Hilbert Coefficients of Filtrations with Almost Maximal Depth

ZHU Guang Jun, GU Yan, TANG Zhong Ming
(Department of Mathematics, Soochow University, Jiangsu 215006, China)
(E-mail: zhuguangjun@suda.edu.cn)

Abstract

Let \mathcal{F} be a Hilbert filtration with respect to a Cohen-Macaulay R-module M. When $G(\mathcal{F}, M)$ and $F_{K}(\mathcal{F}, M)$ have almost maximal depths, we show that the length $\lambda\left(K I_{n} M / K J I_{n-1} M\right)$ and the reduction number $r_{J}^{K}(\mathcal{F}, M)$ are independent of J. Lower bounds for the first and second Hilbert coefficients are obtained.

Keywords Hilbert coefficients; fiber cones; depth.
Document code A
MR(2000) Subject Classification 13D40; 13H15; 13C14
Chinese Library Classification O153.3

1. Introduction

Let (R, \mathfrak{m}) be a Noetherian local ring with infinite residue field. We say that $\mathcal{F}=\left\{I_{n}\right\}_{n \geq 0}$ is a filtration if $I_{0}=R \supseteq I_{1} \supseteq I_{2} \supseteq \cdots$ is a chain of ideals of R such that $I_{1} \neq R$ and $I_{m} I_{n} \subseteq I_{m+n}$ for all m, n. For any filtration $\mathcal{F}=\left\{I_{n}\right\}_{n \geq 0}$, let $R(\mathcal{F})=\bigoplus_{n \geq 0} I_{n}$ and $G(\mathcal{F})=\bigoplus_{n \geq 0} I_{n} / I_{n+1}$ be the Rees ring and associated graded ring of \mathcal{F}. If \mathcal{F} is an I_{1}-adic filtration, we write $R\left(I_{1}\right)$ and $G\left(I_{1}\right)$ for $R(\mathcal{F})$ and $G(\mathcal{F})$, respectively. Further, let M be a finitely generated R-module. We say that \mathcal{F} is a Hilbert filtration with respect to M if $\lambda\left(M / I_{1} M\right)<\infty$ and $I_{1} I_{n} M=I_{n+1} M$ for large n. Hilbert \mathcal{F}-filtration with respect to M satisfies $\bigcap_{n \geq 0} I_{n} M=0$.

Throughout the paper, let (R, \mathfrak{m}) be a commutative Noetherian local ring with infinite residue field, M a finitely generated Cohen-Macaulay R-module of dimension $d>0$ and \mathcal{F} a Hilbert filtration with respect to M. Let K be an \mathfrak{m}-primary ideal of R such that $I_{n+1} \subseteq K I_{n}$ for all $n \geq 0$.

Let $F_{K}(\mathcal{F})=\bigoplus_{n \geq 0} I_{n} / K I_{n}$ be the fiber cone of \mathcal{F} with respect to K, and $G(\mathcal{F}, M)=$ $\bigoplus_{n \geq 0} I_{n} M / I_{n+1} M, F_{K}(\mathcal{F}, M)=\bigoplus_{n \geq 0} I_{n} M / K I_{n} M$. Then $G(\mathcal{F}, M)$ is a finitely generated $G(\mathcal{F})$-module and $F_{K}(\mathcal{F}, M)$ is a finitely generated $F_{K}(\mathcal{F})$-module.

Let $H_{K}(\mathcal{F}, M, n)=\lambda\left(M / K I_{n} M\right)$ be the Hilbert-Samuel function of \mathcal{F} with respect to M and K, and $P_{K}(\mathcal{F}, M, n)$ the corresponding polynomial. Then

$$
P_{K}(\mathcal{F}, M, n)=g_{0}(\mathcal{F}, M)\binom{n+d-1}{d}-g_{1}(\mathcal{F}, M)\binom{n+d-2}{d-1}+\cdots+(-1)^{d} g_{d}(\mathcal{F}, M)
$$

Received date: 2006-10-10; Accepted date: 2007-05-24
Foundation item: the National Natural Science Foundation of China (No. 10771152).

In this paper, we will discuss the properties of Hilbert coefficients $g_{i}(\mathcal{F}, M)$ and related problems under the assumption that $G(\mathcal{F}, M)$ and $F_{K}(\mathcal{F}, M)$ have almost maximal depths, i.e., $\operatorname{depth} G(\mathcal{F}, M) \geq d-1$ and depth $F_{K}(\mathcal{F}, M) \geq d-1$.

When (R, \mathfrak{m}) is Cohen-Macaulay of dimension $d>0, I$ is an \mathfrak{m}-primary ideal such that depth $G(I) \geq d-1$ and J is any minimal reduction of I, Corso, Polini and Pinto ${ }^{[2]}$ ([5, Corollary 2.6]) showed that $\lambda\left(I^{n} / J I^{n-1}\right)$ is independent of J for all $n \geq 1$. To generalize this result, we suppose that depth $G(\mathcal{F}, M) \geq d-1$ and depth $F_{K}(\mathcal{F}, M) \geq d-1$. Let J be a minimal reduction of \mathcal{F} with respect to M. We will show that $\lambda\left(K I_{n} M / K J I_{n-1} M\right)$ does not depend on J for all $n \geq 1$.

Under the above assumptions on R and depth of $G(I)$, reduction numbers have also nice properties. It is proved in [5] that $r_{J}(I)$ is independent of J. Furthermore, Marley ${ }^{[10]}$ showed that $r(I)=n(I)+d$, where $n(I)$ is the postulation number of I. We can also generalize these results to the filtration case. Assume that depth $G(\mathcal{F}, M) \geq d-1$ and $\operatorname{depth} F_{K}(\mathcal{F}, M) \geq d-1$, and let J be a minimal reduction of \mathcal{F} with respect to M. We will show that the K-reduction number $r_{J}^{K}(\mathcal{F}, M)$ is independent of J and $r^{K}(\mathcal{F}, M)=n^{K}(\mathcal{F}, M)+d$.

