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Abstract Matsushita, Takahashi[4] proved a strong convergence theorem for relatively nonex-

pansive mappings in a Banach space by using the hybrid method (CQ method) in mathematical

programming. The purpose of this paper is to modify the hybrid method of Matsushita, Taka-

hashi by monotone CQ method, and to prove strong convergence theorems for weak relatively

nonexpansive mappings and maximal monotone operators in Banach spaces. The convergence

rate of monotone CQ method is faster than the hybrid method of Matsushita, Takahashi. In

addition, the Cauchy sequence method is used in this paper without using the Kadec-Klee prop-

erty. The results of this paper modify and improve the results of Matsushita, Takahashi and

some others.
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1. Introduction

In recent years, the CQ iteration methods for approximating fixed points of nonlinear map-

pings have been introduced and studied by various authors[1−4].

In 2003, Nakajo and Takahashi[1] proposed the following modification of Mann iteration

method for a single nonexpansive mapping T in a Hilbert space H :





x0 ∈ C, chosen arbitrarily,

yn = αnxn + (1 − αn)Txn,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn
(x0),

(1.1)

where C is a closed convex subset of H and PK denotes the metric projection from H onto a

closed convex subset K of H . They proved that if the sequence {αn} is bounded above from one,
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then the sequence {xn} generated by (1.1) converges strongly to PF (T )(x0), where F (T ) denotes

the fixed points set of T .

In 2006, Kim and Xu[2] proposed the following modification of the Mann iteration method

for asymptotically nonexpansive mapping T in a Hilbert space H :





x0 ∈ C, chosen arbitrarily,

yn = αnxn + (1 − αn)T nxn,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn
(x0),

(1.2)

where C is bounded closed convex subset and

θn = (1 − αn)(k2
n − 1)(diamC)2 → 0 as n → ∞.

They proved that if the sequence {αn} is bounded above from one, then the sequence {xn}

generated by (1.2) converges strongly to PF (T )(x0).

They also proposed the following modification of the Mann iteration method for asymptoti-

cally nonexpansive semigroup ℑ in a Hilbert space H :





x0 ∈ C, chosen arbitrarily,

yn = αnxn + (1 − αn)
1

tn

∫ tn

0

T (s)xnds,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn
(x0),

(1.3)

where C is bounded closed convex subset and

θn = (1 − αn)[(
1

tn

∫ tn

0

L(u)du)2 − 1](diamC)2 → 0 as n → ∞.

They proved that if the sequence {αn} is bounded above from one, then the sequence {xn}

generated by (1.3) converges strongly to PF (ℑ)(x0), where F (ℑ) denotes the common fixed points

set of ℑ.

In 2006, Martinez-Yanes and Xu[3] proposed the following modification of the Ishikawa iter-

ation method for nonexpansive mapping T in a Hilbert space H :





x0 ∈ C, chosen arbitrarily,

yn = αnxn + (1 − αn)Tzn,

zn = βnxn + (1 − βn)Txn,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2+

(1 − αn)(‖zn‖
2 − ‖xn‖

2 + 2〈xn − zn, z〉)},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn
(x0),

(1.4)

where C is a closed convex subset of H . They proved that if the sequence {αn} is bounded

above from one and βn → 0, then the sequence {xn} generated by (1.4) converges strongly to
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PF (T )(x0).

Martinez-Yanes and Xu[3] proposed also the following modification of the Halpern iteration

method for nonexpansive mapping T in a Hilbert space H :





x0 ∈ C, chosen arbitrarily,

yn = αnx0 + (1 − αn)Txn,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2+

αn(‖x0‖
2 + 2〈xn − x0, z〉)},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn
(x0),

(1.5)

where C is a closed convex subset of H . They proved that if the sequence αn → 0, then the

sequence {xn} generated by (1.5) converges strongly to PF (T )(x0).

In 2005, Matsushita and Takahashi[4] proposed the following hybrid iteration method with

generalized projection for relatively nonexpansive mapping T in a Banach space E:





x0 ∈ C, chosen arbitrarily,

yn = J−1(αnJx0 + (1 − αn)JTxn),

Cn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)}

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠCn∩Qn
(x0).

(1.6)

They proved the following convergence theorem.

