the relations a) and b) hold.

- a) 1) For each $\alpha \in \Pi^{\circ}$, $n_{0}\tilde{e}_{\alpha} = -\tilde{e}_{-\alpha}$, $n_{0}\tilde{e}_{-\alpha} = -\tilde{e}_{\alpha}$. Thus, let $e_{\alpha} = \tilde{e}_{\alpha}$, $e_{-\alpha} = \tilde{e}_{-\alpha}$, for all $\alpha \in \Pi^{\circ}$, we have $k_{r} = -1$ for all $r \in \Pi^{\circ}$, 2) If $r \in \Phi^{*}$, $r = \bar{r}$, then $r = e_{i} + e_{i+1}$, $i \in \mathcal{D}$, hence $n_{\alpha}\tilde{e}_{r} = (-1)\epsilon_{0}/\epsilon_{0}\tilde{e}_{r}$, where $\alpha_{i} = e_{i} e_{i+1}$ by 6.4.2 of [7]. It is easy to verify that $n_{\alpha}\tilde{e}_{r} = \tilde{e}_{r}$, where $\alpha_{j} = e_{j} e_{j+1}$, $j \in \mathcal{D}$, $j \neq i$. Therefore, $n_{0}\tilde{e}_{\alpha} = -\tilde{e}_{\alpha}$. Let $e_{r} = \tilde{e}_{r}$, $e_{-r} = \tilde{e}_{-r}$ for all $r \in \Phi^{*}$, $r = \bar{r}$, then we have $k_{r} = -1$ for each $r \in \Phi^{*}$, $r = \bar{r}$.
- b) Let $\Phi^{(*)}$: $\{r \in \Phi^* | r \neq r\}$. Clearly, $\Pi^* \subset \Phi^{(*)} \subset \Phi^+$. Let $e_r = \tilde{e}_r$ for all $r \in \Pi^*$, we can choose the appropriate $\eta_{\bar{r}}$ so that $k_r = 1$ for all $r \in \Pi^*$. Suppose that for all r of Φ^* , of which the height h(r) < n(n > 1) the η_r and the $\eta_{\bar{r}}$ have been chosen so that $k_r = 1$. For each element r of $\Phi^{(*)}$ of which the height h(r) = n. If η_r and $\eta_{\bar{r}}$ have been chosen so that $k_{\bar{r}} = 1$, then $k_r = 1$ by $n_0^2 = I$; if η_r and $\eta_{\bar{r}}$ have not been chosen, then we can choose the appropriate η_r and $\eta_{\bar{r}}$ so that $k_r = 1$. By the steps along the lines of the preceding discussion, we obtain $e_r = \eta_r \tilde{e}_r$ for all $r \in \Phi^{(*)}$, such that $k_r = 1$. Moreover, for each $r \in \Phi^{(*)}$, we can choose e_{-r} such that $[e_r, e_{-r}] = h_r$. Thus, we obtain the set C_b : $\{h_r, r \in \Pi; e_r, r \in \Phi\}$. It follows from p. 58 of [7] that C_b is a Chevalley basis, and the relations a) and b) hold obviously.

Clearly, the chevalley group for the Chevalley basis C_b is $G = L(\mathcal{H})$ as was mentioned in [7] and for each $\alpha \in \Pi^{\circ}$ $n_{\alpha} = \exp a \, de_{\alpha} \exp - a \, de_{-\alpha} \exp a \, de_{\alpha}$. Let f be an involutive automorphism of the field \mathcal{H} which satisfies f(a) = a for all $a \in \mathcal{H}_0$, and $f(\sqrt{-1}) = -\sqrt{-1}$. The mapping $x_r(t) \to x_r(f(t))$ can be extended to an involutive automorphism of G (denoted by f also). By f(1) = 1 and f(-1) = 1. We have $fn_0 = n_0$.

Definition 2.2 For all $x \in G$, let $\sigma x = f \rho x = f(n_0 x n_0^{-1})$. Obviously, $\sigma^2 x = x$ for all $x \in G$, i., e., $\sigma^2 = I$.

Definition 2.3 U^1 : $\{u \in U \mid \sigma u = u\}$.

If $r \in \Phi_1^*$, $r = \overline{r}$, then let $X_r^1(t) = x_r(t)$, where $t \in \mathcal{K}$ and $\overline{t} = f(t) = -t$; if $r \in \Phi_1^*$, $r \neq \overline{r}$, then let $X_r^1(t) = x_r(t)x_{\overline{r}}(\overline{t})$, $t \in \mathcal{K}$, $f(t) = \overline{t}$.

Lemma 2.4 For each $r \in \Phi_1^*$, $X_r^1(t) \in U^1$, $t \in \mathcal{K}$.

Lemma 2.5 Every element u of U^1 can be expressed in the following form $u = x_{r_1}(t_1)x_{r_2}(t_2)\cdots x_{r_n}(t_n), \ r_i \in \Phi^*, \ t_i \in \mathcal{K}^* = \mathcal{K}\setminus 0, \ 1 \leq i \leq n, \ r_1 < r_2 < \cdots < r_n.$

Proof It follows from 5.3.3 of [7] that u can be expressed in the form

 $u = x_{s_1}(t'_1) x_{s_2}(t'_2) \cdots x_{s_p}(t'_p), \text{ where } s_i \in \Phi^+, t_i \in \mathcal{K}^*, 1 \leq i \leq p, s_1 < s_2 < \cdots < s_p.$

In fact, $s_i \in \Phi^*$ for all $1 \le i \le p$. Suppose the contrary, it follows from 1.2 and 5.2.2

of[7] that

$$u = x_{\beta_1}(a_1) x_{\beta_2}(a_2) \cdots x_{\beta_k}(a_k) x_{r_1}(t_1) x_{r_2}(t_2) \cdots x_{r_n}(t_n),$$

where $\beta_i \in \Pi^{\circ}$, $a_i \in \mathcal{K}^*$, $1 \le i \le k$; $r_i \in \Phi^*$, $t_i \in \mathcal{K}^*$, $1 \le i \le n$, $r_1 < r_2 < \cdots < r_n$. Obviously, σu can be expressed in the form

$$\sigma u = x_{-\beta_1}(-\bar{a}_1)x_{-\beta_2}(-\bar{a}_2)\cdots x_{-\beta_k}(-\bar{a}_k)x_{\bar{r}_1}(\tilde{t}_1)x_{\bar{r}_2}(\tilde{t}_2)\cdots x_{\bar{r}_n}(\tilde{t}_n),$$

where $\tilde{t}_i \in \mathcal{K}^*$, $1 \le i \le n$ and if $\bar{r}_i \ne r_i$, then $\tilde{t}_i = \bar{t}_i$, if $\bar{r}_i = r_i$, then $\tilde{t}_i = -\bar{t}_i$, $1 \le i \le n$. Hence, it follows from $\sigma u = u$ and 7.1.2 of [7] that $a_i = 0$ for all $1 \le i \le k$. Thus, we have a contradication. Therefore, $s_i \in \Phi^*$ for all $1 \le i \le p$ and we have

$$u = x_{s_1}(t_1') x_{s_2}(t_2') \cdots x_{s_p}(t_p') = x_{r_1}(t_1) x_{r_2}(t_2) \cdots x_{r_n}(t_n),$$

where $r_i \in \Phi^*$, $t_i \in \mathcal{K}^*$, $1 \le i \le n$, $r_1 < r_2 < \dots < r_n$.

Lemma 2.6 For each $s \in \Phi_1^*$, there exists $\tilde{s} \in \Phi_1^*$ such that $s' = \tilde{s}'$ and $s \neq \tilde{s}$. Let $r = \min\{s, \bar{s}\}$, and $r^* = \max\{s, \tilde{s}\}$, then

- 1) If $r_1 \in \Phi_1^*$ and $r' = r'_1$, then either $r_1 = r$ or $r_1 = r^*$;
 - 2) If $r_1, r_2 \in \{J_r, J_r\}$, then $r_1 + r_2 \notin \Phi$,
 - 3) There is no $r_1 \in \Phi_1^*$ such that $r < r_1 < r^*$. Moreover, $r < r^* < \overline{r}^* < \overline{r}$.

Proof ① If $s \in \Phi_1^*$ and $s = \bar{s}$, then $s = e_i + e_{i+1}$, $i \in \mathcal{D}$. Let $\tilde{s} = 2e_{i+1}$, then $\tilde{s}' = s'$ and $\tilde{s} \neq s$. ② If $s \in \Phi_1^*$, $s \neq \bar{s}$ and s is long, then $s = 2e_{i+1}$, $i \in \mathcal{D}$. Let $\tilde{s} = e_i + e_{i+1}$, then $\tilde{s}' = s'$ and $\tilde{s} \neq s$. ③ If $s \in \Phi_1^*$, $s \neq \bar{s}$ and s is short, then $s = e_{i+1} - e_j$ or $s = e_{i+1} + e_{j+1}$, i, $j \in \mathcal{D}$, i < j. Let $\tilde{s} = e_{i+1} - e_{j+1}$ or $\tilde{s} = e_{i+1} + e_j$ respectively, then $\tilde{s}' = s'$ and $\tilde{s} \neq s$. It is easy to verify that the relations 1), 2) and 3) hold.

We arrange the roots of Φ^* and Φ_1^* in increasing order relative to <, then by 2.6 we have

$$\Phi^*$$
: $\{r_1, r_1^*, \overline{r}_1^*, \overline{r}_1, r_2, r_2^*, \overline{r}_2^*, \overline{r}_2, \cdots, r_q, r_q^*, \overline{r}_q^*, \overline{r}_q^* \}$ and Φ_1^* : $\{r_1, r_1^*, r_2, r_2^*, \cdots, r_q, r_q^* \}$.

