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Abstract In this paper, we show that a multiplication operator on the Dirichlet space D is

unitarily equivalent to Dirichlet shift of multiplicity n + 1 (n ≥ 0) if and only if its symbol is

c z
n+1 for some constant c. The result is very different from the cases of both the Bergman space

and the Hardy space.
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1. Introduction

Let D be the open unit disk and dA denote the normalized Lebesgue area measure on D. The

Dirichlet space D consists of analytic function f on D with finite Dirichlet integral

D(f) =

∫

D

|f ′|2dA < ∞.

Endow D with norm ‖f‖ =
(

|f(0)|2 + D(f)
)

1
2 , f ∈ D. D is a Hilbert space with inner product

〈f, g〉 = f(0)g(0) +

∫

D

f ′(z)g′(z)dA(z), f, g ∈ D.

It is well known that D is a reproducing function space with reproducing kernel

Kλ(z) = 1 + log
1

1 − λ̄z
, λ, z ∈ D.

In recent years, the Dirichlet space has received a lot attention from the analysts. We refer

readers to the survey paper [1] for more information about the Dirichlet space.

A function φ on D is called a multiplier of D if φD ⊂ D. Denote by M the multiplier space of

D. For φ ∈ M, a simple application of the closed graph theorem shows that the multiplication

operator Mφ : f → φf , f ∈ D, is bounded.

The multiplication operator Mz known as the Dirichlet shift is an important operator and

has been studied deeply [2–5]. In this paper, we study when a multiplication operator Mφ on D is
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essentially the Dirichlet shift, i.e., Mφ is unitarily equivalent to Mz. More generally, we study the

multiplication operator on D which is unitarily equivalent to Mzn+1 (n ≥ 0), the Dirichlet shift

of multiplicity n+1. Recall that two operators A, B on Hilbert spaces H and K respectively are

called unitarily equivalent if there exists a unitary operator U : H → K such that UAU∗ = B.

To characterize the condition for two operators to be unitarily equivalent is an important topic

in the operator theory [6]. For the unitary equivalence of Toeplitz operators or multiplication

operators on the Hardy space or the Bergman space, see [7–9].

On the Hardy space, every finite Blaschke product is a unilateral shift of finite multiplicity [7].

On the Bergman space, Sun, Zheng and Zhong [10] completely characterized the multiplication

operators which are unitarily equivalent to a weighted unilateral shift of finite multiplicity.

On the Dirichlet space, the author [11] characterized the unitarily equivalent multiplication

operators to Mz2 by the characterization of reducing subspaces of such operators. In [12], the

unitary equivalence of the multiplication operator defined by finite Blaschke product of order two

is considered. In this paper, we will show that a multiplication operator is unitarily equivalent

to the Dirichlet shift of multiplicity n + 1 (n ≥ 0) if and only if its symbol is a constant multiple

of zn+1.

Theorem 1.1 Let φ ∈ M. Then Mφ is unitarily equivalent to Mzn+1 (n ≥ 0) if and only if

φ(z) = czn+1 for some constant c with |c| = 1.

2. Proof of the main result

Since the proof of the main result depends on a representation formula for the Dirichlet

integral given by Carleson [13], here we give some discussion about the Carleson formula.

Let f ∈ D, f = BSF be the canonical factorization of f as a function in the Hardy space,

where B =
∏∞

j=1
āj

|aj|
aj−z

1−ājz
is a Blaschke product, S is the singular part of f and F is the outer

part of f . Then

D(f) =

∫

T

∞
∑

n=1

Pαn
(ξ)|f(ξ)|2

|dξ|

2π
+

∫

T

∫

T

2

|ζ − ξ|2
|f(ξ)|2dµ(ζ)

|dξ|

2π
+

∫

T

∫

T

(e2u(ζ) − e2u(ξ))(u(ζ) − u(ξ))

|ζ − ξ|2
|dζ|

2π

|dξ|

2π
,

where u(ξ) = log |f(ξ)|, Pα(ξ) is the Poisson kernel and µ is the singular measure corresponding

to S.