Theorem MT Let E be a uniformly convex and uniformly smooth Banach space, let C be a

nonempty closed convex subset of E, let T be a relatively nonexpansive mapping from C into

itself, and let {αn} be a sequence of real numbers such that 0 ≤ αn < 1 and lim supn→∞ αn < 1.

Suppose that {xn} is given by (1.6), where J is the duality mapping on E. If F (T ) is nonempty,

then {xn} converges strongly to ΠF (T )x0, where ΠF (T )(·) is the generalized projection from C

onto F (T ).

The purpose of this paper is to modify the hybrid method of Matsushita, Takahashi by

monotone CQ method, and to prove strong convergence theorems for relatively nonexpansive

mappings and maximal monotone operators in Banach spaces. The convergence rate of monotone

CQ method is faster than the hybrid method of Matsushita, Takahashi. In addition, the Cauchy

sequence method is used in this paper instead of using the Kadec-Klee property. The results of

this paper modify and improve the results of Matsushita, Takahashi and some others.

2. Preliminaries

Let E be a Banach space with dual E∗. We denote by J the normalized duality mapping

from E to 2E∗

defined by

Jx = {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖2 = ‖f∗‖2},

where 〈·, ·〉 denotes the generalized duality pairing. It is well known that if E∗ is uniformly
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convex, then J is uniformly continuous on bounded subsets of E.

As we all know that if C is a nonempty closed convex subset of a Hilbert space H and

PC : H → C is the metric projection of H onto C, then PC is nonexpansive. This fact actually

characterizes Hilbert spaces and consequently, it is not available in more general Banach spaces.

In this connection, Alber[5] recently introduced a generalized projection operator ΠC in a Banach

space E which is an analogue of the metric projection in Hilbert spaces.

Next, we assume that E is a smooth Banach space. Consider the functional defined as in [5,

6] by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2 for x, y ∈ E. (2.1)

Observe that, in a Hilbert space H , (2.1) reduces to φ(x, y) = ‖x − y‖2, x, y ∈ H .

The generalized projection ΠC : E → C is a map that assigns to an arbitrary point x ∈ E

the minimum point of the functional φ(x, y), that is, ΠCx = x̄, where x̄ is the solution to the

minimization problem

φ(x̄, x) = min
y∈C

φ(y, x). (2.2)

Existence and uniqueness of the operator ΠC follow from the properties of the functional φ(x, y)

and strict monotonicity of the mapping J [5−7]. In Hilbert space, ΠC = PC . It is obvious from

the definition of function φ that

(‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖ + ‖x‖)2 for all x, y ∈ E. (2.3)

Remark If E is a reflexsive strictly convex and smooth Banach space, then for x, y ∈ E,

φ(x, y) = 0 if and only if x = y. It is sufficient to show that if φ(x, y) = 0, then x = y. From

(2.3), we have ‖x‖ = ‖y‖. This implies 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definitions of j, we

have Jx = Jy. That is, x = y; see [8, 9] for more details.

Let C be a closed convex subset of E, and let T be a mapping from C into itself. We

denote by F (T ) the set of fixed points of T . A point of p in C is said to be an asymptotic fixed

point of T [10] if C contains a sequence {xn} which converges weakly to p such that the strong

limn→∞(Txn − xn) = 0. The set of asymptotic fixed points of T will be denoted by F̂ (T ). A

mapping T from C into itself is called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C

and relatively nonexpansive[10−12] if F̂ (T ) = F (T ) and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and

p ∈ F (T ).

Now, we present the definition of weak relatively nonexpansive mappings.

Let C be a closed convex subset of E, and let T be a mapping from C into itself. We denote

by F (T ) the set of fixed points of T . A point of p in C is said to be a strong asymptotic fixed

point of T if C contains a sequence {xn} which converges strongly to p such that the strong

limn→∞(Txn −xn) = 0. The set of strong asymptotic fixed points of T will be denoted by F (T ).

A mapping T from C into itself is called weak relatively nonexpansive if F (T ) ⊂ F (T ) and

φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F (T ).