Lemma 2.7 Every element u of U^1 can be expressed in the following form uniquely

$$u = X_{r_1}^1(t_1) X_{r_1}^{1_*}(t_1^*) X_{r_2}^{1_*}(t_2) X_{r_2}^{1_*}(t_2^*) \cdots X_{r_q}^{1_q}(t_q) X_{r_q}^{1_*}(t_q^*), \ t_i, \ t_i^* \in \mathcal{K}.$$

Proof It follows from 5.3.3 of [7] that u can be expressed in the following form uniquely

$$u = x_{r_1}(t_1) x_{r_1}^*(t_1^*) x_{\bar{r}_1}^*(\tilde{t}_1) x_{\bar{r}_1}(t_1') \cdots x_{r_g}(t_q) x_{r_g}^*(t_q^*) x_{\bar{r}_g}^*(\tilde{t}_q) x_{\bar{r}_g}(t_q'),$$

where t_i , t_i^* , \tilde{t}_i , $t_i' \in \mathcal{K}$ and if $r_i^* = \bar{r}_i^*$, then $\tilde{t}_i = 0$, $1 \le i \le q$.

From $\sigma u = u$, we have $t_i' = \overline{t}_i$ and if $r_i^* = \overline{r}_i^*$, then $\overline{t}_i^* = -t_i^*$, $\widetilde{t}_i = 0$; if $r_i^* \neq \overline{r}_i^*$, then $\widetilde{t}_i = \overline{t}_i^*$ for $1 \le i \le q$. Therefore, for each $1 \le i \le q$, $x_{r_i}(t_i) x_{r_i}^*(t_i^*) x_{\overline{r}_i}^*(\widetilde{t}_i) x_{r_i}(t_i')$ can be expressed in the form $X_{r_i}^1(t_i) X_{r_i}^1(t_i^*)$ uniquely. This proves the lemma.

By 2.7, we obtain the following theorem immediately:

Theorem 2.8 Every element u of U^1 can be expressed in the following form uniquely

$$u = X_{s_1}^1(t_1) X_{s_2}^1(t_2) \cdots X_{s_p}^1(t_p) \text{ where } s_i \in \Phi_1^*, \ t_i \in \mathcal{K}^*, \ 1 \leqslant i \leqslant p, \ s_1 < s_2 < \cdots < s_p.$$

In the following, let $J_1(u) = s_1$ and $J(u) = \{s_1, s_2, \dots, s_p\}$, for the expression of the element u of U^1 mentioned above.

Definition 2.9 V^1 : $\{v \in V \mid \sigma v = v\}$.

If $r \in \Phi_1^*$, $r = \overline{r}$, then let $X_{-r}^1(t) = x_{-r}(t)$, where $t \in \mathcal{K}$ and $\overline{t} = -t$; if $r \in \Phi_1^*$, $r \neq \overline{r}$, then let $X_{-r}^1(t) = x_{-r}(t)x_{-\overline{r}}(\overline{t})$, $t \in \mathcal{K}$. Similarly, we have

Theorem 2.10 Fvery element v of V^1 can be expressed in the following form uniquely

 $v = X_{-s_1}^1(t_1) X_{-s_2}^1(t_2) \cdots X_{-s_n}^1(t_n)$, where $s_i \in \Phi_1^*$, $t_i \in \mathcal{K}^*$, $1 \le i \le n$, and $s_1 < s_2 < \cdots < s_n$.

3

If $r \in \Phi_1^*$ and $r = \overline{r}$, then let $N_r^1(t) = n_r(t)$, where $t \in \mathcal{K}^*$ and $\overline{t} = -t$, and let $N_r^1 = N_r^1(\sqrt{-1})$; if $r \in \Phi_1^*$ and $r \neq \overline{r}$, then let $N_r^1(t) = n_r(t) n_{\overline{r}}(\overline{t})$, $t \in \mathcal{K}^*$ and let $N_r^1 = N_r^1(1)$.

Definition 3.1 $N^1: \langle N_r^1(t), r \in \Phi_1^*, t \in \mathcal{K}^* \rangle, H^1 = N^1 \cap H$.

Lemma 3.2 1) If $n \in N^1$, $h \in H^1$, then $\sigma n = n$, $\sigma h = h$. 2) For each $\sigma \in \Pi^{\circ}$, there exists $N^1_{\sigma} \in N^1$ such that N^1_{σ} corresponds to $\overline{W}^1_{\sigma} = w_{\sigma}$ under the natural homomorphism.

Proof 1) The assertion of 1 is obvious. 2) Let $\alpha = e_i - e_{i+1}$, $i \in \mathcal{D}$, then $N_{\alpha}^1 = N_r^1 N_{r}^1 \in N^1$, where $r = 2e_{i+1}$, and $r^* = e_i + e_{i+1}$. Obviously, N_{α}^1 corresponds to $\overline{W}_{\alpha}^1 = w_{\alpha}$ under the natural homomorphism.

Corollary 3.3 1) For each $r \in \Phi_1^*$, then $h_r^1(t) = N_r^1(t) (N_r^1)^{-1} \in H^1$. 2) $H^1 \subset N^1 \subset \langle U^1, V^1 \rangle$.

Proof 1) is obvious. 2) For each $r \in \Phi_1^*$, $r \pm r \notin \Phi$, hence $N_r^1(t) = X_r^1(t) X_{-r}^1(-t^{-1}) X_r^1(t)$. Thus $H^1 \subset N^1 \subset \langle U^1, V^1 \rangle$.

Theorem 3.4 N^1 corresponds to W^1 under the natural homomorphism from N onto W and $N^1/H^1 \cong W^1$.

Proof Let w be an element of W^1 , then it follows from 1.5 that W can be expressed in the following form

 $w = \overline{W}_{r_1}^1 \overline{W}_{r_2}^1 \cdots \overline{W}_{r_n}^1$, where $r_i \in \mathcal{I}$, $1 \le i \le n$.

Let $n = N_{r_1}^1 N_{r_2}^1 \cdots N_{r_n}^1$, then n corresponds to w under the natural homomorphism from N onto W.

Conversely, if $n \in N^1$, then $n = N^1_{s_1}(t_1) N^1_{s_2}(t_2) \cdots N^1_{s_p}(t_p)$, where $s_i \in \Phi_1^*$, $t_i \in \mathcal{K}^*$, $1 \le i \le p$. Obviously, n corresponds to $w = \overline{W}^1_{s_1} \overline{W}^1_{s_p} \cdots \overline{W}^1_{s_p}$ under the natural homomorphism from N onto W. It follows from 1.4 that $w \in W^1$. This proves that N^1 corresponds to W^1 under the natural homomorphism from N onto W.

Obviously, the kernel of the natural homomorphism from N onto W is H, hence the kernel of the natural homomorphism from N^1 onto W^1 is $H^1 = H^1 \cap N^1$.

Thus, $N^1/H^1 \cong W^1$.

Corollary 3.5 Let $N_1^1 = \langle N_r^1, r \in \Phi_1^+ \rangle$, then the image of N^1 under the natural homomorphism is W^1 .

By 3.5, for each $w \in W^1$, we can choose an element of N_1^1 denoted by n_w , such that n_w corresponds to w under the natural homomorphism. The elements n_w for all $w \in W^1$ form a set N_0^1 .

Corollary 3.6 If n_1 , $n_2 \in N^1$, and the images of n_1 and n_2 under the natural homomorphism are w, then $n_1 = h(\chi) n_2$, where $h(\chi) \in H^1$.

Corollary 3.7 If $u \in U^1$, $n \in N^1$, and $h(\chi) \in H^1$, then $h(\chi)u$ $h(\chi)^{-1} \in U'$, and $h(\chi)n^{-1} \in H^1$.

Corollary 3.8 If $\alpha = e_i - e_{i+1} \in \Pi^{\circ}$, $i \in \mathcal{D}$, and $r = 2e_{i+1}$, then $n_{\alpha} \in N^1$; and if $h(\chi_1) = h_r(\mu) h_{\bar{r}}(\mu')$, μ , $\mu' \in \mathcal{K}^*$ and if $\sigma h(\chi) = h(\chi)$, then $h(\chi) \in H^1$.

Proof Obviously, $h_{\alpha}(\sqrt{-1}) = h_r^1(-\sqrt{-1}) = h_r(-\sqrt{-1}) h_{\bar{r}}(\sqrt{-1}) \in H^1$, hence, $n_{\alpha} = h_{\alpha} (-\sqrt{-1}) N_{\alpha}^1 \in N^1$. Let $s = e_{i+1} - e_j$, $j \in \mathcal{D}$, $j \neq i$, and $e_s \in C_b$, then $h(\chi) e_s = \mu e_s$ and $\sigma h(\chi) e_s = \bar{\mu}' e_s$. It follows from $\sigma h(\chi) = h(\chi)$ that $\bar{\mu}' = \mu$, thus, $h(\chi) = h_r^1(\mu) = h_r(\mu)$ $h_{\bar{r}}(\bar{\mu}) \in H^1$.

4

Let $\alpha = e_i - e_{i+1} \in \mathbb{H}^\circ$, $i \in \mathcal{D}$ and $r = 2e_{i+1}$, $\bar{r} = 2e_i$ and let K_{α} : $\langle x_{\alpha}(t), x_{-\alpha}(t'), t, t' \in \mathcal{K} \rangle$, moreover, let $h^1_{\alpha}(\mu) = h_{\bar{r}}(\mu)$, $h^1_{\bar{\alpha}}(\mu') = h_r(\mu')$, where μ , $\mu' \subset \mathcal{K}^*$ and let H_{α} : $\{h^1_{\bar{\alpha}}(\mu)h^1_{\bar{\alpha}}(\mu'), \mu, \mu' \in \mathcal{K}^*\}$. We denote by G_{α} the set $H_{\alpha}K_{\alpha}$. Obviously, G_{α} is a subgroup of G. Clearly, an element g of G belongs to G_{α} if and only if g can be expressed in the form: $g = h(\chi)x_{\alpha}(a)n_{\alpha}x_{\alpha}(b)$, where a, $b \in \mathcal{K}$ and $h(\chi) \in H_{\alpha}$.