In Section 5 , we will give lower bounds for $g_{1}(\mathcal{F}, M)$ and $g_{2}(\mathcal{F}, M)$. Our results are the following

$$
\begin{aligned}
& g_{1}(\mathcal{F}, M) \geq \sum_{n \geq 1} \lambda\left(K I_{n} M+J M / J M\right)-\lambda(M / K M) \\
& g_{2}(\mathcal{F}, M) \geq \sum_{n \geq 1} n \lambda\left(K I_{n+1} M+J M / J M\right)+\lambda\left(M / \bigcup_{k \geq 1}\left(K I_{k} M+J_{d-2} M\right): I_{1}^{k}\right)
\end{aligned}
$$

The above formula for the lower bound of $g_{1}(\mathcal{F}, M)$ generalize the formula for $g_{1}(\mathcal{F}, R)$ obtained by Jayanthan and Verma ${ }^{[7]}$. One simply puts $M=R$, then

$$
g_{1}(\mathcal{F}, R) \geq \sum_{n \geq 1} \lambda\left(K I_{n}+J / J\right)-\lambda(R / K)
$$

2. Preliminaries

Let $H(\mathcal{F}, M, n)=\lambda\left(M / I_{n} M\right)$ be the Hilbert-Samuel function of \mathcal{F} with respect to M and $P(\mathcal{F}, M, n)$ the corresponding polynomial. We have that

$$
P(\mathcal{F}, M, n)=e_{0}(\mathcal{F}, M)\binom{n+d-1}{d}-e_{1}(\mathcal{F}, M)\binom{n+d-2}{d-1}+\cdots+(-1)^{d} e_{d}(\mathcal{F}, M)
$$

Then $g_{0}(\mathcal{F}, M)=e_{0}(\mathcal{F}, M)$.
An ideal $J \subseteq I_{1}$ is said to be a reduction of \mathcal{F} with respect to M if there exists an integer $r>0$ such that $I_{n+1} M=J I_{n} M$ for all $n \geq r$. By [9, Lemma 1], there exist $x_{1}, \ldots, x_{d} \in I_{1}$ such that $\left(x_{1}, \ldots, x_{d}\right)$ is a minimal reduction of \mathcal{F} with respect to M. Then, since M is Cohen-Macaulay, we have that $e_{0}(\mathcal{F}, M)=\lambda\left(M /\left(x_{1}, \ldots, x_{d}\right) M\right)$.

Let J be a minimal reduction of \mathcal{F} with respect to M. The K-reduction number $r_{J}^{K}(\mathcal{F}, M)$ of \mathcal{F} with respect to M and J is defined by

$$
r_{J}^{K}(\mathcal{F}, M)=\min \left\{n \mid K I_{m+1} M=K J I_{m} M \text { for all } m \geq n\right\}
$$

and the K-reduction number $r^{K}(\mathcal{F}, M)$ of \mathcal{F} with respect to M is defined as

$$
r^{K}(\mathcal{F}, M)=\min \left\{r_{J}^{K}(\mathcal{F}, M) \mid J \text { is a minimal reduction of } \mathcal{F} \text { with respect to } M\right\} .
$$

Set $n^{K}(\mathcal{F}, M)=\min \left\{n \mid P_{K}(\mathcal{F}, M, k)=H_{K}(\mathcal{F}, M, k)\right.$ for all $\left.k>n\right\}$, which we call as the K-postulation number of \mathcal{F} with respect to M. Note that, as $P_{K}(\mathcal{F}, M, n)$ is a polynomial of degree $d, n^{K}(\mathcal{F}, M) \geq-d$.

Let $x \in I_{1} \backslash I_{2}$ and x^{*} the initial form of x in $G(\mathcal{F}) . x^{*}$ is said to be superficial for $G(\mathcal{F}, M)$ if there exists an integer $c>0$ such that $\left(I_{n+1} M: x\right) \cap I_{c} M=I_{n} M$ for all $n>c$. Similarly, for any $x \in I_{1} \backslash K I_{1}$, let x^{0} be the initial form of x in $F_{K}(\mathcal{F}), x^{0}$ is said to be superficial for $F_{K}(\mathcal{F}, M)$ if there exists an integer $c>0$ such that $\left(K I_{n+1} M: x\right) \cap I_{c} M=K I_{n} M$ for all $n>c$. Superficial sequences are defined inductively.

Suppose that x^{0} is superficial for $F_{K}(\mathcal{F}, M)$. Let " - " denote images modulo (x). Thus, $\overline{\mathcal{F}}=\mathcal{F} /(x)=\left\{I_{n}+(x) /(x)\right\}_{n \geq 0}, \bar{J}=J /(x), \bar{K}=K /(x), \bar{M}=M / x M$. Since

$$
H_{\bar{K}}(\overline{\mathcal{F}}, \bar{M}, n+1)=H_{K}(\mathcal{F}, M, n+1)-H_{K}(\mathcal{F}, M, n)+\lambda\left(\left(K I_{n+1} M: x\right) / K I_{n} M\right),
$$

it follows that

$$
g_{i}(\overline{\mathcal{F}}, \bar{M})=g_{i}(\mathcal{F}, M), i=0,1, \ldots, d-1
$$

The following lemma can be shown by similar arguments in [7] (cf. [3]).
Lemma 2.1 Let J be a minimal reduction of \mathcal{F} with respect to M. Then there exist $x_{1}, \ldots, x_{d} \in$ $I_{1} \backslash K I_{1}$ such that $J=\left(x_{1}, \ldots, x_{d}\right), x_{1}^{*}, \ldots, x_{d}^{*}$ is a superficial sequence for $G(\mathcal{F}, M)$ and $x_{1}^{0}, \ldots, x_{d}^{0}$ is a superficial sequence for $F_{K}(\mathcal{F}, M)$.

Furthermore, if depth $G(\mathcal{F}, M) \geq k$ and depth $F_{K}(\mathcal{F}, M) \geq k$ for an integer $k>0$, then one may choose the above x_{1}, \ldots, x_{d} such that $x_{1}^{*}, \ldots, x_{k}^{*}$ is a regular $G(\mathcal{F}, M)$-sequence and $x_{1}^{0}, \ldots, x_{k}^{0}$ is a regular $F_{K}(\mathcal{F}, M)$-sequence. In this case, for all $n \geq 0$,

$$
\left(K I_{n+1} M+\left(x_{1}, \ldots, x_{i-1}\right) M\right): x_{i}=K I_{n} M+\left(x_{1}, \ldots, x_{i-1}\right) M, i=1,2, \ldots, k
$$

The same arguments as in [8, Lemma 3.8] and [10, Lemma 1] can be applied to get the following

Proposition 2.2 Let $J=\left(x_{1}, \ldots, x_{d}\right)$ be a minimal reduction of \mathcal{F} with respect to M with generators chosen as in Lemma 2.1. Suppose that x_{1}^{*} is $G(\mathcal{F}, M)$-regular and x_{1}^{0} is $F_{K}(\mathcal{F}, M)$ regular. Let " - " denote images modulo $\left(x_{1}\right)$. Then $r_{\bar{J}}^{\bar{K}}(\overline{\mathcal{F}}, \bar{M})=r_{J}^{K}(\mathcal{F}, M)$ and $n^{\bar{K}}(\overline{\mathcal{F}}, \bar{M})=$ $n^{K}(\mathcal{F}, M)+1$.

