Global Attractor of a Spatially Discretized Reaction Diffusion System with Hamiltonian Structure *

HUANG Jian-hua¹, LU Gang²

(1. Dept of Math., National University of Defence Technology, Changsha 410079;

2. Dept. of Math., Central China Normal University, Wuhan 430070

Key words: invariant region; absorbingset global attractor.

Classification: AMS(1991) 34C23,35K57/CLC O175.2

Document code: A Article ID: 1000-341X(2000)02-0213-02

In recent years there has been a growing interest on discrete models, see e.g.[1].[2]. We consider a reaction diffusion equation which space-independent system is a Hamilton system with one degree of freedom:

$$\begin{cases} u_{t} = u_{xx} + v, & 0 < x < 1, t > 0, \\ v_{t} = v_{xx} - u + u^{2}, & 0 < x < 1, t > 0, \\ u(0, t) = u(1, t) = 0, v(0, t) = v(1, t) = 0, & t > 0, \\ u(0, x) = u_{0}, v(0, x) = v_{0}, & 0 < x < 1. \end{cases}$$

$$(1)$$

For Hamilton structured reaction diffusion systems, the local dynamics is structurally unstable while most conditions imposed on gradient-structured system are not gradient-structured equation: $u_t = \gamma \Delta u - f(u)$ with five restrictions on function ([1]), Huang and Lu studied the existence of global attractor of Henon-Heiles hamilton system,([2])but functions f(v) = v and $g(u) = -u + u^2$ in system (1) do not satisfy the five restrictions on the functions.

Let us discretize spatial variable of (1). The discretized negative Laplacian operator $-\Delta$ with Dirichlet boundary condition by using the finite difference is set to be A,

$$A = \begin{pmatrix} 2 & -1 & 0 & \cdots & \cdots & 0 \\ -1 & 2 & -1 & \cdots & \cdots & 0 \\ 0 & -1 & 2 & \ddots & & \vdots \\ \vdots & \vdots & & \ddots & \ddots & \vdots \\ & & & -1 & 2 & -1 \\ 0 & \cdots & \cdots & 0 & -1 & 2 \end{pmatrix}, \quad u(t) = (u_1, u_2, \cdots, u_{m-1})^{\mathrm{T}}, \\ u(t) = (v_1, v_2, \cdots, v_{m-1})^{\mathrm{T}}, \\ v(t) = (v_1, v_2, \cdots, v_{m-1})^{\mathrm{T}}, \\ u(t) = (v_1, v_2, \cdots, v_{m-1})^{\mathrm{T}}, \\ u(t) = (v_1, v_2, \cdots, v_{m-1})^{\mathrm{T}}, \\ v(t) = (v_1, v_2, \cdots, v_{m-1})^{\mathrm{T}}, \\ u(t) = (v_1, v_2, \cdots, v_{m-1})^{\mathrm{T}}, \\ v(t) = (v_1, v$$

Foundation item: Supported by National Nature Science Foundation Program (19971032)

Biography: HUANG Jian-hua (1968-), male, born in Hubei Province, currently a lecturer at National University of Defence Technology.

^{*}Received date: 1997-12-26

where $u_i(t) = u(\frac{i}{m}, t)$, $v_i(t) = v(\frac{i}{m}, t)$, $i = 1, 2, \dots, m-1$, and A is an $(m-1) \times (m-1)$ sysmetric and positive definite matrix. And its eigenvalues satisfying: $\frac{1}{c_p^2} \leq \lambda_i \leq$ $\frac{c_0}{h^2}$, (mh = 1)

With the above nations ,the spatially finite difference discretized version of (1) can be written by:

$$\begin{cases} u_t = -m^2 A u + v, \\ v_t = -m^2 A v - u + u^2, \\ u(0) = u_0, v(0) = v_0, \end{cases}$$
 (2)

and we further introduce $P(t) = (u, v)^T$, $P_i(t) = (u_i, v_i)^T$, $u_i, v_i \in \mathbb{R}^{m-1}$, $\operatorname{diag}(m^2A, m^2A)$. Then, the matrix B is positive define, and we define inner products and norms respectively:

Harms respectively:
$$(u,v) = u^T v$$
, $|u|^2 = (u,u)$; $(u,v)_A = u^T A v$, $||u||_A^2 = (u,u)_A$, $(P_1,P_2) = P_1^T P_2$, $|P|^2 = (P,P)$, $(P_1,P_2)_B = P_1^T B P_2$, $||P||_B^2 = (P,P)_B$. It is easy to obtain the following lemma:

Lemma 1) $|P|^2 = |u|^2 + |v|^2$; 2) $||P||_B^2 = m^2(||u||_A^2 + ||v||_A^2)$; 3) $|u| \le c_p ||u||_A$, $||u||_A^2 \le \frac{c_0}{h^2} |u|^2$; 4) $||u||_A \le c_p |Au|$, $|Au|^2 \le \frac{c_0}{h^2} ||u||_A^2$.

Theorem 1 $\Omega = \{(u,v)^T \in R^{2m-2}, |u|^2 + |v|^2 \le 2c, 0 < c < \frac{1}{2} \frac{m^4}{c_n^4} \}$ is an invariant region for (2).

We denote $E_0 = L^2(\Omega, |\cdot|)$, $E_1 = L^2(\Omega, |\cdot||_B)$. Similarly, we can obtain the theorems:

Theorem 2 For any $P_0 = (u_0, v_0)^T \in E_0$, there is a unique global solution P(t) = $(u,v)^T$ for (2), the semigroup $\{S(t)\}_{t\geq 0}$ defined by $S(t)P_0=P(t), (t\geq 0)$ is continuous in E_0 .

Theorem 3 There exist constants ρ_1 and ρ_2 such that $B_1 = \{P \in E_0, |P| \leq \rho_1\}$ and $B_2=\{P\in E_1,\|P\|_B\leq
ho_2\}$ are absorbing sets for the semigroup $\{S(t)\}_{t\geq 0}$ in E_0 and E_1 respectively.

Theorem 4 There exist maximal attractors G_0 and G_1 in E_0 and E_1 respectively, $G_0 =$ $\omega(B_0), G_1 = \omega(B_1)$ where B_0, B_1 are the bounded set in E_0 and E_1 respectively. G_0 and G_1 are connected.

References:

- ELLIOTT C M and STUART A M. The global dynamics of discrete semilinear parabolic equations [J]. SIAM. J. Number Anal., 1993, 30: 1622-1663.
- HUANG Jian-hua and LU Gang. Global attractor of discretized reaction diffusion equation with Hamiltonian structure [J]. Ann. Diff. Eqs., 1998, 2: 185–195.
- [3] ROGER T. Infinite-dimensional dynamical systems in Mechanics and physics [M]. Springer, New York, 1988.