Definition 4.1 For each $\alpha = e_i - e_{i+1} \subset \Pi^{\circ}$, $i \in \mathcal{D}$, if $b \in \mathcal{K}$ and b = 0, then let $y_{\alpha}(b) = N_{\alpha}^{1}$; if $b \in \mathcal{K}^{*}$, then let $y_{\alpha}(b) = h_{\alpha}^{1}(a^{-1}\overline{b})x_{\alpha}(a)n_{\alpha}x_{\alpha}(b)$ where $a \in \mathcal{K}^{*}$ and satisfies $a^{-1} = b + \overline{b}^{-1}$.

Obviously, if $a, b \in \mathcal{K}^*$ and $a^{-1} = b + \overline{b}^{-1}$, then the following relation \mathscr{P} holds:

- \mathscr{P} , 1) $\bar{a} = (1-ab)b$; $a = (1-\bar{a}\bar{b})\bar{b}$;
 - 2) a and $a^{-1}b$ are determined by b uniquely;
 - 3) $ab = (b + \overline{b}^{-1})b = (1 + \overline{b}^{-1}b^{-1})^{-1} = (\overline{b} + b^{-1})\overline{b} = \overline{ab};$
 - 4) $a\overline{b}^{-1} = (1 \overline{a}\overline{b})\overline{b}\overline{b}^{-1} = (1 ab)bb^{-1} = \overline{a}b^{-1}; a^{-1}\overline{b} = \overline{a}b^{-1};$

Proof The assertions of 2, 3, 4 are obvious. We shall verify 1). Obviously, $\bar{b}b^2 + b + b + \bar{b}^{-1} - \bar{b}b^2 - b = b + \bar{b}^{-1}$. Hence $(\bar{b}b+1)(b+\bar{b}^{-1}) - (\bar{b}b+1)b = b + \bar{b}^{-1}$. Therefore, it follows from $b + \bar{b}^{-1} \neq 0$ that $b\bar{b} + 1 \neq 0$ and we have $1 - ab = (\bar{b}b+1)^{-1} = \bar{a}b^{-1}$. Hence $(1-ab)b = \bar{a}$ and $(1-\bar{a}\bar{b})\bar{b} = a$.

Lemma 4.2 For each $\alpha \in \Pi^{\circ}$ and $b \in \mathcal{K}$, $\sigma y_{\alpha}(b) = y_{\alpha}(b)$ and $y_{\alpha}(b) \in G_{\alpha}$. Proof If b = 0, then $\sigma y_{\alpha}(b) = \sigma N_{\alpha}^{1} = N_{\alpha}^{1} = y_{\alpha}(b)$. If $b \neq 0$ and $\alpha^{-1} = b + \overline{b}^{-1}$, then $c = \overline{b} (1 - \overline{a}\overline{b}) = a \neq 0 \text{ by } 1) \text{ of } \mathscr{P}. \text{ Hence we have}$ $\sigma y_{\alpha}(b) = h_{\overline{\alpha}}^{1} (\overline{a}^{-1}b) x_{-\alpha}(-\overline{a}) n_{\alpha} x_{-\alpha}(-\overline{b})$ $= h_{\overline{\alpha}}^{1} (\overline{a}^{-1}b) x_{-\alpha}(-\overline{a}) n_{\alpha} x_{\alpha}(-\overline{b}^{-1}) h_{\alpha}(\overline{b}^{-1}) n_{\alpha} x_{\alpha}(-\overline{b}^{-1})$ $= h_{\overline{\alpha}}^{1} (\overline{a}^{-1}b) h_{\alpha}(-\overline{b}) x_{-\alpha}(c) x_{\alpha}(-\overline{b}^{-1})$ $= h_{\overline{\alpha}}^{1} (\overline{a}^{-1}b) h_{\alpha}(-\overline{b}) x_{\alpha}(a^{-1}) h_{\alpha}(-a^{-1}) n_{\alpha} x_{\alpha}(a^{-1}) x_{\alpha}(-\overline{b}^{-1})$ $= h_{\overline{\alpha}}^{1} (\overline{a}^{-1}b) h_{\alpha}(a^{-1}\overline{b}) x_{\alpha}(a) n_{\alpha} x_{\alpha}(a^{-1} - \overline{b}^{-1})$ $= h_{\overline{\alpha}}^{1} (\overline{a}^{-1}b) h_{\alpha}(a^{-1}\overline{b}) x_{\alpha}(a) n_{\alpha} x_{\alpha}(b).$

From \mathscr{P} , we have $a^{-1}\overline{b} = \overline{a}^{-1}b$. Hence, $h_{\overline{a}}^{1}(\overline{a}^{-1}b)h_{\alpha}(a^{-1}\overline{b}) = h_{\overline{a}}^{1}(\overline{a}^{-1}b)h_{\alpha}(\overline{a}^{-1}b) = h_{\alpha}^{1}(\overline{a}^{-1}b)$. Therefore, $\sigma y_{\alpha}(b) = y_{\alpha}(b)$. From 3.8, we have $h_{\alpha}(\sqrt{-1}) \in H_{\alpha}$. Hence $N_{\alpha}^{1} = h_{\alpha}(\sqrt{-1})n_{\alpha} \in G_{\alpha}$. If $b \neq 0$, then $y_{\alpha}(b) \in G_{\alpha}$ obviously.

Corollary 4.3 If $g \in G_{\alpha}$, then g can be expressed in the form $g = h(\chi) x_{\alpha}(a) n_{\alpha} x_{\alpha}(b)$, where $h(\chi) \in H_{\alpha}$ and $a, b \in \mathcal{K}$. Moreover, if $\sigma g = g$, then $g = h_1(\chi) y_{\alpha}(b)$, where $h_1(\chi) \in H^1$.

proof Let $\sigma h(x) = h'(x)$ and $c = \overline{b}(1 - \overline{a}\overline{b})$. If $b \neq 0$ and $c \neq 0$, then by the argument used in the proof of 4.2, we have

$$\sigma g = h'(x) h_{\alpha}(c^{-1}b) x_{\alpha}(c) n_{\alpha} x_{\alpha}(c^{-1} - \overline{b}^{-1})$$
.

It follows from $\sigma g = g$ and 8.4.4 of [7] that c = a and $c^{-1} = a^{-1} = b + \overline{b}^{-1}$. Therefore, g can be expressed in the form $g = h_1(x)y_\alpha(b)$, where $h_1(x) \in H_\alpha$ and $\sigma h_1(x) = h_1(x)$. From 3.8, we have $h_1(x) \in H^1$. We shall now prove that if $b \neq 0$, then $c \neq 0$. Suppose the contrary, then $\sigma g = h'(x)h_\alpha(-\overline{b})x_\alpha(-\overline{b}) \neq g$. We have a contrdication. If b = 0 and $a \neq 0$, then $\sigma g = h'(x)n_\alpha x_\alpha(\overline{a}) \neq g$, this contradicts the fact that $\sigma g = g$. Therefore, if b = 0, then $g = h_1(x)N_\alpha^2 = h_1(x)y_\alpha(b)$, where $h_1(x) \in H^1$ and b = 0.

Lemma 4.4 1a) Let α , $\beta \in \Pi^{\circ}$ and $\alpha \neq \beta$, then $y_{\alpha}(b)y_{\beta}(b') = y_{\beta}(b')y_{\alpha}(b)$;

- 1b) $y_{\alpha}(b_1)y_{\alpha}(b_2) = h_1(\chi)y_{\alpha}(b)$, where b_1 , b_2 , $b \in \mathcal{K}$ and $h_1(x) \in H^1$;
- 2) $y_{\alpha}(b)^{-1} = h_1(\chi) y_{\alpha}(b')$, where $b, b' \in \mathcal{K}$ and $h_1(\chi) \in H'$;
- 3) Let $n \in \mathbb{N}^1$, then $ny_{\alpha}(b) n^{-1} = h_1(\chi) y_{\beta}(b')$, where $b, b' \in \mathcal{K}$, $\beta \in \mathbb{H}^{\circ}$ and $h_1(\chi) \in \mathbb{H}^1$.

proof 1a) The assertion of 1a) is obvious. 1b) Let $g = y_{\alpha}(b_1)y_{\alpha}(b_2)$, then $g \in G_{\alpha}$ and $\sigma g = g$. Hence it follows from 4.3 that the assertion of 1b) is established. 2) Let $g = y_{\alpha}(b)^{-1}$, then $g \in G_{\alpha}$ and $\sigma g = g$. Hence the assertion of 2) is established by 4.3. 3) Let w be the image of n under the natural homomorphism and $w\alpha = \pm \beta$, where $\beta \in \Pi^{\circ}$, then $nG_{\alpha}n^{-1} = G_{\beta}$. Let $g = ny_{\alpha}(b)n^{-1}$, then $g \in G_{\beta}$ and $\sigma g = g$. It follows from 4.3 that the assertion of 3) is established.

Definition 4.5 Y^1 : $\{I, y_{\beta_1}(b_1)y_{\beta_2}(b_2) \cdots y_{\beta_k}(b_k), \beta_i \in \mathcal{H}^{\circ}, i \neq j, \beta_i \neq \beta_j, b_i \in \mathcal{K}, 1 \leq i, j \leq k\}$. $B^1 = U^1 H^1 Y^1$.

Lemma 4.6 1) Let $h(\chi) \in H^1$, then $h(\chi)y_{\alpha}(b)h(\chi)^{-1}=h_1(\chi)y_{\alpha}(b')$, where b, $b' \in \mathcal{K}$ and $h_1(\chi) \in H^1$. 2) Let $r \in \Phi_1^*$ and $\alpha \in \Pi^\circ$, then $y_{\alpha}(b)X_r^1(t)=u y_{\alpha}(b)$, where t, $t' \in \mathcal{K}$ and $u \in U^1$.