The Hilbert coefficients $g_{i}(\mathcal{F}, M)$ can be calculated by Hilbert series. Write

$$
P_{K}(\mathcal{F}, M, n)=g_{0}^{\prime}(\mathcal{F}, M)\binom{n+d}{d}-g_{1}^{\prime}(\mathcal{F}, M)\binom{n+d-1}{d-1}+\cdots+(-1)^{d} g_{d}^{\prime}(\mathcal{F}, M)
$$

Then $g_{0}^{\prime}(\mathcal{F}, M)=g_{0}(\mathcal{F}, M)$ and $g_{i}^{\prime}(\mathcal{F}, M)=g_{i}(\mathcal{F}, M)+g_{i-1}(\mathcal{F}, M), i=1, \ldots, d$. Let $H_{\mathcal{F}}(M, t)=$ $\sum_{n \geq 0} H_{K}(\mathcal{F}, M, n) t^{n}$ be the Hilbert series of \mathcal{F} with respect to M and K. Then there exists a unique polynomial $f(t) \in \mathbb{Z}[t]$ such that $H_{\mathcal{F}}(M, t)=\frac{f(t)}{(1-t)^{d+1}}$. Then $g_{i}^{\prime}(\mathcal{F}, M)=\frac{f^{(i)}(1)}{i!}$, $i=0,1, \ldots, d,[1$, Chapt. 4].

Using the same arguments as in [4, Proposition 1.5], we have
Proposition 2.3 Let $J=\left(x_{1}, \ldots, x_{d}\right)$ be a minimal reduction of \mathcal{F} with respect to M with x_{1}^{*} being superficial for $G(\mathcal{F}, M)$ and x_{1}^{0} being superficial for $F_{K}(\mathcal{F}, M)$. Let " - " denote images modulo (x_{1}). Then

$$
g_{d}(\mathcal{F}, M)=g_{d}(\overline{\mathcal{F}}, \bar{M})-\sum_{n \geq 0}(-1)^{d} \lambda\left(\left(K I_{n+1} M: x_{1}\right) / K I_{n} M\right)
$$

Furthermore, if x_{1}^{*} is $G(\mathcal{F}, M)$-regular and x_{1}^{0} is $F_{K}(\mathcal{F}, M)$-regular, then

$$
\sum_{n \geq 0} H_{\bar{K}}(\overline{\mathcal{F}}, \bar{M}, n) t^{n}=(1-t) \sum_{n \geq 0} H_{K}(\mathcal{F}, M, n) t^{n}
$$

3. Independence of lengths

In this section, we prove the independence of the length $\lambda\left(K I_{n} M / K J I_{n-1} M\right)$ on J. We need a lemma.

Lemma 3.1 Suppose that depth $G(\mathcal{F}, M) \geq d-1$ and depth $F_{K}(\mathcal{F}, M) \geq d-1$. Let J be a minimal reduction of \mathcal{F} with respect to M and $r=r_{J}^{K}(\mathcal{F}, M)$. Then

$$
\sum_{n \geq 0} H_{K}(\mathcal{F}, M, n) t^{n}=\frac{\lambda\left(\frac{M}{K M}\right)+\left[\lambda\left(\frac{K M}{J M}\right)-\lambda\left(\frac{K I_{1} M}{K J M}\right)\right] t+\sum_{n=2}^{r+1}\left[\lambda\left(\frac{K I_{n-1} M}{K J I_{n-2} M}\right)-\lambda\left(\frac{K I_{n} M}{K J I_{n-1} M}\right)\right] t^{n}}{(1-t)^{d+1}}
$$

Proof Choose generators x_{1}, \ldots, x_{d} for J as in Lemma 2.1. Let " - " denote images modulo $\left(x_{1}, \ldots, x_{d-1}\right)$. Then from Proposition 2.3, we have

$$
\sum_{n \geq 0} H_{K}(\mathcal{F}, M, n) t^{n}=\frac{\sum_{n \geq 0} H_{\bar{K}}(\overline{\mathcal{F}}, \bar{M}, n) t^{n}}{(1-t)^{d-1}}
$$

It is clear that $\lambda(M / K M)=\lambda(\bar{M} / \overline{K M}), \lambda(K M / J M)=\lambda(\overline{K M} / \overline{J M})$. For all $n \geq 0$, by Lemma 2.1,

$$
\left(K I_{n+1} M+\left(x_{1}, \ldots, x_{i-1}\right) M\right): x_{i}=K I_{n} M+\left(x_{1}, \ldots, x_{i-1}\right) M, i=1,2, \ldots, d-1
$$

it follows that

$$
K I_{n+1} M \cap\left(x_{1}, \ldots, x_{i}\right) M \subseteq K J I_{n} M, i=1,2, \ldots, d-1
$$

Hence

$$
\lambda\left(K I_{n} M / K J I_{n-1} M\right)=\lambda\left(\overline{K I}_{n} \bar{M} / \overline{K J I}_{n-1} \bar{M}\right), n=1,2, \ldots
$$

Thus, we may assume that $d=1$ and it is enough to show that

$$
\sum_{n \geq 0} H_{K}(\mathcal{F}, M, n) t^{n}=\frac{\lambda\left(\frac{M}{K M}\right)+\left[\lambda\left(\frac{K M}{x_{1} M}\right)-\lambda\left(\frac{K I_{1} M}{x_{1} K M}\right)\right] t+\sum_{n=2}^{r+1}\left[\lambda\left(\frac{K I_{n-1} M}{x_{1} K I_{n-2} M}\right)-\lambda\left(\frac{K I_{n} M}{x_{1} K I_{n-1} M}\right)\right] t^{n}}{(1-t)^{2}}
$$

Set

$$
\sum_{n \geq 0} H_{K}(\mathcal{F}, M, n) t^{n}=\frac{\sum_{n \geq 0} a_{n} t^{n}}{(1-t)^{2}} .
$$