Let

ϕλ(z) =
λ − z

1 − λ̄z
, λ, z ∈ D

be the Möbius transform. For λ0, λ1, . . . , λn ∈ D, φ = ϕλ0
ϕλ1

ϕλ2
· · ·ϕλn

is a finite Blaschke

product of order n + 1.

By the Carleson formula, for f, g ∈ D, and integer m ≥ 1, k = 0, 1, 2, 3, we have

D(φm(f + ikg)) =m

∫

T

(

(Pλ0
+ Pλ1

+ · · · + Pλn
)|f(ξ) + ikg(ξ)|2

) |dξ|

2π
+ D(f + ikg)
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=m

∫

T

(

(Pλ0
+ Pλ1

+ · · · + Pλn
)|f(ξ) + ikg(ξ)|2

) |dξ|

2π
+

‖f + ikg‖2 − |f(0) + ikg(0)|2,

where i is the imaginary unit.

By the polarization identity, we have

〈φmf, φmg〉 =

3
∑

k=0

ik

4
‖φm(f + ikg)‖2

=

3
∑

k=0

ik

4

(

D(φm(f + ikg)) + |φm(0)(f(0) + ikg(0))|2
)

=m

∫

T

(Pλ0
+ Pλ1

+ · · · + Pλn
)f(ξ)g(ξ)

|dξ|

2π
+

〈f, g〉 − f(0)g(0) + |φm(0)|2f(0)g(0). (1)

To continue, we need the following lemma, which has appeared in [11].

Lemma 2.1 Let φ ∈ M. If Mφ is unitarily equivalent to Mzn+1, then φ is a Blaschke product

of order n + 1.

Proof Let U : D → D be a unitary operator such that U∗MφU = Mzn+1 , and let I be the

identity operator and kλ be the normalization of Kλ for λ ∈ D, that is, kλ = Kλ/‖Kλ‖.

It is easy to verify that Mzn+1M∗
zn+1 − I is compact and kλ weakly converges to 0 as |λ| → 1.

Hence, as |λ| → 1

〈MφM∗
φkλ, kλ〉 − 1 = 〈U(Mzn+1M∗

zn+1 − I)U∗kλ, kλ〉 → 0.

As we know

〈MφM∗
φkλ, kλ〉 − 1 = |φ(λ)|2 − 1,

which means that |φ(λ)|2 → 1 as |λ| → 1. It follows that φ is an inner function. We claim that

φ is a Blaschke product of finite order. Otherwise we can always find infinitely many λm ∈ D

such that |λm| → 1, but φ(λm) → 0. Since Mzn+1 has order n + 1, φ must have order n + 1. 2

Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1 By Lemma 2.1, without loss of generality, assume φ = ϕλ0
ϕλ1

· · ·ϕλn
.

Let U be a unitary operator on D such that U∗MφU = Mzn+1.

Let Ej(z) = zj, 0 ≤ j < ∞. {UEj}
n
j=0 is an orthogonal basis of D⊖ φD. Set fj = UEj . For

any integer m ≥ 1, j = 0, 1, . . . , n, we have

UEm(n+1)+j = UMm
zn+1Ej = Mm

φ UEj = φmfj .

Therefore

〈φmfk, φmfj〉 = 〈Em(n+1)+k, Em(n+1)+j〉 = 0, j 6= k;

〈φmfj, φ
lfj〉 = 〈Em(n+1)+k, El(n+1)+j〉 = 0, m 6= l.
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By (1),

〈φmfj, φ
mfk〉 =m

∫

T

(Pλ0
+ Pλ1

+ Pλ2
+ · · · + Pλn

)fj(ξ)fk(ξ)
|dξ|

2π
+

〈fj , fk〉 + (|φm(0)|2 − 1)fj(0)fk(0).