Proof 1) obviously, $g=h(\chi)y_a(b)h(\chi)^{-1}=h(\chi)h'(\chi)g'$, where $g'\in G_a$, and $h'(\chi)=n_ah(\chi)^{-1}n_a^{-1}\in H^1$. Clearly, $\sigma h'(\chi)=h'(\chi)$ and $\sigma g=g$, hence $\sigma g'=g'$. From 4.3 we have $g'=h'_1(\chi)y_a(b')$, where $h'_1(\chi)\in H^1$. Therefore, $h(\chi)y_a(b)h(\chi)^{-1}=h_1(\chi x)y_a(b)$, where $h_1(\chi)=h(\chi)h'(\chi)h'_1(\chi)\in H^1$. 2) Let $r\in \Phi^*$ and $\alpha\in \Pi^\circ$, it follows from 5.2.2 of [7] and 1.2 that $x_a(c)x_r(t)=u'x_a(c)$, where $c,t\in \mathscr{K}$ and $u'\in U^*$: $\langle x_r(t), r\in \Phi^*, t\in \mathscr{K} \rangle$. If $r\in \Phi^*$ and $t\in \mathscr{K}$, then $n_ax_r(t)n_a^{-1}=x_s(\eta_a,rt)$, where $s=W_ar\in \Phi^*$, hence $g=y_a(b)X_r^1(t)=uy_a(b)$, where $u\in U^*\subset U$. Obviously, $\sigma g=g$ and $\sigma y_a(b)=y_a(b)$, thus $\sigma u=u$. Therefore, $u\in U^1$.

Theorem 4.7 B^1 is a subgroup of G.

Proof 1) Let $b = uhy \in B^1$, where $u \in U^1$, $h \in H^1$ and $y \in Y^1$, then $b^{-1} = y^{-1}h^{-1}u^{-1}$. It follows from 4.4, 4.7 and 3.7 that $b^{-1} = h_1y'h^{-1}u^{-1} = h_1h'y''u^{-1} = h''u'y'' = u''h''y''$, where u', $u'' \in U^1$, h_1 , h', $h'' = h_1h' \in H^1$ and y', $y'' \in Y^1$. Thus, $b^{-1} \in B^1$. 2) Let $b_1 = u_1h_1y_1$ and $b_2 = u_2h_2y_2$, where u_1 , $u_2 \in U^1$, h_1 , $h_2 \in H^1$ and y_1 , $y_2 \in Y^1$, then

 $b_1b_2 = u_1h_1y_1u_2h_2y_2 = u_1h_1u_2'y_1h_2y_2 = u_1h_1u_2'h_2'y_1'y_2 = u_1u_2''h_1h_2'y = uhy,$ where u_2' , u_2'' , $u = u_1u_2'' \in U^1$, $h = h_1h_2' \in H^1$ and y_1' , $y = y_1'y_2 \in Y^1$. Hence $b_1b_2 = uhy = b \in B^1$. It follows from 1) and 2) that B^1 is a subgroup of G.

5

For each $w \in W^1$, let $J_{\overline{w}}^-$: $\{s \in \Phi_1^* | ws \in \Phi^-\}$ and $\Phi_{\overline{w}}^-$: $\{r \in \Phi^* | wr \in \Phi^-\}$. It is easy to verify the following lemma

Lemma 5.1 For each $r \in H^*$, then $J_{\overline{w}_{r}}$: $\{r, r^*\}$ and $\Phi_{\overline{w}_{r}}$: $\{r, r^*, \overline{r}^*, \overline{r}\}$. If $r \in H^*$, then either $r = 2e_i$ or $r = e_{i+1} - e_j$, where $i \in \mathcal{D}$, j = i+2, i < l-1.

1) Let $r=2e_l$, then $r^*=e_{l-1}+e_l$, $\bar{r}^*=r$, and $\bar{r}=2e_{l-1}$. Clearly, the structure constants $N_{\alpha,r}=\eta_1$ and $N_{\alpha,r^*}=2\eta_2$, where $\eta_1=\pm 1$ and $\eta_2=\pm 1$. From 4.1.2 of [7], we have

$$\frac{1}{2} N_{-r^*,\,\alpha} = N_{\alpha,\,r} = N_{r,\,-r^*} = \eta_1; \ N_{-r^*,\,\overline{r}} = N_{\overline{r},\,-\alpha} = \frac{1}{2} \ N_{-\alpha,\,-r^*} = -\eta_2.$$

Obviously, $n_0e_r = \eta_1\eta_2e_{\bar{r}} = e_{\bar{r}}$, hence $\eta_1\eta_2 = 1$.

2) Let $r = e_{i+1} - e_j$, $i \in \mathcal{D}$, i < l-1, j = i+2, then $r^* = e_{i+1} - e_{j+1}$, $\bar{r}^* = e_i - e_j$ and $\bar{r} = e_i - e_{j+1}$. Clearly, let $\alpha = e_i - e_{i+1}$, $\beta = e_j - e_{j+1}$, then the structure constants $N_{\alpha, r} = \xi_1$, $N_{\beta, r} = \xi_2$ and $N_{\beta, \bar{r}^*} = \xi_3$, where $\xi_i = \pm 1$, i = 1, 2, 3. From 4.1.2 of [7], we have

$$N_{\alpha, -\bar{r}^*} = N_{-\bar{r}^*, r} = N_{r, \alpha} = -\xi_1; \quad N_{r_1 - r^*} = N_{-r^*, \beta} = N_{\beta, r} = \xi_2;$$

 $N_{ar{ au},-ar{ au}^*} = N_{-ar{ au}^*,-eta} = N_{-eta,ar{ au}} = \xi_2; \quad N_{-lpha,-r^*} = N_{-r^*,ar{ au}} = N_{ar{ au},-lpha} = \xi = -\xi_1 \xi_2/\xi_3.$

Obviously, $n_0e_{r^*}=\xi\xi_3e_{\bar{r}^*}$ and $n_0e_r=\xi_1\xi_3e_{\bar{r}}$ Hence $\xi\xi_3=1$ and $\xi_1\xi_3=1$. Therefore, $\xi\xi_1=1$.

Lemma 5.2 Let $r \in \Pi^*$ and t', $u' \in \mathcal{K}$, then $x = N_r^1 X_r^1(t') X_{r^*}^1(u') (N_r^1)^{-1} \in B^1 N_r^1 B^1$ or x = 1.

Proof 1) Let $r=2e_l$, then x can be expressed in the form: $x=X_{-r}^1(t)X_{-r}^1(u)=$

 $x_{-r}(t)x_{-\bar{r}}(\bar{t})x_{-r^*}(u)$, t, $u \in \mathcal{K}$, $\bar{u} = -u$. First, we discuss the case of $t \neq 0$. Since \mathcal{K}_0 is an ordering field, hence $d = t - \eta_1 \eta_2 u^2 \bar{t}^{-1} = t + u \bar{u} \bar{t}^{-1} \neq 0$. Let $d^{-1} = u \bar{t}^{-1} d$, it is easy to verify the following formula: $t^{-1} + \eta_1 \eta_2 u^2 \bar{t}^{-2} d^{-1} = \bar{d}^{-1}$; $\bar{t}^{-1} d^{-1} = t^{-1} \bar{d}^{-1}$ and $\bar{d}' = -d'$. Using the formula mentioned above. We have

$$\begin{split} & = \mathfrak{Z}_{-r^*}(u)x_{\bar{r}}(\bar{t}^{-1})h_{\bar{r}}(-\bar{t}^{-1})n_{\bar{r}}x_{\bar{r}}(\bar{t}^{-1})x_{-r}(t) \\ & = x_{\bar{r}}(\bar{t}^{-1})x_{-r^*}(u)x_{\alpha}(-\eta_2u\bar{t}^{-1})x_{-r}(\eta_1\eta_2u^2\bar{t}^{-1})x_{-r}(t)h_{\bar{r}}(-\bar{t}^{-1})n_{\bar{r}}x_{\bar{r}}(\bar{t}^{-1}) \\ & = x_{\bar{r}}(\bar{t}^{-1})x_{-r^*}(u)x_{\alpha}(-\eta_2u\bar{t}^{-1})x_{-r^*}(u)x_{-r}(t-\eta_1\eta_2u^2\bar{t}^{-1})h_{\bar{r}}(-\bar{t}^{-1})n_{\bar{r}}x_{\bar{r}}(\bar{t}^{-1}) \\ & = x_{\bar{r}}(\bar{t}^{-1})x_{\alpha}(-\eta_2u\bar{t}^{-1})x_{r}(d^{-1})h_{r}(-d^{-1})h_{\bar{r}}(-\bar{t}^{-1})n_{r}n_{r}x_{r}(d^{-1})x_{\alpha}(\eta_2u\bar{t}^{-1})x_{\bar{r}}(\bar{t}^{-1}) \\ & = x_{\bar{r}}(\bar{t}^{-1})x_{r}(d^{-1})x_{\alpha}(-\eta_2u\bar{t}^{-1})x_{\bar{r}}(-\eta_1\eta_2d')x_{\bar{r}}(-\eta_1\eta_2u\bar{t}^{-1}d')h_{r}(-d^{-1})h_{\bar{r}}(-\bar{t}^{-1}) \\ & = x_{\bar{r}}(\bar{t}^{-1})x_{r}(d^{-1})x_{\bar{r}}(\bar{t}^{-1})x_{\alpha}(\eta_2\bar{t}^{-1}u) \\ & = x_{\bar{r}}(\bar{t}^{-1})x_{r}(d^{-1})x_{\bar{r}}(-d')x_{\alpha}(-\eta_2u\bar{t}^{-1})x_{\bar{r}}(\eta_1\eta_2u\bar{t}^{-1}d')h_{r}(-d^{-1})h_{\bar{r}}(-\bar{t}^{-1}) \\ & = x_{\bar{r}}(\bar{t}^{-1})x_{r}(d^{-1})x_{\bar{r}}(\bar{t}^{-1})x_{\alpha}(\eta_2u\bar{t}^{-1}) \\ & = x_{\bar{r}}(\bar{t}^{-1})x_{r}(d^{-1})x_{\bar{r}}(\bar{t}^{-1})x_{\alpha}(\eta_2u\bar{t}^{-1}) \\ & = x_{\bar{r}}(\bar{t}^{-1})x_{r}(-d')N_{r}^{\dagger}x_{-\alpha}(\eta, u\bar{t}^{-1})x_{\bar{r}}(\bar{t})x_{r}(d)h_{r}(-d)h_{\bar{r}}(-\bar{t})x_{\alpha}(\eta_2u\bar{t}^{-1}) \\ & = x_{\bar{r}}(\bar{t}^{-1})X_{\bar{r}^{*}}(-d')N_{r}^{\dagger}x_{\bar{r}}(\bar{t})x_{-\alpha}(\eta_1u\bar{t}^{-1})x_{r^{*}}(\eta_1\eta_2u)x_{r}(-\eta_1\eta_2u^2\bar{t}^{-1})x_{r}(d)h_{r}(-d) \\ & h_{\bar{r}}(-\bar{t})x_{\alpha}(\eta_2u\bar{t}^{-1}) \\ & = x_{\bar{r}}(\bar{t}^{-1})X_{\bar{r}^{*}}(-d')N_{r}^{\dagger}x_{\bar{r}}(\bar{t})x_{r^{*}}(u)x_{-\alpha}(\eta_1u\bar{t}^{-1})x_{r}(\eta_1\eta_2u^2\bar{t}^{-1}) \\ & = x_{\bar{r}}(\bar{t}^{-1})X_{\bar{r}^{*}}(-d')N_{r}^{\dagger}x_{\bar{r}}(\bar{t})X_{\bar{r}^{*}}(u)h_{r}(-d)h_{\bar{r}}(-\bar{t}) \\ & = x_{\bar{r}}(\bar{t}^{-1})X_{\bar{r}^{*}}(-d')N_{r}^{\dagger}X_{\bar{r}}(t)X_{\bar{r}^{*}}(u)h_{r}(-d)h_{\bar{r}}(-\bar{t}) \\ & = x_{\bar{r}}(\bar{t}^{-1})X_{\bar{r}^{*}}(-d')N_{r}^{\dagger}X_{\bar{r}}(t)X_{\bar{r}^{*}}(u)h_{r}(-d)h_{\bar{r}}(-\bar{t}) \\ & = x_{\bar{r}}(\bar{t}^{-1})X_{\bar{r}^{*}}(-d')N_{r}^{\dagger}X_{\bar{r}}(t)X_{\bar{r}^{*}}(u)h_{r}(-d)h_{\bar{r}}(-\bar{t}^{-1}) \\ & = X_{\bar{r}}(\bar{t}^{-1})X_{\bar{r}^{*}}(-d')N_{r}^{\dagger}X_{\bar{r}}(t)X_{\bar{r}^{*}}(u)h_{r}(-d)h_{\bar{r}}(-\bar{t}^{-1}) \\ & = X_{\bar{r}}(\bar{t}^{-1})X_{\bar{$$