Then, we get that

$$
\begin{aligned}
a_{0} & =\lambda(M / K M) \\
a_{1} & =\lambda\left(M / K I_{1} M\right)-2 \lambda(M / K M) \\
a_{n} & =\lambda\left(M / K I_{n} M\right)-2 \lambda\left(M / K I_{n-1} M\right)+\lambda\left(M / K I_{n-2} M\right), \quad n=2,3, \ldots,
\end{aligned}
$$

and, $a_{n}=0$ for $n \gg 0$. Let $n \geq 2$. Note that

$$
\lambda\left(M / K I_{n} M\right)-2 \lambda\left(M / K I_{n-1} M\right)+\lambda\left(M / K I_{n-2} M\right)=\lambda\left(\frac{K I_{n-1} M}{K I_{n} M}\right)-\lambda\left(\frac{K I_{n-2} M}{K I_{n-1} M}\right)
$$

Thus

$$
a_{n}=\lambda\left(K I_{n-1} M / K I_{n} M\right)-\lambda\left(K I_{n-2} M / K I_{n-1} M\right), n=2,3, \ldots
$$

Since x_{1} is M-regular and

$$
\lambda\left(K M / K I_{1} M\right)+\lambda\left(K I_{1} M / x_{1} K M\right)=\lambda\left(K M / x_{1} M\right)+\lambda\left(x_{1} M / x_{1} K M\right),
$$

we have that

$$
\begin{aligned}
a_{1} & =\lambda\left(K M / K I_{1} M\right)-\lambda(M / K M) \\
& =\lambda\left(K M / K I_{1} M\right)-\lambda\left(x_{1} M / x_{1} K M\right) \\
& =\lambda\left(K M / x_{1} M\right)-\lambda\left(K I_{1} M / x_{1} K M\right) .
\end{aligned}
$$

Similarly, for $n \geq 2$, since

$$
\begin{aligned}
& \lambda\left(K I_{n-1} M / K I_{n} M\right)+\lambda\left(K I_{n} M / x_{1} K I_{n-1} M\right) \\
& \quad=\lambda\left(K I_{n-1} M / x_{1} K I_{n-2} M\right)+\lambda\left(x_{1} K I_{n-2} M / x_{1} K I_{n-1} M\right),
\end{aligned}
$$

it follows that

$$
\begin{aligned}
a_{n} & =\lambda\left(K I_{n-1} M / K I_{n} M\right)-\lambda\left(x_{1} K I_{n-2} M / x_{1} K I_{n-1} M\right) \\
& =\lambda\left(K I_{n-1} M / x_{1} K I_{n-2} M\right)-\lambda\left(K I_{n} M / x_{1} K I_{n-1} M\right) .
\end{aligned}
$$

As $K I_{n} M=x_{1} K I_{n-1} M$ for all $n \geq r+1$, we see that $a_{n}=0$ for all $n>r+1$. The result follows.

Theorem 3.2 Suppose that depth $G(\mathcal{F}, M) \geq d-1$ and depth $F_{K}(\mathcal{F}, M) \geq d-1$. Let J be a minimal reduction of \mathcal{F} with respect to M. Then $\lambda\left(K I_{n} M / K J I_{n-1} M\right)$ does not depend on J for all $n \geq 0$.

Proof Let $r=r_{J}^{K}(\mathcal{F}, M)$. Then, from Lemma 3.1, we have

$$
\sum_{n \geq 0} H_{K}(\mathcal{F}, M, n) t^{n}=\frac{\lambda\left(\frac{M}{K M}\right)+\left[\lambda\left(\frac{K M}{J M}\right)-\lambda\left(\frac{K I_{1} M}{K J M}\right)\right] t+\sum_{n=2}^{r+1}\left[\lambda\left(\frac{K I_{n-1} M}{K J I_{n-2} M}\right)-\lambda\left(\frac{K I_{n} M}{K J I_{n-1} M}\right)\right] t^{n}}{(1-t)^{d+1}} .
$$

Denote the right side as $\frac{\sum_{n=0}^{r+1} a_{n} t^{n}}{(1-t)^{d+1}}$. Since $\sum_{n \geq 0} H_{K}(\mathcal{F}, M, n) t^{n}=\sum_{n \geq 0} \lambda\left(M / K I_{n} M\right) t^{n}$ is a series with coefficients independent of J, we see that a_{n} is independent of J.

Note that $\lambda(M / J M)=e_{0}(\mathcal{F}, M)$ is independent of J. Then $\lambda(K M / J M)=\lambda(M / J M)-$ $\lambda(M / K M)$ is also independent of J. It follows that $\lambda\left(K I_{1} M / K J M\right)=\lambda(K M / J M)-a_{1}$ and $\lambda(K M / K J M)=\lambda\left(M / K I_{1} M\right)-e(\mathcal{F}, M)-a_{1}$ are independent of J. Inductively, suppose that $\lambda\left(K I_{n} M / K J I_{n-1} M\right)$ does not depend on J. Then

$$
\lambda\left(K I_{n+1} M / K J I_{n} M\right)=\lambda\left(K I_{n} M / K J I_{n-1} M\right)-a_{n+1}
$$

is also independent of J. The proof is completed.

4. Independence of reduction numbers

We first show that $r_{J}^{K}(\mathcal{F}, M)$ is independent of J.
Theorem 4.1 Assume that depth $G(\mathcal{F}, M) \geq d-1$ and depth $F_{K}(\mathcal{F}, M) \geq d-1$. Let J be a minimal reduction of \mathcal{F} with respect to M. Then $r_{J}^{K}(\mathcal{F}, M)$ is independent of J.

Proof If $d>1$, then, by Lemma 2.1, we may choose x_{1}, \ldots, x_{d} such that $J=\left(x_{1}, \ldots, x_{d}\right)$, $x_{1}^{*}, \ldots, x_{d-1}^{*}$ is $G(\mathcal{F}, M)$-regular and $x_{1}^{0}, \ldots, x_{d-1}^{0}$ is $F_{K}(\mathcal{F}, M)$-regular. Then $r_{J}^{K}(\mathcal{F}, M)=$ $r_{\bar{J}}^{\bar{K}}(\overline{\mathcal{F}}, \overline{\mathcal{M}})$ by Proposition 2.2 , where " - " denote images modulo (x_{1}, \ldots, x_{d-1}). Hence we may assume that $d=1$.

