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Dirichlet Shift of Finite Multiplicity
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Abstract In this paper, we show that a multiplication operator on the Dirichlet space D is
unitarily equivalent to Dirichlet shift of multiplicity n + 1 (n > 0) if and only if its symbol is
¢ 2"t for some constant ¢. The result is very different from the cases of both the Bergman space
and the Hardy space.
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1. Introduction

Let D be the open unit disk and dA denote the normalized Lebesgue area measure on D. The

Dirichlet space D consists of analytic function f on D with finite Dirichlet integral
D) = [ 1P <.
D
1
Endow D with norm || f|| = (|f(0)]*+ D(f))?, f € D. D is a Hilbert space with inner product

(F.9) = SO0 + [ FETERAR). fg €.
It is well known that D is a reproducing function space with reproducing kernel
Ky(z) = 1—|—10g;77 Az eD.
1—-XAz

In recent years, the Dirichlet space has received a lot attention from the analysts. We refer
readers to the survey paper [1] for more information about the Dirichlet space.

A function ¢ on D is called a multiplier of D if ¢D C D. Denote by M the multiplier space of
D. For ¢ € M, a simple application of the closed graph theorem shows that the multiplication
operator My : f — ¢f, f € D, is bounded.

The multiplication operator M, known as the Dirichlet shift is an important operator and

has been studied deeply [2-5]. In this paper, we study when a multiplication operator My on D is
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essentially the Dirichlet shift, i.e., My is unitarily equivalent to M,. More generally, we study the
multiplication operator on D which is unitarily equivalent to M_»+1 (n > 0), the Dirichlet shift
of multiplicity n+ 1. Recall that two operators A, B on Hilbert spaces H and K respectively are
called unitarily equivalent if there exists a unitary operator U : H — K such that UAU* = B
To characterize the condition for two operators to be unitarily equivalent is an important topic
in the operator theory [6]. For the unitary equivalence of Toeplitz operators or multiplication
operators on the Hardy space or the Bergman space, see [7-9].

On the Hardy space, every finite Blaschke product is a unilateral shift of finite multiplicity [7].
On the Bergman space, Sun, Zheng and Zhong [10] completely characterized the multiplication
operators which are unitarily equivalent to a weighted unilateral shift of finite multiplicity.

On the Dirichlet space, the author [11] characterized the unitarily equivalent multiplication
operators to M2 by the characterization of reducing subspaces of such operators. In [12], the
unitary equivalence of the multiplication operator defined by finite Blaschke product of order two
is considered. In this paper, we will show that a multiplication operator is unitarily equivalent
to the Dirichlet shift of multiplicity n 41 (n > 0) if and only if its symbol is a constant multiple

of znt1,

Theorem 1.1 Let ¢ € M. Then M, is unitarily equivalent to M n+1 (n > 0) if and only if

#(2) = c2"*! for some constant ¢ with |c| = 1.

2. Proof of the main result

Since the proof of the main result depends on a representation formula for the Dirichlet
integral given by Carleson [13], here we give some discussion about the Carleson formula.
Let f € D, f = BSF be the canonical factorization of f as a function in the Hardy space,

where B = [[72, ‘ZJ - is a Blaschke product, S is the singular part of f and F' is the outer
J

part of f. Then
,1de] dg
n= [ reisers [ [ Zalrormos

// (€249 — e24(O) (u(¢) — u(€)) |dC] |d€]
IC— ¢ 2 2w’

where u(§) = log|f(£)|, Px(£) is the Poisson kernel and p is the singular measure corresponding
to S.
Let \
-z
or(z) = 150 AzeD
be the Mobius transform. For Ag,A1,...,An € D, ¢ = ©a, 0, Pr, - - @, is a finite Blaschke
product of order n + 1.

By the Carleson formula, for f,g € D, and integer m > 1, k =0, 1,2, 3, we have

D" (f +i4) =m [ (Pr+ P+ 4 PO + #9(@)) S 4 D+ %)
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:m/T ((PAO + Py, o+ Pa)If(E) —I—ikg(§)|2)|§_§|_|_

If +i*glI”> = [£(0) +i*g(0)]?,

where 7 is the imaginary unit.
By the polarization identity, we have
3

ik
(0" f.0"g) =D S 1o (f +i*9)l?

3k
= (D" (f +i*9) + 6™ (0)(£(0) +i*9(0))*)
k=0

zm/(P,\O + Py 4+ + P,\n)f(f)mg—ﬂ-i-
T ™

(f,9) = £(0)g(0) + [¢™ (0) [ £(0)g(0). (1)
To continue, we need the following lemma, which has appeared in [11].