Thus, if $t \neq 0$, then $x \in B^1 N_r^1 B^1$. If t = 0, $u \neq 0$, then we have $x = x_{r*}(u^{-1})$ $h_{r*}(-u^{-1}) n_{r*} x_{r*}(u^{-1}) = X_{r*}^1 (u^{-1}) N_r^1 X_{r*}^1 (u') h(\chi) N_{\alpha}^1 \in B^1 N_r^1 B^1$, where $u' \in \mathcal{K}$, u' = -u' and $h(\chi) \in H^1$. If t = 0, u = 0, then x = 1.

2) Let $r = e_{i+1} - e_j$, $i \in \mathcal{D}$, i < l-1, j = i+2, then x can be expressed in the form $x = X_{-r}^1(t) X_{-r}^1(u) = x_{-r}(t) x_{-r}(t) x_{-r}(u) x_{-r}(u)$, t, $u \in \mathcal{K}$. We first discuss the case of $t \neq 0$. Since \mathcal{K}_0 is an ordering field $d = t + \xi \xi_1 w \overline{u} \overline{t}^{-1} = t + u \overline{u} \overline{t}^{-1} \neq 0$. Let $d' = \overline{u} \overline{t}^{-1} d^{-1}$, we have

$$\begin{split} x &= x_{-r^*}(u) x_{\bar{r}}(\bar{t}^{-1}) h_{\bar{r}}(-\bar{t}^{-1}) n_{\bar{r}} x_{\bar{r}}(\bar{t}^{-1}) x_{-r}(t) x_{-\bar{r}^*}(\bar{u}) \\ &= x_{\bar{r}}(\bar{t}^{-1}) x_{-r^*}(u) x_{\alpha} (\xi u \bar{t}^{-1}) h_{\bar{r}}(-\bar{t}^{-1}) n_{\bar{r}} x_{-r}(t) x_{\bar{r}}(\bar{t}^{-1}) x_{-\bar{r}^*}(\bar{u}) \\ &= x_{\bar{r}}(\bar{t}^{-1}) x_{\alpha} (\xi u \bar{t}^{-1}) h_{\bar{r}}(-\bar{t}^{-1}) n_{\bar{r}} x_{-r}(t) x_{\bar{r}}(\bar{t}^{-1}) x_{-\bar{r}^*}(\bar{u}) x_{\alpha}(-\xi u \bar{t}^{-1}) x_{-r}(\xi \xi, u \bar{u} \bar{t}^{-1}) \\ &= x_{\bar{r}}(\bar{t}^{-1}) x_{\alpha} (\xi u \bar{t}^{-1}) h_{\bar{r}}(-\bar{t}^{-1}) x_{r}(d^{-1}) h_{\bar{r}}(-d^{-1}) n_{r} n_{\bar{r}} x_{r}(d^{-1}) x_{-r^*}(\bar{u}) x_{\bar{r}}(\bar{t}^{-1}) \\ &= x_{\beta} (\xi_{2} \bar{u} \bar{t}^{-1}) x_{\alpha}(-\xi u \bar{t}^{-1}). \end{split}$$

Using the formula $\bar{d}^{-1} = \bar{t}^{-1} - \xi \xi_1 u \bar{u} \bar{t}^{-2} d^{-2}$ and $\bar{t}^{-1} d^{-1} = t^{-1} \bar{d}^{-1}$, by a similar argument as that used in the preceding proof. We obtain

$$x = X_r^1(d^{-1}) X_{r^*}^1(d') N_r^1 X_r^1(t) X_{r^*}^1(\overline{u}) h(\chi) y_a(\xi_1 \overline{u}^{-1} t) y_{\beta}(\xi_2 u^{-1} t) \in B^1 N_r^1 B^1,$$
where $h(\chi) = h_{s_1}^1(\xi u) h_{s_2}^1(\xi \overline{d}') \in H^1$, $s_1 = 2e_{i+1}$, $s_2 = 2e_{j+1}$. If $t = 0$, $u \neq 0$, then

 $x = X_{r*}^1(u^{-1}) \, h_{r*}^1(-u^{-1}) \, N_{r*}^1 X_{r*}^1(u^{-1}) \in B^1 N_r^1 B^1. \quad \text{If } t = 0, \ u = 0, \ \text{then } x = 1.$

Corollary 5.3 If $b \in \mathcal{K}^*$, then $b + \overline{b}^{-1} \neq 0$, and $y_a(b) \in \langle U^1, V^1 \rangle$.

Lemma 5.4 If $r \in \Pi$, then $B^1 \cup B^1N_r^1B^1$ is a subgroup of G.

Proof 1) Obviously, $(N_r^1)^{-1} = h_r N_r^1$, where $h_r \in H^1$. From 4.8, we have $(B^1)^{-1} = B^1$. Therefore, $(B^1 N_r^1 B^1)^{-1} = (B^1)^{-1} (N_r^1)^{-1} (B^1)^{-1} = B^1 N_r^1 B^1$.

2) We shall prove that $N_r^1B^1N_r^1 \subseteq B^1 \cup B^1N_r^1B^1$. a) If $r \in II^*$, it follows from 5.1 that if $b \in B^1$, then $b = X_r^1(t') X_{r^*}^1(u') u_r h y$, where $h \in H^1$, $y \in Y^1$, t', $u' \in \mathscr{K}$ and $u_r \in U^1$, satisfying $N_r^1u_r(N_r^1)^{-1} \in U^1$. From 5.2, 4.7 and 3.7, we have $x = N_r^1bN_r^1 = b_1N_r^1b_2'u_r'h'y'h_r^{-1}$, where b_1 , $b_2' \in B^1$, $u'_r = N_r^1u_r(N_r^1)^{-1} \in U^1$, $h' = N_r^1h(N_r^1)^{-1} \in H^1$ and $y' = N_r^1y(N_r^1)^{-1} \in Y^1$. Hence $x = b_1N_r^1b_2$, where $b_2 \in B^1$. Thus $x \in B^1N_r^1B^1$, b) If $f_1 \in II^\circ$, it follows from 3.3 and 4.7 that if $f_1 \in II^\circ$, where $f_1 \in II^\circ$, $f_2 \in II^\circ$, then $f_1 \in II^\circ$, then $f_2 \in II^\circ$, where $f_1 \in II^\circ$, where $f_2 \in II^\circ$ is follows from 3.3.

Lemma 5.5 Let $r \in II$ and $n \in N^1$, then $B^1 n B^1 B^1 N_r^1 B^1 \subseteq B^1 n N_r^1 B^1 \cup B^1 n B^1$.