It is obvious, relatively nonexpansive mapping is weak relatively nonexpansive mapping.
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A Banach space E is said to be strictly convex if ‖x+y
2 ‖ < 1 for all x, y ∈ E with ‖x‖ =

‖y‖ = 1 and x 6= y. It is said to be uniformly convex if limn→∞ ‖xn − yn‖ = 0 for any

two sequences {xn}, {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and limn→∞ ‖xn+yn

2 ‖ = 1. Let

U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then the Banach space E is said to be smooth

provided

lim
t→0

‖x + ty‖ − ‖x‖

t

exists for each x, y ∈ U. It is also said to be uniformly smooth if the limit is attained uniformly

for x, y ∈ E. It is well known that if E is uniformly smooth, then J is uniformly norm-to-norm

continuous on each bounded subset of E. A Banach space is said to have the Kadec-Klee property

if a sequence {xn} ⇀ x ∈ E and ‖xn‖ → ‖x‖, then xn → x. It is known that if E is uniformly

convex. Then E has the Kadec-Klee property; see [8, 9] for more details.

We need the following Lemmas for the proof of our main results.

Lemma 2.1
[7] Let E be a uniformly convex and smooth Banach space and let {xn}, {yn} be

two sequences of E. If φ(xn, yn) → 0 and either {xn} or {yn} is bounded, then xn − yn → 0.

Lemma 2.2
[5] Let C be a nonempty closed convex subset of a smooth Banach space E and

x ∈ E. Then, x0 = ΠCx if and only if

〈x0 − y, Jx − Jx0〉 ≥ 0 for y ∈ C.

Lemma 2.3
[5] Let E be a reflexive, strictly convex and smooth Banach space, let C be a

nonempty closed convex subset of E and let x ∈ E. Then

φ(y, Πcx) + φ(Πcx, x) ≤ φ(y, x) for all y ∈ C.

Lemma 2.4 Let E be a strictly convex and smooth Banach space, let C be a closed convex

subset of E, and let T be a weak relatively nonexpansive mapping from C into itself. Then F (T )

is closed and convex.

Proof We first show that F (T ) is closed. Let {xn} be a sequence of F (T ) such that xn → q ∈ C.

From the definition of T we have

φ(xn, T q) ≤ φ(xn, q)

for each n ≥ 1. This implies

φ(q, T q) = lim
n→∞

φ(xn, T q) ≤ lim
n→∞

φ(xn, q) = φ(q, q) = 0.

Therefore, we obtain q = Tq, so that q ∈ F (T ). Next, we show that F (T ) is convex. For

x, y ∈ F (T ) and t ∈ (0, 1), put z = tx + (1 − t)y. It suffices to show Tz = z. In fact, we have

φ(z, T z) = ‖z‖2 − 2〈z, JT z〉+ ‖Tz‖2

= ‖z‖2 − 2〈tx + (1 − t)y, JT z〉+ ‖Tz‖2

= ‖z‖2 − 2t〈x, JT z〉 − 2(1 − t)〈y, JT z〉+ ‖Tz‖2

≤ ‖z‖2 + tφ(x, z) + (1 − t)φ(y, z) − t‖x‖2 − (1 − t)‖y‖2
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= ‖z‖2 − 2〈tx + (1 − t)y, Jz〉 + ‖z‖2

= ‖z‖2 − 2〈z, Jz〉+ ‖z‖2

= φ(z, z) = 0.

This implies z = Tz. This completes the proof. 2

3. Main results

Now, we can prove a strong convergence theorem for weak relatively nonexpansive mappings

in a Banach space by using the monotone CQ method.

Theorem 3.1 Let E be a uniformly convex and uniformly smooth Banach space, let C be a

nonempty closed convex subset of E, let T be a weak relatively nonexpansive mapping from C into

itself, and let {αn} be a sequence of real numbers such that 0 ≤ αn < 1 and lim supn→∞ αn < 1.

Suppose that {xn} is given by





x0 ∈ C, chosen arbitrarily,

yn = J−1(αnJxn + (1 − αn)JTxn),

Cn = {z ∈ Cn−1

⋂
Qn−1 : φ(z, yn) ≤ φ(z, xn)},

C0 = {z ∈ C : φ(z, y0) ≤ φ(z, x0)},

Qn = {z ∈ Cn−1

⋂
Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

Q0 = C,

xn+1 = ΠCn∩Qn
(x0),

(3.1)

where J is the duality mapping on E. If F (T ) is nonempty, then {xn} converges strongly to

ΠF (T )x0, where ΠF (T ) is the generalized projection from C onto F (T ).

