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In recent years there has been a growing interest on discrete models, see e.g.[1].[2].

We consider a reaction diffusion equation which space-independent system is a Hamilton
system with one degree of freedom:

Ut = Uge + ¥, O<e<1,t>0,

Vg = Vg — u + u?, 0<z<1,t>0,: 1
u(0,t) = u(1,t) = 0,v(0,¢) = v(1,¢) =0, t >0, (1)
u(0,z) = uy,v(0,z) = vy, 0<z<1.

For Hamilton structured reaction diffusion systems, the local dynamics is structurally
unstable while most conditions imposed on gradient-structured system are not gradient-
structured equation: u; = yAu — f(u) with five restrictions on function ([1]), Huang
and Lu studied the existence of global attractor of Henon-Heiles hamilton system,([2])but
functions f(v) = v and g(u) = —u + u? in system (1) do not satisfy the five restrictions
on the functions.

Let us discretize spatial variable of (1). The discretized negative Laplacian operator
—A with Dirichlet boundary condition by using the finite difference is set to be A,
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where u;(t) = u(L,t), vi(t) = v(L,t),i = 1,2,---,m—1,and A is an (m — 1) x (m —
1) sysmetric and positive definite matrix. And its eigenvalues satisfying: 512— < XN <
%, (mh=1) ’
With the above nations ,the spatially finite difference discretized version of (1) can be
written by:
uy = —m?Au+ v,
vy = —m2Av — u+ u? (2)
( )—uo, ( )—‘Uo,

and we further introduce P(t) = (u,v)T, P(t) = (w,%)T, wv € R™1, B =
diag(m?A,m?A) . Then, the matrix B is positive define, and we define inner products
and norms respectively.

(u,v) = uTv, |ul|®= (u,u) ;(u,v)4 = uT Av

lull?, = (u,w), (P, P2) = PTPy | P = (P, P),

(P, P2)s = PFBP, , ||PI, = (P, P)s.

It is easy to obtain the following lemma:

Lemma 1)| P *=[u|*+ | v lz; 2) |1PlIE = m?(llull}y + llvl%);
3) |ul< cpllulla, llullf < g? | u
4) llulla < cp | Aul, | Au < 3 [lul}.

Theorem 1 Q = {(v,v)T € R 2 Ju 2+ |v[?’<2,0<e< %'—5—} is an invariant
r
region for (2).
We denote Ey = L*(Q,| - |), E1 = L*Q,|| - |lg) . Similarly, we can obtain the

theorems:

Theorem 2 For any Py = (ug,v)T € Eg , there is a unique global solution P(t) =
(u,v)T for (2),the semigroup {S(t)}:>0 defined by S(t)Po= P(t),(t > 0) is continuous in
Ey.

Theorem 3 There exist constants pyand p, such that By = {P € Eo,| P |< p1} and
By = {P € E1,||P||B < p2} are absorbing sets for the semigroup {S(t)}s>0 in Eo and E;
respectively.

Theorem 4 There exist maximal attractors Goand G, in Ey and E; respectively, G =
w(By),G1 = w(B;) where By, By are the bounded set in Ey and E, respectively. Gy and
G1 are connected.
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