Proof Let w be the image of n under the natural homomorphism, if $r \in \Phi^*$ and $wr \in \Phi^+$, then $wr^* \in \Psi^*$. 1) Let $r \in \Pi^\circ$, from 5.4 we have $N_r^1 B^1 N_r^1 \sqsubseteq B^1$ thus, $B^1 n B^1 B^1 N_r^1 B^1 \sqsubseteq B^1 n N_r^1 B^1$. 2) Let $r \in \Pi^*$, a) If $wr \in \Phi^{+1}$ and b_1 , b_2 , $b_3 \in B^1$, it follows from 3.8 and 4.4 that $b_2 = X_r^1(t) X_{r^*}^1(u) u_r h y$, where $h \in H^1$, $y \in Y^1$, t, $u \in \mathcal{K}$ and $u_r \in U^1$ satisfying $N_r^1 u_r(N_r^1)^{-1} \in U^1$. Obviously, if $x \in B_n^1 B^1 B^1 N_r^1 B^1$, then

$$\begin{split} x &= b_1 n X_r^1(t) \, X_{r^*}^1(u) \, n^{-1} n N_r^1(N_r^1)^{-1} u_r N_r^1(N_r^1)^{-1} h N_r^1(N_r^1)^{-1} y N_r^1 b_3 \\ &= b_1 u' n N_r^1 u'_r h' y' b_3 = b'_1 n N_r^1 b'_3, \end{split}$$

where u', $u'_r = (N_r^1)^{-1} u_r N_r^1 \in U^1$, $h' = (N_r^1)^{-1} h N_r^1 \in H^1$, $y' = (N_r^1)^{-1} y (N_r^1)^{-1} \in Y^1$ and b'_1 , $b'_3 \in B^1$. Thus $x \in B^1 n N_r^1 B^1$ by 4.8. Therefore, $B^1 n B^1 B^1 N_r^1 B^1 \subseteq B^1 n N_r^1 B^1$.

b) If $wr \in \Phi^-$, let $n_1 = nN_r^1$ and w_1 is the image of n_1 under the natural homomorphism, then $w_1r \in \Phi^+$ obviously. From a) we have $B^1n_1B^1B^1N_r^1B^1 \subseteq B^1n_1N_r^1B^1$. On the other hand, we have $B^1n_1N_r^1B^1 \subseteq B^1n_1B^1B^1N_r^1B^1$. Therefore, $B^1n_1B^1B^1N_r^1B^1 = B^1n_1N_r^1B^1$. From 5.4, we have

$$\begin{split} B^1 n B^1 B^1 N_r^1 B^1 &= B^1 n_1 N_r^1 B^1 N_r^1 B^1 = B^1 n_1 B^1 B^1 N_r^1 B^1 N_r^1 B^1 \subseteq B^1 n_1 B^1 \left(B^1 \cup B^1 N_r^1 B^1 \right) \\ &= B^1 n_1 B^1 \cup B^1 n_1 B^1 B^1 N_r^1 B^1 = B^1 n N_r^1 B^1 \cup B^1 n B^1 . \end{split}$$

Definition 5.6 $G^1 = \bigcup_{w \in W^1} B' n_w B^1$, $n_w \in N_0^1$; G^1 is called ${}^2C_l(\mathcal{K})$.

Theorem 5.7 G^1 is a subgroup of G.

Proof 1) Obviously, $(n_w)^{-1} = hn_w^{-1}$, where $h \in H^1$. Thus from 4.9, we have $(B^1n_wB^1)^{-1} = (B^1)^{-1}(n_w)^{-1}(B^1)^{-1} \subseteq B^1n_w^{-1}B^1 \subseteq G^1$.

2) Let n_w , and $n_{w_2} \in N_0^1$, where w_1 , $w_2 \in W^1$. From 3.4, we have $n_{w_2} = hN_{r_1}^1N_{r_2}^1$... $N_{r_s}^1$, where $h \in H^1$ and $r_i \in II$, $1 \le i \le t$. Therefore, from 5.5, we have

$$\begin{split} B'n_{w_1}B^1B^1n_{w_2}B^1 &= B^1n_{w_1}B^1B^1N_{r_1}^1B^1B^1N_{r_2}^1B^1\cdots B^1N_{r_t}^1B^1 \\ &= \left(B^1n_{w_1}N_{r}^1B^1 \cup B^1n_{w_1}B^1\right)B^1N_{r_2}^1B^1\cdots B^1N_{r_t}^1B^1 \\ &= B^1n_{w_1}N_{r_1}^1B^1B^1N_{r_2}^1B^1\cdots B^1N_{r_t}^1B^1 \cup B^1n_{w_1}B^1B^1N_{r_2}^1B^1\cdots B^1N_{r_t}^1B^1. \end{split}$$

By an argument along the lines of the preceding discussion and 3.6, we have

$$B^1 n_{w_1} B^1 B^1 n_{w_2} B^1 \subseteq \bigcup_{w \in W^1} B^1 n_w B^1 = G^1$$
.

It follows from 1) and 2) mentioned above that G^1 is a subgroup of G.

Theorem 5.8 Let $x = b_1 n_w b_2 \in G^1$, where b_1 , $b_2 \in B^1$ and $n_w \in N_0^1$, then x can be expressed uniquely in the following form

- (II): $x=u \ h \ h_1h_2 \cdots h_kx_{r_1}(a_1)x_{r_2}(a_2) \cdots x_{r_k}(a_k)n_w^*x_{\beta_1}(b_1')x_{\beta_2}(b_2') \cdots x_{\beta_k}(b_k)u'$, where u, $u' \in U^1$, $h \in H^1$, $h_i \in H$, a_i , $b_i' \in \mathcal{K}^*$, $1 \leq i \leq k$ and the following relations hold $(\gamma_i, \beta_i \in \Pi^\circ, 1 \leq i \leq k)$.
- a) Let w^* be the image of n_{w^*} under the natural homomorphism, then $w^* = w_1^* w w_2^*$, where $w_i^* \in W_0^1$: $\langle w_a, \alpha \in \Pi^\circ \rangle$, i=1, 2 and $u^1 \in U_{w^*}^-$, $w^*\beta_i \in \Phi^-$, $1 \le i \le k$; b) h_i and a_i are determined by b_i' and w^* , $1 \le i \le k$.

proof Let $x=b_1n_wb_2\in G^1$, where b_1 , $b_2\in B^1$ and $n_w\in N_0^1$, then x can be expressed in the form $x=uhn_wu'y$, where $h\in H^1$, $u, u'\in U^1$, satisfying $u'\in U_w^-$ and $y=y_{\beta_1}(b_1)$ $y_{\beta_2}(b_2)\cdots y_{\beta_k}(b_k)$, $b_i\in \mathscr{K}^*$, $1\leqslant i\leqslant k$. From 4.8, we have $x=uhn_wyu'_1$, where $u'_1\in U^1$. If $w\beta_1=\gamma_1\in H^\circ$, then we have

$$x = uhh_{\gamma_1}^1(a_1^{-1}\overline{b}_1)x_{\gamma_1}(a_1)n_wn_{\beta_1}x_{\beta_1}(b_1)y_{\beta_2}(b_2)\cdots y_{\beta_k}(b_k)u_1'$$

If $w\beta_1 = -\gamma_1$, $\gamma_i \in \Pi^{\circ}$, then we have

$$\begin{split} x &= uhh'_{\gamma_1}(a_1^{-1}\overline{b}) \, x_{-\gamma_1}(a_1) \, n_w n_{\beta_1} x_{\beta_1}(b_1) \, y_{\beta_2}(b_2) \cdots y_{\beta_k}(b_k) \, u'_1 \\ &= uhh'_{\gamma_1}(a_1^{-1}\overline{b}) \, x_{\gamma_1}(a_1^{-1}) \, h_{\gamma_1}(-a_1^{-1}) \, n_{\gamma_1} n_w n_{\beta_1} x_{\beta_1}(-a_1^{-1}) \, x_{\beta_1}(b_1) \, y_{\beta_2}(b_2) \cdots y_{\beta_k}(b_k) \, u'_1 \\ &= uhh'_{\gamma_1}(a_1^{-1}\overline{b}) \, h_{\gamma_1}(-a_1^{-1}) \, x_{\gamma_1}(a_1) \, n_{\gamma_1} n_w n_{\beta_1} x_{\beta_1}(-\overline{b}^{-1}) \, y_{\beta_2}(b_2) \cdots y_{\beta_k}(b_k) \, u'_1. \end{split}$$

Therefore, x can be expressed in the following form

$$x = uhh_1x_{\gamma_1}(a_1) n'_1n_wn_1x_{\beta_1}(b'_1) y_{\beta_2}(b_2) \cdots y_{\beta_k}(b_k) u'_1,$$

where $n_1 = n_{\beta_1}$, if $w\beta_1 = \gamma_1 \in \Pi^{\circ}$, then $n'_1 = I$, $b'_1 = b_1$ and $h_1 = h'_{\gamma_1}(a_1^{-1}\overline{b}_1)$; if $w\beta_1 = -\gamma_1$, $\gamma_1 \in \Pi^{\circ}$, then $n'_1 = n_{r_1}$, $b'_1 = -\overline{b}_1^{-1}$ and $h_1 = h'_{\gamma_1}(a_1^{-1}\overline{b})h\gamma_1(-a_1^{-1})$. By an argument along the lines of the preceding discussion. It is easy to show that x can be expressed in formula (II) and $w^* = w_1^*ww_2^*$, where $w_i^* \in W_0^1$, i = 1, 2. In the following, we show that $u'_1 \in U_{w^*}$. First, we prove $u'_1 \in U_w^-$.

Let $r \in J(u'_1)$, then $r = \sum_{i=1}^n m_i s_i + \sum n_j \alpha_j$, where $s_i \in J(u')$, $\alpha_j \in H^\circ$, $m_i \geqslant 0$, $n_j \geqslant 0$ and there is at least one coefficient $m_t \neq 0$, $1 \leqslant t \leqslant n$. Obviously, $w s_i \in \Phi^-$, hence $(w s_i)' < 0$. Thus $(wr)' = \sum_{i=1}^n m_i (ws_i)' < 0$. Therefore, $wr \in \Phi^-$, hence $u'_1 \in U_w^-$. Moreover, if $r \in J(u'_1)$, then $w^*r = wr + \sum m'_i \beta_i + \sum m''_i r_i$, where m'_i , m''_i are integers. Obviously, $(w^*r)' = (wr)' < 0$, thus $u'_1 \in U_w^-$.

Corollary 5.9 Let $x=b_1n_wb_2\in G^1$, where b_1 , $b_2\in B^1$ and $n_w\in N_0^1$ and let $x=u_2hn_{w_1}u_2'$ be the canonical expression of x mentioned in 8.4.4 of [7], then $w_1=w^*$, where w^* as defined in 5.8, belongs to W_0^1 .