When j 6= k, we have

0 =

∫

T

(Pλ0
+ Pλ1

+ Pλ2
+ · · · + Pλn

)fj(ξ)fk(ξ)
|dξ|

2π
+

(|φm(0)|2 − 1)fj(0)fk(0)

m
. (2)

Let m → ∞. Then

0 =

∫

T

(Pλ0
+ Pλ1

+ Pλ2
+ · · · + Pλn

)fj(ξ)fk(ξ)
|dξ|

2π
.

It follows from (2) that (|φm(0)|2 − 1)fj(0)fk(0) = 0, and thus fj(0)fk(0) = 0.

If for all j = 0, 1, . . . , n, fj(0) = 0, then 1 ⊥ D ⊖ φD and hence 1 ∈ φD. This is impossible.

So there exists j in {0, 1, . . . , n} such that fj(0) 6= 0, say j = 0, and hence for j 6= 0, fj(0) = 0.

By (1),

〈φm+1f0, φ
mf0〉 =m

∫

T

(Pλ0
+ Pλ1

+ Pλ2
+ · · · + Pλn

)φ(ξ)|f0(ξ)|
2 |dξ|

2π
+

〈φf0, f0〉 + (|φm(0)|2 − 1)φ(0)|f0(0)|2.

i.e.,

0 =m

∫

T

(Pλ0
+ Pλ1

+ Pλ2
+ · · · + Pλn

)φ(ξ)|f0(ξ)|
2 |dξ|

2π
+

(|φm(0)|2 − 1)φ(0)|f0(0)|2.

Reasoning as above, we have (|φm(0)|2 − 1)φ(0)|f0(0)|2 = 0. Consequently,

φ(0) = 0.

Without loss of generality, assume λ0 = 0.

Since φ(0) = 0, 1 ∈ D ⊖ φD. Let {1, E1, . . . , En} be an orthonormal basis of D ⊖ φD and

fj = aj0 + aj1E1 + · · · + ajnEn, j = 0, 1, . . . , n.

For j = 1, 2, . . . , n, we have aj0 = 0 since fj(0) = 0. So

0 = 〈fj , f0〉 = aj1ā01 + aj2ā02 + · · · + ajnā0n, j = 1, 2, . . . , n. (3)

Since

a00

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a00 a01 a02 · · · a0n

a10 a11 a12 · · · a1n

a20 a21 a22 · · · a2n

...
...

...
. . .

...

an0 an1 an2 · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0, (4)
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it follows from (3) that a01 = a02 = · · · = a0n = 0. Hence f0 = a00. By the formula (1), for

j = 1, 2, . . . , n,

0 = 〈φfj , φf0〉 =

∫

T

(1 + Pλ1
+ · · · + Pλn

)fj(ξ)f0(ξ)
|dξ|

π
.

Hence

fj(λ1) + · · · + fj(λn) = 0.

In other words, for j = 1, 2, . . . , n,

aj1(E1(λ1) + E1(λ2) + · · · + E1(λn)) + · · · + ajn(En(λ1) + En(λ2) + · · · + En(λn)) = 0.

By (4), for l = 1, 2, . . . , n,

El(λ1) + El(λ2) + · · · + El(λn) = 0,

i.e.,

〈El, Kλ1
+ Kλ2

+ · · · + Kλn
〉 = 0.

Since Kλ1
, Kλ2

, . . . , Kλn
∈ D ⊖ φD, we have

Kλ1
+ Kλ2

+ · · · + Kλn
= γ

for some constant γ. Obviously γ = n. Then for any integer m ≥ 1,

〈zm, Kλ1
+ Kλ2

+ · · · + Kλn
〉 = λm

1 + λm
2 + · · · + λm

n = 0.

So λ1 = λ2 = · · · = λn = 0, and thus φ(z) = c zn+1 for some constant c. The proof is

completed. 2
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