Suppose that $d=1$. Let $J_{1}=(x)$ and $J_{2}=(y)$ be two minimal reductions of \mathcal{F} with respect to M. Set $r_{1}=r_{J_{1}}^{K}(\mathcal{F}, M)$ and $r_{2}=r_{J_{2}}^{K}(\mathcal{F}, M)$. If $r_{1} \neq r_{2}$, say $r_{1}>r_{2}$, then

$$
y K I_{r_{1}} M=K I_{r_{1}+1} M=x K I_{r_{1}} M=x y K I_{r_{1}-1} M
$$

It follows that $K I_{r_{1}} M=x K I_{r_{1}-1} M$, which contradicts the minimality of r_{1}. Hence $r_{1}=r_{2}$.
Further, we calculate the reduction number.
Theorem 4.2 Assume that depth $G(\mathcal{F}, M) \geq d-1$ and depth $F_{K}(\mathcal{F}, M) \geq d-1$. Then $r^{K}(\mathcal{F}, M)=n^{K}(\mathcal{F}, M)+d$.

Proof Let J be a minimal reduction of \mathcal{F} with respect to M. We want to show that $r_{J}^{K}(\mathcal{F}, M)=$ $n^{K}(\mathcal{F}, M)+d$.

If $d>1$, then, by Lemma 2.1, we may choose x_{1}, \ldots, x_{d} such that $J=\left(x_{1}, \ldots, x_{d}\right)$, $x_{1}^{*}, \ldots, x_{d-1}^{*}$ is $G(\mathcal{F}, M)$-regular and $x_{1}^{0}, \ldots, x_{d-1}^{0}$ is $F_{K}(\mathcal{F}, M)$-regular. Then $r_{J}^{K}(\mathcal{F}, M)=$ $r \overline{\bar{K}}(\overline{\mathcal{F}}, \overline{\mathcal{M}})$ and $n^{K}(\mathcal{F}, M)=n^{\bar{K}}(\overline{\mathcal{F}}, \overline{\mathcal{M}})+d-1$ by Proposition 2.2 , where " - " denote images modulo $\left(x_{1}, \ldots, x_{d-1}\right)$. Hence we may assume that $d=1$. Let $r=r^{K}(\mathcal{F}, M)$.

If $n^{K}(\mathcal{F}, M)=-1$, then $P_{K}(\mathcal{F}, M, 0)=H_{K}(\mathcal{F}, M, 0)$. But $P_{K}(\mathcal{F}, M, 0)=-g_{1}(\mathcal{F}, M)$ and $H_{K}(\mathcal{F}, M, 0)=\lambda(M / K M)$. Note that

$$
g_{1}(\mathcal{F}, M)=\sum_{n=1}^{r} \lambda\left(K I_{n} M / x K I_{n-1} M\right)-\lambda(M / K M)
$$

It follows that

$$
\sum_{n=1}^{r} \lambda\left(K I_{n} M / x K I_{n-1} M\right)=0
$$

hence, $K I_{n} M=x K I_{n-1} M$ holds for all $n \geq 1$. $\operatorname{Thus} r_{J}^{K}(\mathcal{F}, M)=0$.
Now assume $n^{K}(\mathcal{F}, M) \geq 0$. Since $K I_{n+1} M=x K I_{n} M$ for all $n \geq r$, we have that $K I_{n} M=$ $x^{n-r} K I_{r} M$ for all $n \geq r$. Thus

$$
\begin{aligned}
H_{K}(\mathcal{F}, M, n) & =\lambda\left(M / K I_{n} M\right)=\lambda\left(M / x^{n-r} M\right)+\lambda\left(x^{n-r} M / x^{n-r} K I_{r} M\right) \\
& =(n-r) \lambda(M / x M)+\lambda\left(M / K I_{r} M\right), \text { for all } n \geq r
\end{aligned}
$$

On the other hand, since

$$
\begin{aligned}
g_{1}(\mathcal{F}, M)= & \sum_{n=1}^{r} \lambda\left(K I_{n} M / x K I_{n-1} M\right)-\lambda(M / K M) \\
= & \lambda\left(K I_{r} M / x K I_{r-1} M\right)+\lambda\left(x K I_{r-1} M / x^{2} K I_{r-2} M\right)+ \\
& \cdots+\lambda\left(x^{r-1} K I_{1} M / x^{r} K M\right)-\lambda(M / K M) \\
= & \lambda\left(K I_{r} M / x^{r} K M\right)-\lambda(M / K M)
\end{aligned}
$$

we get that, for all $n \geq r$,

$$
\begin{aligned}
& P_{K}(\mathcal{F}, M, n)=n g_{0}(\mathcal{F}, M)-g_{1}(\mathcal{F}, M) \\
& \quad=n \lambda(M / x M)-\lambda\left(K I_{r} M / x^{r} K M\right)+\lambda(M / K M) \\
& \quad=(n-r) \lambda(M / x M)+r \lambda(M / x M)-\lambda\left(K I_{r} M / x^{r} K M\right)+\lambda(M / K M) \\
& \quad=(n-r) \lambda(M / x M)+\lambda\left(M / x^{r} M\right)-\lambda\left(K I_{r} M / x^{r} K M\right)+\lambda\left(x^{r} M / x^{r} K M\right) \\
& \quad=(n-r) \lambda(M / x M)+\lambda\left(M / K I_{r} M\right) \\
& \quad=H_{K}(\mathcal{F}, M, n) .
\end{aligned}
$$

Therefore $n^{K}(\mathcal{F}, M) \leq r-1$.
It remains to show that $r \leq n^{K}(\mathcal{F}, M)+1$. For all $n \geq n^{K}(\mathcal{F}, M)+1$, from $P_{K}(\mathcal{F}, M, n)=$ $H_{K}(\mathcal{F}, M, n)$, i.e., $\lambda\left(M / K I_{n} M\right)=n \lambda(M / x M)-g_{1}(\mathcal{F}, M)$, we obtain $g_{1}(\mathcal{F}, M)=-\lambda\left(M / K I_{n} M\right)+$ $\lambda\left(M / x^{n} M\right)$. It follows that, for all $n \geq n^{K}(\mathcal{F}, M)+1$,

$$
\begin{aligned}
\lambda\left(M / K I_{n+1} M\right) & =(n+1) \lambda(M / x M)-g_{1}(\mathcal{F}, M) \\
& =\lambda\left(M / x^{n+1} M\right)+\lambda\left(M / K I_{n} M\right)-\lambda\left(M / x^{n} M\right) \\
& =\lambda\left(x^{n} M / x^{n+1} M\right)+\lambda\left(M / K I_{n} M\right) \\
& =\lambda(M / x M)+\lambda\left(x M / x K I_{n} M\right) \\
& =\lambda\left(M / x K I_{n} M\right)
\end{aligned}
$$

Thus $K I_{n+1} M=x K I_{n} M$ for all $n \geq n^{K}(\mathcal{F}, M)+1$. Hence $r \leq n^{K}(\mathcal{F}, M)+1$ as required.
5. Lower bounds for $g_{1}(\mathcal{F}, M)$ and $g_{2}(\mathcal{F}, M)$

In this section, we will give lower bounds of the Hilbert coefficients $g_{1}(\mathcal{F}, M)$ and $g_{2}(\mathcal{F}, M)$.