6

Lemma 6.1 Let r, $s \in \Phi_1^*$ and $r \neq s$, $r \neq \bar{s}$, then there exists $h(\chi) = h_r^1(\mu)$ satisfying $\chi(r) = \pm 1$ and $\chi(r) \neq \chi(s)$, where $r = \min\{\delta, \bar{\delta}\}$, $\delta \in \Phi^*$, $\mu \in \mathcal{K}^*$.

Proof Let $E_i = \{e_i, e_i\}$, where $e_i = w_0 e_i$, we discuss separately the following three cases.

1) $r = e_i \pm e_j$, $s = e_k \pm e_h$, $1 \le i \le j \le l$, $1 \le k < h \le l$.

If r'=s', then we take $\delta=e_i\mp e_j$, $\mu=\sqrt{-1}$. If $r'\neq s'$, then there is either case a) or case b) as follows a) $r\neq \bar{r}$, and $e_i(\text{or }e_j)\notin E_k\cup E_h$, then take $\delta=2e_i(\text{or }\delta=2e_j)$, $\mu=-1$; b) $e_k(\text{or }e_h)\notin E_i\cup E_j$, then take $\delta=2e_k(\text{or }\delta=2e_h)$, $\mu=2$.

2) $r = e_i \pm e_j$, $s = 2e_k$ or $s = e_i \pm e_j$, $r = 2e_k$, $1 \le i < j \le l$, $1 \le k \le l$.

There is either case a) or case b) as follows a) $E_i \neq E_j$ and e_i (or e_j) $\notin E_k$, then take $\delta = 2e_i$ (or $\delta = 2e_j$), $\mu = -1$ b) $e_k \notin E_i \cup E_j$ or r' = s', then take $\delta = 2e_k$, $\mu = \sqrt{-1}$.

3) $r=2e_k$, $s=2e_i$, $1 \le k$, $i \le l$, then take $\delta=2e_i$, $\mu=2$.

Corollavy 6.2 Let r, $s \in \Phi_1^*$, and $r \neq s$, $r \neq \bar{s}$, then there exists $h(\chi) \in H^1$ such that $\chi(r) \neq \chi(s)$.

Lemma 6.3 Let $w \in W^1 \setminus W_0^1$, then there exists $h(\chi) \in H^1$ such that $nh(\chi) \neq h(\chi)n$ where $n \in N^1$ and n corresponds to w under the natural homomorphism.

Proof For each $w \in W^1 \setminus W_0^1$, let w' be the restriction of w onto Γ^+ , then $w' \neq I'$. Therefore, there exists $r \in \Phi^*$ such that $\eta wr \in \Phi^*$, $\eta = \pm 1$ and $(wr)' \neq r'$. If (wr)' = -r', then take $h(\chi) = h_s^1(2)$, where $s = \min\{r, \bar{r}\}$. If $(wr)' \neq -r'$, it follows from 6.2 that there exists $h(\chi) \in H^1$ such that $\chi(\eta wr) = \pm 1$ and $\chi(\eta wr) \neq \chi(r)$. Thus we have $\chi(wr) \neq \chi(w)$. Therefore, the lemma is established immediately.

Lemma 6.4 Let $\alpha = e_i - e_{i+1}$, $i \in \mathcal{D}$, $r^* = e_i + e_{i+1}$, $r = 2e_{i+1}$, then $\eta_1 = N_{\alpha, r} = \pm 1$, $2\eta_2 = N_{\alpha, r^*} = \pm 2$ and $y_{\alpha}(b) X_{r^*}^1(t) = X_r^1(2\eta_2 bt) X_{r^*}^1(t(b\overline{b}-1)) y_{\alpha}(b)$, where $b, t \in \mathcal{K}^*$ and $\overline{t} = -t$.

Proof Obviously, $\eta_1\eta_2=1$, $a^{-1}\overline{b}(2ab-1)=2b\overline{b}-(b+\overline{b}^{-1})\overline{b}=b\overline{b}-1$ and $2a^{-1}\overline{b}^2(ab-1)=2\overline{b}^2b-2(b+\overline{b}^{-1})\overline{b}^2=2\overline{b}^2b-2b\overline{b}^2-2\overline{b}=-2\overline{b}$. Using the formula mentioned above, we have

$$\begin{split} y_{a}(b) \, X_{r^{\star}}^{1}(t) &= h_{\alpha}^{1}(a^{-1}\overline{b}) \, x_{\alpha}(a) \, n_{a} x_{\alpha}(b) \, x_{r^{\star}}(t) \\ &= h_{\alpha}^{1}(a^{-1}\overline{b}) \, x_{\alpha}(a) \, n_{a} x_{r^{\star}}(t) \, x_{\alpha}(b) \, x_{\bar{r}}(-2\eta_{2}bt) \\ &= h_{\alpha}^{1}(a^{-1}\overline{b}) \, x_{\alpha}(a) \, x_{r^{\star}}(-t) \, x_{r}(-2\eta_{2}bt) \, n_{a} x_{\alpha}(b) \\ &= h_{\alpha}^{1}(a^{-1}\overline{b}) \, x_{r}(-2\eta_{2}bt) \, x_{\alpha}(a) \, x_{r^{\star}}(2\eta_{1}\eta_{2}abt) \, x_{r^{\star}}(-t) \, x_{\bar{r}}(-2\eta_{2}a^{2}bt) \, n_{a} x_{\alpha}(b) \\ &= x_{r}(-2\eta_{2}bt) \, x_{r^{\star}}(ta^{-1}b(2ab-1)) \, x_{\bar{r}}(2\eta_{2}ta^{-2}\overline{b}^{2}(ab-1)a) \, y_{\alpha}(b) \\ &= X_{r}^{1}(-2\eta_{2}bt) \, X_{r^{\star}}^{1}(t(b\overline{b}-1)) \, y_{\alpha}(b) \, . \end{split}$$

In the following, we assume that R^1 is a normal subgroup of G^1 which satisfies $|R^1| > 1$, i. e., $R^1 \neq \{I\}$.

Lemma 6.5 $|R^1 \cap B^1| > 1$.

Proof It follows from R^1 being a normal subgroup of G^1 and $|R^1| > 1$ that there exists an element x of R^1 which can be expressed in the form: $x = n_w b \neq 1$, where $n_w \in N_0^1$ and $b \in B^1$. From 8.4.4 of [7], we know that x can be expressed in the canonical form $x = u_1 h_1 n_{w_1} u'_1$, where $u_1 \in U$, $h_1 \in H$, $n_{w_1} \in N$ and $u'_1 \in U_{w_1}^-$. If $w_1 \notin W_0^1$, it follows from 6.3 that there exists $h(\chi) \in H^1$ such that $n_{w_1} h(\chi) \neq h(\chi) n_{w_1}$. Let $h'(\chi) = n_w^{-1} h(\chi) n_w$, $h''(\chi)^{-1} = n_{w_1} h(\chi)^{-1} n_{w_1}^{-1}$ and let $x' = x^{-1} h(\chi) x h(\chi)^{-1}$, then $x' = b^{-1} h'(\chi) b h(\chi)^{-1} \in R^1 \cap B^1$. In the following, we shall show that $x' \neq 1$. If x' = 1, then $u_1 h_1 n_{w_1} u'_1 = u_2 h(\chi) h_1 h''(\chi)^{-1} n_{w_1} u'_2$, where $u_2 = h(\chi) u_1 h(\chi)^{-1} \in U$, $u'_2 = h(\chi) u'_1 h(\chi)^{-1} \in U^-_{w_1}$. From 8.4.4 of [7], we have $h_1 h(\chi) h''(\chi)^{-1} = h_1$, hence $h(\chi) = h''(\chi) = n_{w_1} h(\chi) n_{w_1}^{-1}$. Therefore, we have a contradiction. If $u_1 \in W_0^1$, then $u_2 \in W_0^1$ by 5.9. Therefore, $n_w = h_2(\chi) N_{\beta_1}^{-1} N_{\beta_2}^{-1} \cdots N_{\beta_k}^{-1}$, where $\beta_i \in H^\circ$, $1 \leq i \leq k$ and $h_2(\chi) \in H^1$. Thus $x = y'b = b' \in B^1$, where $y' \in Y^1$. This proves the lemma.

Lemma 6.6 There exists $b = uhy \in R^1 \cap B^1$, where $b \in B^1$, $h \in H^1$, $y \in Y^1$ and $u \in U^1$, $u \neq 1$.

Proof From 6.5, there exists $b=uhy\in R^1\cap B^1$, where $u\in U^1$, $h\in H^1$, $b\neq 1$ and $y\in Y^1$. If $u\neq 1$, the lemma is obviously true. In the following, we suppose u=1, then $hy\neq 1$. If y=1, then $h(\chi)\neq 1$. In fact, there exists $r\in \Phi_1^*$ such that $\chi(r)\neq 1$. Suppose the contrary, then there exists $a\in H^\circ$ such that $\chi(a)\neq 1$. For each $\alpha\in H^\circ$, there exists $s\in \Phi^*$ such that $s+\alpha=r\in \Phi_1^*$. Obviously, $\chi(r)=\chi(s)\chi(\alpha)=\chi(\alpha)\neq 1$. Thus we have a contradiction. It follows from $\chi(r)\neq 1$, $r\in \Phi_1^*$ that $X_r^1(t)h(\chi)X_r^1(-t)=u'h(\chi)\in R^1$, $t\neq 0$, where $u'=X_r^1(t(1-\chi(r))\neq 1$. If $y\neq 1$, then y can be expressed in the form $y=y_{\beta_1}(b_1)y_{\beta_2}(y_2)\cdots y_{\beta_k}(b_k)$, where $\beta_i\in H^\circ$, $b_i\in \mathcal{K}$, $1\leqslant i\leqslant k$. If $b_i=0$ for all $1\leqslant i\leqslant k$ and $\beta_1=e_i-e_{i+1}$, $i\in \mathcal{D}$, then $b'=h_r^1(\sqrt{-1})bh_r^1(\sqrt{-1})^{-1}b^{-1}=h_r^1(-1)\in R^1$, where $r=2e_{i+1}\in \Phi_1^*$. From the preceding discussion we know that there is an element $u'b'=u'h_r^1(-1)$ of R^1 , where $u'\in U^1$ and $u'\neq 1$. If $b_i\neq 0$, $1\leqslant i\leqslant k$, then there exists an element $b'=u'hy\in R^1$, where $u'\in U^1$ and $u'\neq 1$, by 6.4.