Proof We first show that Cn and Qn are closed and convex for each n ≥ 0. From the definition

of Cn and Qn, it is obvious that Cn is closed and Qn is closed and convex for each n ≥ 0. We

show that Cn is convex. Since φ(z, yn) ≤ φ(z, xn) is equivalent to

2〈z, Jxn − Jyn〉 + ‖yn‖
2 − ‖xn‖

2 ≤ 0,

it follows that Qn is convex.

Next, we show that F (T ) ⊂ Cn

⋂
Qn for each n ≥ 0. For any p ∈ F (T ) and n ≥ 0,

φ(p, yn) = φ(p, J−1(αnJxn + (1 − αn)JTxn))

= ‖p‖2 − 2〈p, αnJxn + (1 − αn)JTxn〉 + ‖αnJxn + (1 − αn)JTxn)‖2

≤ ‖p‖2 − 2αn〈p, Jxn〉 − 2(1 − αn)〈p, JTxn〉 + αn‖xn‖
2 + (1 − αn)‖Txn‖

2

= αn(‖p‖2 − 2〈p, Jxn〉 + ‖xn‖
2) + (1 − αn)(‖p‖2 − 2〈p, JTxn〉 + ‖Txn‖

2)

= αnφ(p, xn) + (1 − αn)φ(p, Txn)

≤ αnφ(p, xn) + (1 − αn)φ(p, xn)

= φ(p, xn),

we have p ∈ F (T ). Therefore, we obtain F (T ) ⊂ Cn for each n ≥ 0.
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Next, we show that F (T ) ⊂ Qn for all n ≥ 0, we prove this by induction. For n = 0, we have

F (T ) ⊂ C = Q0. Assume that F (T ) ⊂ Qn. Since xn+1 is the projection of x0 onto Cn ∩ Qn, by

Lemma 2.2 we have

〈xn+1 − z, Jx0 − Jxn+1〉 ≥ 0, ∀z ∈ Cn ∩ Qn.

As F (T ) ⊂ Cn ∩ Qn by the induction assumptions, the last inequality holds, in particular, for

all z ∈ F (T ). This together with the definition of Qn+1 implies that F (T ) ⊂ Qn+1.

Since xn+1 = ΠCn∩Qn
x0 and Cn

⋂
Qn ⊂ Cn−1

⋂
Qn−1 for all n ≥ 1, we have

φ(xn, x0) ≤ φ(xn+1, x0) (3.2)

for all n ≥ 0. Therefore, {φ(xn, x0)} is nondecreasing. In addition, it follows from definition of

Qn and Lemma 2.2 that xn = ΠQn
x0. Therefore, by Lemma 2.3 we have

φ(xn, x0) = φ(ΠQn
x0, x0) ≤ φ(p, x0) − φ(p, xn) ≤ φ(p, x0),

for each p ∈ F (T ) ⊂ Qn for all n ≥ 0. Therefore, φ(xn, x0) is bounded. This together with (3.2)

implies that the limit of {φ(xn, x0)} exists. Put

lim
n→∞

φ(xn, x0) = d. (3.3)

From Lemma 2.3, we have, for any positive integer m, that

φ(xn+m, xn) = φ(xn+m, ΠCn
x0) ≤ φ(xn+m, x0) − φ(ΠCn

x0, x0)

= φ(xn+m, x0) − φ(xn, x0),
(3.4)

for all n ≥ 0.

We claim that {xn} is a Cauchy sequence, if not, there exists a positive real number ε0 > 0

and the subsequence {nk}, {mk} ⊂ {n} such that ‖xnk+mk
− xnk

‖ ≥ ε0.

On the other hand, from (3.3) and (3.4) we have

φ(xnk+mk
, xnk

) ≤ φ(xnk+mk
, x0) − φ(xnk

, x0)

≤ |φ(xnk+mk
, x0) − d| + |d − φ(xnk

, x0)| → 0, k → ∞.

Because from (2.3) we know that the φ(xn, x0) is bounded implies the {xn} is also bounded, by

using Lemma 2.1, we obtain

lim
k→∞

‖xnk+mk
− xnk

‖ = 0.