Let us first give a lower bound for $g_{1}(\mathcal{F}, M)$.
Proposition 5.1 Let J be a minimal reduction of \mathcal{F} with respect to M. Then

$$
g_{1}(\mathcal{F}, M) \geq \sum_{n \geq 1} \lambda\left(K I_{n} M+J M / J M\right)-\lambda(M / K M) .
$$

Proof Choose x_{1}, \ldots, x_{d} as in Lemma 2.1 such that $J=\left(x_{1}, \ldots, x_{d}\right)$. Let " -" denote images modulo $\left(x_{1}, \ldots, x_{d-1}\right)$. Then $\overline{K I}_{n+1} \bar{M}+\overline{J M} / \overline{J M} \cong K I_{n+1} M+J M / J M, M / K M \cong \bar{M} / \overline{K M}$ and $g_{1}(\mathcal{F}, M)=g_{1}(\overline{\mathcal{F}}, \overline{\mathcal{M}})$. Thus we may assume that $d=1$. In this case, we have

$$
g_{1}(\mathcal{F}, M)=\sum_{n \geq 1} \lambda\left(K I_{n} M / x_{1} K I_{n-1} M\right)-\lambda(M / K M) .
$$

But $K I_{n} M+x_{1} M / x_{1} M \cong K I_{n} M / K I_{n} M \cap x_{1} M$ is a factor module of $K I_{n} M / x_{1} K I_{n-1} M$, we get that $\lambda\left(K I_{n} M / x_{1} K I_{n-1} M\right) \geq \lambda\left(K I_{n} M+x_{1} M / x_{1} M\right)$. Hence

$$
g_{1}(\mathcal{F}, M) \geq \sum_{n \geq 1} \lambda\left(K I_{n} M+x_{1} M / x_{1} M\right)-\lambda(M / K M) .
$$

For the second Hilbert coefficient, we need to generalize the definition of the Ratliff-Rush closure of a filtration introduced in [8].

Definition 5.2 The Ratliff-Rush closure of \mathcal{F} with respect to M and K is defined as $r r_{K}(\mathcal{F}, M)=$ $\left\{r r_{K}\left(I_{n}, M\right)\right\}_{n \geq 0}$ with $r r_{K}\left(I_{n}, M\right)=\bigcup_{k \geq 1}\left(K I_{n+k} M: I_{1}^{k}\right)$.

We will need the following properties of Ratliff-Rush closure, whose proof is similar to that of [8, Proposition 2.3].

Lemma $5.3 \operatorname{rr}_{K}\left(I_{n}, M\right)=K I_{n} M$ for $n \gg 0$ and, if J is a minimal reduction of I_{1}, then, for all $n \geq 1$,

$$
r_{K}\left(I_{n}, M\right): J=r r_{K}\left(I_{n-1}, M\right) .
$$

Theorem 5.4 Suppose that $d \geq 2$. Let J be a minimal reduction of I_{1} and x_{1}, \ldots, x_{d} as in Lemma 2.1 such that $J=\left(x_{1}, \ldots, x_{d}\right)$. Set $J_{d-2}=\left(x_{1}, \ldots, x_{d-2}\right)$. Then

$$
g_{2}(\mathcal{F}, M) \geq \sum_{n \geq 1} n \lambda\left(\frac{K I_{n+1} M+J M}{J M}\right)+\lambda\left(\frac{M}{\bigcup_{k \geq 1}\left(K I_{k} M+J_{d-2} M\right): I_{1}^{k}}\right) .
$$

Proof Firstly, let us show that J is also a minimal reduction of \mathcal{F} with respect to M. Since \mathcal{F} is Hilbert, there exists some $s \geq 1$ such that $I_{1} I_{n} M=I_{n+1} M$ for all $n \geq s$. As J is a minimal reduction of I_{1}, we have some $r \geq 1$ such that $I_{1}^{r+1}=J I_{1}^{r}$. Then, for any $n \geq r+s$,

$$
I_{n+1} M=I_{1}^{r+1} I_{n-r} M=J I_{1}^{r} I_{n-r} M=J I_{n} M .
$$

Hence, J is a minimal reduction of \mathcal{F} with respect to M.
If $d>2$, let " - " denote images modulo J_{d-2}. Then $g_{2}(\mathcal{F}, M)=g_{2}(\overline{\mathcal{F}}, \bar{M}), \overline{K I}_{n+1} \bar{M}+$ $\overline{J M} / \overline{J M} \cong K I_{n+1} M+J M / J M$ and $\bar{M} / r r_{\bar{K}}\left(\bar{I}_{0}, \bar{M}\right) \cong M / \cup_{k \geq 1}\left(K I_{k} M+J_{d-2} M\right): I_{1}^{k}$. Thus we may assume that $d=2$ and it is enough to show that

$$
g_{2}(\mathcal{F}, M) \geq \sum_{n \geq 1} n \lambda\left(\frac{K I_{n+1} M+J M}{J M}\right)+\lambda\left(\frac{M}{r r_{K}\left(I_{0}, M\right)}\right) .
$$

Because that $\operatorname{rr}_{K}\left(I_{n}, M\right)=K I_{n} M$ holds for $n \gg 0$, we can use $\sum_{n \geq 0} \lambda\left(\frac{M}{r r_{K}\left(I_{n}, M\right)}\right) t^{n}$ to calculate $g_{1}^{\prime}(\mathcal{F}, M)$ and $g_{2}^{\prime}(\mathcal{F}, M)$.