Lemma 2.1 Let ¢ € M. If My is unitarily equivalent to M ,n+1, then ¢ is a Blaschke product
of order n + 1.

Proof Let U : D — D be a unitary operator such that U*MyU = M,n+1, and let I be the
identity operator and ky be the normalization of K for A € D, that is, kx = Kx/|| K.
It is easy to verify that M,.+1 M7, ., —I is compact and ky weakly converges to 0 as [A| — 1.

Hence, as |A\| — 1
(My Mk, ) — 1= (U(Mawis MEis — Uiy, ) — 0.

As we know
(MyMzkx,kx) —1 = [p(A)* — 1,

which means that |¢(\)|*> — 1 as |\| — 1. It follows that ¢ is an inner function. We claim that
¢ is a Blaschke product of finite order. Otherwise we can always find infinitely many A\, € D
such that |A,| — 1, but ¢(A,;,) — 0. Since M,n+1 has order n + 1, ¢ must have order n+ 1. O

Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1 By Lemma 2.1, without loss of generality, assume ¢ = @x,px; - - - ©a
Let U be a unitary operator on D such that U*MyU = M n+1.
Let Ej(z) = 27,0 < j < oo. {UE;}}_ is an orthogonal basis of D © ¢D. Set f; = UE;. For

any integer m > 1, j =0,1,...,n, we have

n

UEn(ni1y+; = UMD Ej = MGJUE; = ¢™ f;.

Therefore
(" fres @ f5) = (Em(n1)+k> Emme)+4) =0, J # k;

(@™ i, 8" f5) = (Bu(ns 1)+ Bingny+j) =0, m #1L.
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By (1),

(@7 f3,0™ fr) :m/T(PAO + P, +P,++ PAn)fj(f)fk—(f)%

(i, fie) + (1™ () = 1)£;(0) £ (0)-

+

When j # k, we have

0= [ (P4 Pt Pt PO el O DLORO) )

Let m — oo. Then

|d¢]

2

0= /T(Pxo + Py, + Pay, + -+ Pa ) f(9 Fr(6)

It follows from (2) that (|¢™(0)|*> — 1) f;(0)fx(0) = 0, and thus f;(0)fx(0) = 0.

Ifforall j =0,1,...,n, f;(0) =0, then 1 L D& ¢D and hence 1 € ¢D. This is impossible.
So there exists j in {0, 1,...,n} such that f;(0) # 0, say j = 0, and hence for j # 0, f;(0) = 0.

By (1),

(" 6" o) =m [ (Pay + Py + Pay o+ P )OO ol P+
T ™
(@ o, fo) + (|6™ (0)* = 1)$(0)| fo (0)[*.
ie.
0 Zm/(PAO + Py + P+t P,\n)¢(§)|fo(§)|2|;i—§|+
T 7
(16™(0)]* = 1)¢(0)] fo(0) [
Reasoning as above, we have (|¢™(0)? — 1)¢(0)|f0(0)|> = 0. Consequently,
#(0) = 0.

Without loss of generality, assume Ao = 0.
Since ¢(0) =0, 1 € Do ¢D. Let {1,&1,...,E,} be an orthonormal basis of D © ¢D and

fi=aj0+apné&i+---+apé&n, 7=01,...,n

For j =1,2,...,n, we have ajo = 0 since f;(0) =0. So

0= (fj, fo) = ajiGo1 + ajoboz + - -+ + ajnaon, j=1,2,...,n. (3)
Since
apo ao1  Q@o2 - QAon
aj;p a2 -0 Qlp
aip aixr a2 - Qln
az1 Qa2 - A2n
apo | . ] ' ] =| G2 Q21 G2 - Q2p |#0, (4)
anl Qap2 Ann
ano Qnl An2 Ann
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it follows from (3) that ag1 = ag2 = -+ = apn, = 0. Hence fo = apo. By the formula (1), for
j=1,2,...,n,
0= (6fysfi) = [(1+ B, oot BT
Hence
fiQ) + -+ fi(An) = 0.
In other words, for j =1,2,...,n,

ai1(Ex(M) +E )+ -+ E W)+ Fapn(En(h) +En(X2) + -+ & (M) =0.
By (4), for 1 =1,2,...,n,
EM)+ &)+ + &) =0,

i.e.

&L, Ky + Ky, +---+ Ky,)=0.
Since Ky, K»x,,..., Ky, € De ¢D, we have
Ky, + Ky, +-+ K\, =7
for some constant . Obviously v = n. Then for any integer m > 1,
(2™ Kx, +EKxy + -+ Kx) = AT+ A3 + -+ A7 = 0.

So A1 = A = -+ = )\, = 0, and thus ¢(z) = cz""! for some constant c. The proof is

completed. O
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