This is a contradiction, so that {xn} is a Cauchy sequence. Therefore, there exists a point p ∈ C

such that {xn} converges strongly to p. Hence we have

lim
n→∞

‖xn+1 − xn‖ = 0. (3.5)

In addition, from (3.3) and (3.4) we have limn→∞ φ(xn+1, xn) = 0. This together with the fact

xn+1 ∈ Cn implies that

lim
n→∞

φ(xn+1, yn) = 0.

By using again Lemma 2.1, we have

lim
n→∞

‖xn+1 − yn‖ = 0. (3.6)
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Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖Jxn+1 − Jyn‖ = lim
n→∞

‖Jxn+1 − Jxn‖ = 0. (3.7)

On the other hand, we have, for each n ≥ 0,

‖Jxn+1 − Jyn‖ = ‖Jxn+1 − (αnJxn + (1 − αn)JTxn)‖

= ‖αn(Jxn+1 − Jxn) + (1 − αn)(Jxn+1 − JTxn)‖

= ‖(1 − αn)(Jxn+1 − JTxn) − αn(Jxn − Jxn+1)‖

≥ (1 − αn)‖Jxn+1 − JTxn‖ − αn‖Jxn − Jxn+1‖

and hence

‖Jxn+1 − JTxn‖ ≤
1

1 − αn

(‖Jxn+1 − Jyn‖ + αn‖Jxn − Jxn+1‖

≤
1

1 − αn

(‖Jxn+1 − Jyn‖ + ‖Jxn − Jxn+1‖).

From (3.7) and limn→∞ αn < 1, we obtain

lim
n→∞

‖Jxn+1 − JTxn‖ = 0.

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n→∞

‖xn+1 − Txn‖ = lim
n→∞

‖J−1Jxn+1 − J−1JTxn‖ = 0.

Therefore, from

‖xn − Txn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Txn‖,

we have limn→∞ ‖xn − Txn‖ = 0. This together with the fact {xn} converges strongly to p ∈ C

and the definition of weak relatively nonexpansive mappings implies that p ∈ F (T ).

Finally, we prove that p = ΠF (T )x0. From Lemma 2.3, we have

φ(p, ΠF (T )x0) + φ(ΠF (T )x0, x0) ≤ φ(p, x0). (3.8)

On the other hand, since xn+1 = ΠCn

⋂
Qn

(x0) and Cn

⋂
Qn ⊃ F (T ), for all n. Also from Lemma

2.3, we have

φ(ΠF (T )x0, xn+1) + φ(xn+1, x0) ≤ φ(ΠF (T )x0, x0). (3.9)

By the definition of φ(x, y), we know that

lim
n→∞

φ(xn+1, x0) = φ(p, x0). (3.10)

Combining (3.8), (3.9) and (3.10), we know that φ(p, x0) = φ(ΠF (T )x0, x0). Therefore, it follows

from the uniqueness of ΠF (T )x0 that p = ΠF (T )x0. This completes the proof. 2

4. Applications

In a similar fashion, we can modify iteration methods (1.1)–(1.5) by monotone CQ methods.

So we can obtain some strong convergence theorems, respectively, we omit here.

Now, we apply Theorem 3.1 to prove a strong convergence theorem concerning maximal

monotone operators in a Banach space E.
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Let A be a multi-valued operator from E to E∗ with domain D(A) = {z ∈ E : Az 6= ∅} and

range R(A) = {z ∈ E : z ∈ D(A)}. An operator A is said to be monotone if

〈x1 − x2, y1 − y2〉 ≥ 0

for each x1, x2 ∈ D(A) and y1 ∈ Ax1, y2 ∈ Ax2. A monotone operator A is said to be maximal if

its graph G(A) = {(x, y) : y ∈ Ax} is not properly contained in the graph of any other monotone

operator. We know that if A is a maximal monotone operator, then A−10 is closed and convex.

The following result is also well-known.

Theorem 4.1
[13] Let E be a reflexive, strictly convex and smooth Banach space and let A be

a monotone operator from E to E∗. Then A is maximal if and only if R(J + rA) = E∗ for all

r > 0.

Let E be a reflexive, strictly convex and smooth Banach space, and let A be a maximal

monotone operator from E to E∗. Using Theorem 4.1 and strict convexity of E, we obtain that

for every r > 0 and x ∈ E, there exists a unique xr such that

Jx ∈ Jxr + rAxr .