Consider the exact sequence

$$
0 \rightarrow \frac{M}{r r_{K}\left(I_{n-1}, M\right): J} \stackrel{\beta}{\rightarrow}\left(\frac{M}{r r_{K}\left(I_{n-1}, M\right)}\right)^{2} \xrightarrow{\alpha} \frac{J M}{\operatorname{Jrr}_{K}\left(I_{n-1}, M\right)} \rightarrow 0
$$

where the map α and β are defined as, $\alpha(\bar{r}, \bar{s})=\overline{x_{1} r+x_{2} s}$ and $\beta(\bar{r})=\left(\overline{x_{2} r}, \overline{-x_{1} r}\right)$. It follows that for all $n \geq 2$,

$$
\begin{aligned}
2 \lambda\left(\frac{M}{r r_{K}\left(I_{n-1}, M\right)}\right) & =\lambda\left(\frac{M}{r r_{K}\left(I_{n-1}, M\right): J}\right)+\lambda\left(\frac{J M}{J r r_{K}\left(I_{n-1}, M\right)}\right) \\
& =\lambda\left(\frac{M}{r r_{K}\left(I_{n-1}, M\right): J}\right)+\lambda\left(\frac{M}{J r r_{K}\left(I_{n-1}, M\right)}\right)-\lambda\left(\frac{M}{J M}\right) \\
& =\lambda\left(\frac{M}{r r_{K}\left(I_{n-1}, M\right): J}\right)+\lambda\left(\frac{M}{J r r_{K}\left(I_{n-1}, M\right)}\right)-e_{0}(\mathcal{F}, M) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
e_{0} & (\mathcal{F}, M)+2 \lambda\left(\frac{M}{r r_{K}\left(I_{n-1}, M\right)}\right)-\lambda\left(\frac{M}{r r_{K}\left(I_{n}, M\right)}\right)-\lambda\left(\frac{M}{r r_{K}\left(I_{n-2}, M\right)}\right) \\
& =\lambda\left(\frac{M}{J r r_{K}\left(I_{n-1}, M\right)}\right)-\lambda\left(\frac{M}{r r_{K}\left(I_{n}, M\right)}\right)+\lambda\left(\frac{M}{r r_{K}\left(I_{n-1}, M\right): J}\right)-\lambda\left(\frac{M}{r r_{K}\left(I_{n-2}, M\right)}\right) \\
& =\lambda\left(\frac{r r_{K}\left(I_{n}, M\right)}{J r r_{K}\left(I_{n-1}, M\right)}\right)-\lambda\left(\frac{r r_{K}\left(I_{n-1}, M\right): J}{r r_{K}\left(I_{n-2}, M\right)}\right) \\
& =\lambda\left(\frac{r r_{K}\left(I_{n}, M\right)}{J r r_{K}\left(I_{n-1}, M\right)}\right)
\end{aligned}
$$

where the last equality holds because of $r r_{K}\left(I_{n}, M\right): J=r r_{K}\left(I_{n-1}, M\right)$ for all $n \geq 1$, by Lemma 5.3.

Let $\sum_{n \geq 0} \lambda\left(\frac{M}{r r_{K}\left(I_{n}, M\right)}\right) t^{n}=\frac{f(t)}{(1-t)^{3}}$. Since

$$
\begin{aligned}
& \frac{e_{0}(\mathcal{F}, M)-f(t)}{1-t}=\frac{e_{0}(\mathcal{F}, M)-(1-t)^{3} \sum_{n \geq 0} \lambda\left(\frac{M}{r r_{K}\left(I_{n}, M\right)}\right) t^{n}}{1-t} \\
& =\sum_{n \geq 2}\left[e_{0}(\mathcal{F}, M)+2 \lambda\left(\frac{M}{r r_{K}\left(I_{n-1}, M\right)}\right)-\lambda\left(\frac{M}{r r_{K}\left(I_{n}, M\right)}\right)-\lambda\left(\frac{M}{r r_{K}\left(I_{n-2}, M\right)}\right)\right] t^{n}+ \\
& \quad e_{0}(\mathcal{F}, M)(1+t)-\lambda\left(\frac{M}{r r_{K}\left(I_{0}, M\right)}\right)(1-2 t)-\lambda\left(\frac{M}{r r_{K}\left(I_{1}, M\right)}\right) t \\
& =\sum_{n \geq 2} \lambda\left(\frac{r r_{K}\left(I_{n}, M\right)}{J r r_{K}\left(I_{n-1}, M\right)}\right) t^{n}+e_{0}(\mathcal{F}, M)(1+t)-\lambda\left(\frac{M}{r r_{K}\left(I_{0}, M\right)}\right)(1-2 t)- \\
& \quad \lambda\left(\frac{M}{r r_{K}\left(I_{1}, M\right)}\right) t
\end{aligned}
$$

it follows that

$$
\begin{aligned}
f(t)= & e_{0}(\mathcal{F}, M)-(1-t)\left[\sum_{n \geq 2} \lambda\left(\frac{r r_{K}\left(I_{n}, M\right)}{J r r_{K}\left(I_{n-1}, M\right)}\right) t^{n}+e_{0}(\mathcal{F}, M)(1+t)-\right. \\
& \left.\lambda\left(\frac{M}{r r_{K}\left(I_{0}, M\right)}\right)(1-2 t)-\lambda\left(\frac{M}{r r_{K}\left(I_{1}, M\right)}\right) t\right]
\end{aligned}
$$