Lemma 6.7 $|R^1 \cap U^1| > 1$.

Proof From 6.6, there exists $b = uhy \in R^1$, where $u \in U^1$, $u \neq 1$, $h \in H^1$, and $y \in Y^1$. Let $r_1 = J_1(u)$ and $h_1(\chi) = h_{r_1}^1(2)$, then for all $\alpha \in H^{\circ}$, we have $\chi(\alpha) = 1$. Therefore, $x' = h_1(\chi) b \ h_1(\chi)^{-1} b^{-1} = u' \in R^1 \cap U^1$, and $x' = X_{r_1}^1(t_1(-1+4))u'_1$, where $t_1 \in \mathcal{K}^*$ and $r_1 < r$, $r \in J(u'_1)$, $u'_1 \in U^1$. Thus $x' \neq 1$.

For each $r \in \Phi_1^*$, let $U_r^1 : \{X_r^1(t), t \in \mathcal{K}\}$.

Lemma 6.8 There exists $r \in \Phi_1^*$ such that $|R^1 \cap U_r^1| > 1$.

Proof From 6.7, there exists $u \in \mathbb{R}^1 \cap U^1$, where $u \neq 1$.

Let $r_0 = \max \{J_1(u), u \in R^1 \cap U^1\}$, and u_0 be the element of $R^1 \cap U^1$ satisfying $J_1(u_0) = r_0$, Suppose $J(u_0)$: $\{r_1, r_2, \dots, r_p\}$, If p=1, then the lemma is established immediately, suppose $p \neq 1$, it follows from 6.3 that there exists an element $h_1(\chi) \in H^1$

such that $\chi(r_1) = \eta$, $\eta = \pm 1$ and $\chi(r_1) \neq \chi(r_2)$. Let $x' = u_0^{-1}h_1(\chi)u_0h_1(\chi)^{-1}$ or $x' = u_0h_1(\chi)u_0h_1(\chi)^{-1}$ according as $\eta = 1$ or $\eta = -1$. Obviously, $x' \in R^1$ and x' can be expressed in the following form $x' = X_{r_2}^1(t_2(\chi(r_2) - \chi(r_1))u')$, where $u' \in U^1$, satisfying $r_2 < r$, $r \in J(u')$, $t_2 \in \mathcal{K}^*$. From $\chi(r_2) \neq \chi(r_1)$, we have $x' \neq I$. Obviously, $r_0 = r_1 < r_2 = J_1(x')$. Therefore, we have a contradiction, hence p = 1.

Lemma 6.9 For each $s \in \Phi_1^*$, $U_s^1 \subset R^1$.

Proof From 6.8, there exists $r \in \Phi_1^*$ such that $X_r^1(t) \in R^1$, $t \in \mathcal{K}^*$. Thus $X_{-r}^1(-t) = N_r^1 X_r^1(t) \ (N_r^1)^{-1} \in R^1$. Therefore, $h_r^1(t) X_{-r}^1(-t) h_r^1(t)^{-1} = X_{-r}^1(-t^{-1}) \in R^1$, hence $N_r^1(t) = X_r^1(t) X_{-r}^1(-t^{-1}) X_r^1(t) \in R^1$, Thus $N_r^1(4t) = h_r^1(2) N_r^1(t) h_r^1(2)^{-1} \in R^1$. hence $h_r^1(4) = N_r^1(4t) N_r^1(t)^{-1} \in R^1$. It follows from 1.7 that there exists an element r_i of Φ_1^* which belongs to ② type of \mathscr{A} . such that $(r_1r_i) \neq 0$. Therefore, for i=1, 2, 3 $X_{r_i}^1(-u)h_r^1(4) X_{r_i}^1(u)h_r^1(4)^{-1} = X_{r_i}^1(\mu u) \in R^1$, where $\mu=3$ or $\mu=15$, $u \in \mathscr{K}^*$. For an arbitrary element c of \mathscr{K} , let $u=c/\mu$, then $X_{r_i}^1(c) \in R^1$. Thus for each ③ type of \mathscr{A} , we have $U_{r_i}^1 \subset R^1$, where $r_i \in \Phi_1^*$ and r_i belongs to ③ type of \mathscr{A} . It follows from 1.7 that if $s \in \Phi_1^*$ and s belongs to ④ type of \mathscr{A} , then there exists an element w of W^1 such that $wr_i = s$. Therefore, $n_w U_r^1 n_w^{-1} = U_s^1 \subset R^1$.

Corollary 6.10 $U^1 \subset R^1$ and $V^1 \subset R^1$.

Theorem 6.11 G^1 is simple and $G^1 = \langle U^1, V^1 \rangle$.

Proof It follows from 6.11 and 3.3 that H^1 , $N_0^1 \subseteq \langle U^1, V^1 \rangle \subseteq R^1$. From 5.3 and 6.11, we have $Y^1 \subseteq \langle U^1, V^1 \rangle \subseteq R^1$. It follows from 5.6 that $G^1 \subseteq \langle U^1, H^1, N_0^1, Y^1 \rangle \subseteq \langle U^1, V^1 \rangle \subseteq R^1$, thus $G^1 = R^1$. Therefore, G^1 is simple and $G^1 = R^1 = \langle U^1, V^1 \rangle$.

Remarks

- 1. Let K_0 be the field which satisfies the following properties a) b) c): a) $\sqrt{-1}$ $\notin K_0$, $(\sqrt{-1})^2 = -1$; b) ch $K_0 > 3$; c) if $a, b \in K_0$, then $a^2 + b^2 \neq -1$, and let $K = K_0$ ($\sqrt{-1}$). If we change the ordering field \mathcal{K}_0 for the field K_0 and change \mathcal{K} for K, then the all results remain true.
- 2. Let $A = (a_{ij}) \ (B = (b_{ij}))$ be $2l \times 2l$ matrix, where $a_{ij}(b_{ij})$, $1 \leqslant i$, $j \leqslant 2l$ satisfying the relations: if $1 \leqslant i \leqslant l$, then $a_{i,l+i} = 1$, $a_{l+i,i} = -1$; if $|i-j| \neq l$, then $a_{ij} = 0$ (if i is odd and $1 \leqslant i \leqslant 2l$, then $b_{ii} = 1$, $b_{i+1}b_{i+1} = -1$; if $i \neq j$, then $b_{ij} = 0$). Let $PSp_{2l}(\mathcal{K})$: $\{T = (t_{ij}), t_{ij} \in \mathcal{K}, 1 \leqslant i, j \leqslant 2l | T'AT = A\}$ and let $PSp_{2l}(\mathcal{K})^1$: $\{T \in PSp_{2l}(\mathcal{K}) | \overline{T}' BT = B\}$. Let $PSp_{2l}(\mathcal{K})^0$ be the commutator subgroup of $PSp_{2l}(\mathcal{K})^1$, then ${}^2C_l(\mathcal{K}) \cong PSp_{2l}(\mathcal{K})^0$ and $PSp_{2l}(\mathcal{K})^1/PSp_{2l}(\mathcal{K})^0 \cong \{I, I'\}$, where I is the identity 1 matrix, I' = B.
- 3. Let \mathscr{K}_0 be the real number field and let \mathscr{G} be the group of linear transformations leaving simultaneously invariant the skew-symmetrical bilinear form $x_1x'_{l+1}-x_{l+1}x'_1+x_2x'_{l+2}-x_{l+2}x'_2+\cdots+x_lx'_{l}-x_{2l}x'_l$ and the indefinite Hermitian form: $x_1\bar{x}_1-x_2\bar{x}_2+\cdots+x_{2l-1}\bar{x}_{2l-1}-x_{2l}\bar{x}_{2l}$. Let \mathscr{G}_0 be the connected complement of \mathscr{G} which contains the identity 1 element of \mathscr{G} , then ${}^2C_l(\mathscr{C})\cong\mathscr{G}_0(\mathscr{C}=\mathscr{R}_0(\sqrt{-1}))$ and the Lie algebra of \mathscr{G}_0 is

the real form of C_i with $\delta = -l([4], p. 292)$.

References

- [1] C. Chevalley, Sur certain groupe simple. Tôhoka. Math. J. 1(1955), 14-66.
- [2] R. Steinberg, Variations on a theme of chevalley. Pacific. J. Math. 9(1959), 875-891.
- [3] R. Ree, A family of simple groups associated with the simple Lie algebra of type (F_4) , (G_2) . Amer. J. Math. 83 (1961), 401—420.
- [4] E. Cartan, Les groupes reels simple finis et contious Ann E'c Normale sup 3-iem serie XXXI (1941), 263-355.
 E. Cartan, Groupes simples clos et ouverts et géométrie riemannienne. J. Math. pure et app. t. 8(1928), 1-33.
- [5] Yen. C. T. (严志达), Sur la classification et la figure des algèbres de Lie reels simples. Science Record (New ser.)3:7 (1959), 217—224.
- [6] Cheng Chon-hu (陈仲沪), On the Cartan subalgebra of the real semi-simple Lie algebra (I)、(II)、
 Science Record (New ser.) 3:6(1959).

 M. Sugiura, Conjugate classes of Cartan subalgebra in real semi-simple Lie algebra. J. Math. Soc.
 Japan 11(1959), 374—434.
- [7] R. Carter, Simple group of Lie type. John Wiley & Sons (1972).

由内自同构构造的李型单群

陈 仲 沪(湘潭大学)

摘 要