Then we can define a single valued mapping Jr : E → D(A) by Jr = (J + rA)−1J and such

a Jr is called the resolvent of A. We know that A−1 = F (Jr) for all r > 0, see [9, 14] for

more details. Using Theorem 3.1, we can consider the problem of strong convergence concerning

maximal monotone operators in a Banach space. Such a problem has been also studied in [1],

[7], [15]–[18].

Theorem 4.2 Let E be a uniformly convex and uniformly smooth Banach space, let A be a

maximal monotone operator from E to E∗, let Jr be a resolvent of A, where r > 0 and let {αn}

be a sequence of real numbers such that 0 ≤ αn < 1 and lim supn→∞ αn < 1. Suppose that {xn}

is given by 




x0 ∈ E, chosen arbitrarily,

yn = J−1(αnJxn + (1 − αn)JJrxn),

Cn = {z ∈ Cn−1

⋂
Qn−1 : φ(z, yn) ≤ φ(z, xn)},

C0 = {z ∈ E : φ(z, y0) ≤ φ(z, x0)},

Qn = {z ∈ Cn−1

⋂
Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

Q0 = E,

xn+1 = ΠCn∩Qn
x0,

where J is the duality mapping on E. If A−10 is nonempty, then {xn} converges strongly to

ΠA−10x0, where ΠA−10 is the generalized projection from E onto A−10.

Proof We first show that F̂ (Jr) ⊂ A−10. Let p ∈ F̂ (Jr). Then there exists {zn} ⊂ E such

that zn ⇀ p and limn→∞ ‖zn − Jrzn‖ = 0. Since J is uniformly norm-to-norm continuous on

bounded sets, we obtain
1

r
(Jzn − JJrzn) → 0.
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It follows from
1

r
(Jzn − JJrzn) ∈ AJrzn

and the monotonicity of A that

〈w − Jrzn, w∗ −
1

r
(Jzn − JJrzn)〉 ≥ 0

for all w ∈ D(A) and w∗ ∈ Aw. Letting n → ∞, we have 〈w − p, w∗〉 ≥ 0 for all w ∈ D(A) and

w∗ ∈ Aw. Therefore, from the maximality of A, we obtain p ∈ A−10. On the other hand, we

know that F (Jr) = A−10 and F (Jr) ⊂ F̂ (Jr), therefore, A−10 = F (Jr) = F̂ (Jr). Next we show

that Jr is a relatively nonexpansive mapping with respect to A−10. Let w ∈ E and p ∈ A−10.

From the monotonicity of A, we have

φ(p, Jrw) = ‖p‖2 − 2〈p, JJrw〉 + ‖Jrw‖2

= ‖p‖2 + 2〈p, Jw − JJrw − Jw〉 + ‖Jrw‖2

= ‖p‖2 + 2〈p, Jw − JJrw〉 − 2〈p, Jw〉 + ‖Jrw‖2

= ‖p‖2 − 2〈Jrw − p − Jrw, Jw − JJrw − Jw〉 − 2〈p, Jw〉 + ‖Jrw‖2

= ‖p‖2 − 2〈Jrw − p, Jw − JJrw − Jw〉+

2〈Jrw, Jw − JJrw〉 − 2〈p, Jw〉 + ‖Jrw‖2

≤ ‖p‖2 + 2〈Jrw, Jw − JJrw〉 − 2〈p, Jw〉 + ‖Jrw‖2

= ‖p‖2 − 2〈p, Jw〉 + ‖w‖2 − ‖Jrw‖2 + 2〈Jrw, Jw〉 − ‖w‖2

= φ(p, w) − φ(Jrw, w)

≤ φ(p, w).

This implies that Jr is a relatively nonexpansive mapping. Using Theorem 3.1, we can conclude

that {xn} converges strongly to ΠA−10x0. This completes the proof. 2

Remark In the monotone CQ iteration methods, because {Cn

⋂
Qn} is monotone sequence

of sets, that is, Cn

⋂
Qn ⊂ Cn−1

⋂
Qn−1 for all n ≥ 1, the convergence rate of monotone CQ

iteration method is faster than the hybrid(CQ) method of Matsushita, Takahashi and others.

In addition, by using the monotone CQ iteration method, we can obtain the strong convergence

theorem for weak relatively nonexpansive mappings.
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