Then

$$
\begin{aligned}
f^{\prime}(t)= & \sum_{n \geq 2} \lambda\left(\frac{r r_{K}\left(I_{n}, M\right)}{J r r_{K}\left(I_{n-1}, M\right)}\right) t^{n}+e_{0}(\mathcal{F}, M)(1+t)-\lambda\left(\frac{M}{r r_{K}\left(I_{0}, M\right)}\right)(1-2 t)-\lambda\left(\frac{M}{r r_{K}\left(I_{1}, M\right)}\right) t- \\
& (1-t)\left[\sum_{n \geq 2} n \lambda\left(\frac{r r_{K}\left(I_{n}, M\right)}{J r r_{K}\left(I_{n-1}, M\right)}\right) t^{n-1}+e_{0}(\mathcal{F}, M)+2 \lambda\left(\frac{M}{r r_{K}\left(I_{0}, M\right)}\right)-\lambda\left(\frac{M}{r r_{K}\left(I_{1}, M\right)}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
f^{\prime \prime}(t)= & 2\left[\sum_{n \geq 2} n \lambda\left(\frac{r r_{K}\left(I_{n}, M\right)}{J r r_{K}\left(I_{n-1}, M\right)}\right) t^{n-1}+e_{0}(\mathcal{F}, M)+2 \lambda\left(\frac{M}{r r_{K}\left(I_{0}, M\right)}\right)-\lambda\left(\frac{M}{r r_{K}\left(I_{1}, M\right)}\right)\right]- \\
& (1-t) \sum_{n \geq 2} n(n-1) \lambda\left(\frac{r r_{K}\left(I_{n}, M\right)}{J r r_{K}\left(I_{n-1}, M\right)}\right) t^{n-2} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& g_{1}^{\prime}(\mathcal{F}, M)=f^{\prime}(1)=\sum_{n \geq 2} \lambda\left(\frac{r r_{K}\left(I_{n}, M\right)}{\operatorname{Jrr}_{K}\left(I_{n-1}, M\right)}\right)+2 e_{0}(\mathcal{F}, M)+\lambda\left(\frac{M}{r r_{K}\left(I_{0}, M\right)}\right)-\lambda\left(\frac{M}{r r_{K}\left(I_{1}, M\right)}\right) \\
& g_{2}^{\prime}(\mathcal{F}, M)=\frac{f^{\prime \prime}(1)}{2}=\sum_{n \geq 2} n \lambda\left(\frac{r r_{K}\left(I_{n}, M\right)}{J r r_{K}\left(I_{n-1}, M\right)}\right)+e_{0}(\mathcal{F}, M)+2 \lambda\left(\frac{M}{r r_{K}\left(I_{0}, M\right)}\right)-\lambda\left(\frac{M}{r r_{K}\left(I_{1}, M\right)}\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& g_{2}(\mathcal{F}, M)=g_{2}^{\prime}(\mathcal{F}, M)-g_{1}(\mathcal{F}, M)=g_{2}^{\prime}(\mathcal{F}, M)-g_{1}^{\prime}(\mathcal{F}, M)+e_{0}(\mathcal{F}, M) \\
&= \sum_{n \geq 1} n \lambda\left(\frac{r r_{K}\left(I_{n+1}, M\right)}{J r r_{K}\left(I_{n}, M\right)}\right)+\lambda\left(\frac{M}{r r_{K}\left(I_{0}, M\right)}\right) \\
&= \sum_{n \geq 1} n\left[\lambda\left(\frac{r r_{K}\left(I_{n+1}, M\right)}{K I_{n+1} M+J r r_{K}\left(I_{n}, M\right)}\right)+\lambda\left(\frac{K I_{n+1} M+J r r_{K}\left(I_{n}, M\right)}{J r r_{K}\left(I_{n}, M\right)}\right)\right]+\lambda\left(\frac{M}{r r_{K}\left(I_{0}, M\right)}\right) \\
&= \sum_{n \geq 1} n\left[\lambda\left(\frac{r r_{K}\left(I_{n+1}, M\right)}{K I_{n+1} M+J r r_{K}\left(I_{n}, M\right)}\right)+\lambda\left(\frac{K I_{n+1} M}{K I_{n+1} M \cap J r r_{K}\left(I_{n}, M\right)}\right)\right]+\lambda\left(\frac{M}{r r_{K}\left(I_{0}, M\right)}\right) \\
&= \sum_{n \geq 1} n\left[\lambda\left(\frac{r r_{K}\left(I_{n+1}, M\right)}{K I_{n+1} M+J r r_{K}\left(I_{n}, M\right)}\right)+\lambda\left(\frac{K I_{n+1} M}{J M \cap K I_{n+1} M}\right)+\right. \\
&\left.\lambda\left(\frac{J M \cap K I_{n+1} M}{K I_{n+1} M \cap J r r_{K}\left(I_{n}, M\right)}\right)\right]+\lambda\left(\frac{M}{r r_{K}\left(I_{0}, M\right)}\right) \\
&= \sum_{n \geq 1} n \lambda\left(\frac{K I_{n+1} M+J M}{J M}\right)+\lambda\left(\frac{M}{r r_{K}\left(I_{0}, M\right)}\right)+ \\
& \sum_{n \geq 1} n \lambda\left(\frac{r r_{K}\left(I_{n+1}, M\right)}{K I_{n+1} M+J r r_{K}\left(I_{n}, M\right)}\right)+\sum_{n \geq 1} n \lambda\left(\frac{J M \cap K I_{n+1} M}{K I_{n+1} M \cap J r r_{K}\left(I_{n}, M\right)}\right) \\
& \geq \sum_{n \geq 1} n \lambda\left(\frac{K I_{n+1} M+J M}{J M}\right)+\lambda\left(\frac{M}{r r_{K}\left(I_{0}, M\right)}\right) .
\end{aligned}
$$

The proof is completed.

References

[1] BRUNS W, HERZOG J. Cohen-Macaulay Rings [M]. Cambridge: Cambridge University Press, 1993.
[2] CORSO A, POLINI C, PINTO M V. Sally modules and associated graded rings [J]. Comm. Algebra, 1998, 26(8): 2689-2708.
[3] CORTADELLAS T. Fiber cones with almost maximal depth [J]. Comm. Algebra, 2005, 33(3): 953-963.
[4] GUERRIERI A, ROSSI M E. Hilbert coefficients of Hilbert filtrations [J]. J. Algebra, 1998, 199(1): 40-61.
[5] HUCKABA S. Reduction numbers for ideals of higher analytic spread [J]. Math. Proc. Cambridge Philos. Soc., 1987, 102(1): 49-57.
[6] HUCKABA S. A d-dimensional extension of a lemma of Huneke's and formulas for the Hilbert coefficients [J]. Proc. Amer. Math. Soc., 1996, 124(5): 1393-1401.
[7] JAYANTHAN A V, VERMA J K. Hilbert coefficients and depth of fiber cones [J]. J. Pure Appl. Algebra, 2005, 201(1-3): 97-115.
[8] JAYANTHAN A V, VERMA J K. Fiber cones of ideals with almost minimal multiplicity [J]. Nagoya Math. J., 2005, 177: 155-179.
[9] JAYANTHAN A V, SINGH B, VERMA J K. Hilbert coefficients and depths of form rings [J]. Comm. Algebra, 2004, 32(4): 1445-1452.
[10] MARLEY T. The coefficients of the Hilbert polynomial and the reduction number of an ideal [J]. J. London Math. Soc. (2), 1989, 40(1): 1-8.
[11] VALABREGA P, VALLA G. Form rings and regular sequences [J]. Nagoya Math. J., 1978, 72: 93-101.

