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1. Introduction

Let z = (21,---,2,) (n =20r 3), I = (-1,1) and @ = I with the boundary 9.
The velocity and the pressure are denoted by U(z,t) and P(z,t) respectively. v > 0 is
the kinetic viscosity. Up(z) and f(z,t) are given functions. Let T > 0 and consider the
numerical approximation of the unsteady Navier-Stokes equations:

%—[Z+(U-V)U+VP—VV2U:f, in 0 x (0,T],
V.U =0, in x(0,7T], (1.1)

U(z,0) = Up(z), in Q.

We consider only the non-slip boundary. It means that U = 0 for allz € 9Q and t € [0, T].
For fixing the pressure P, we also require that

/ P(z,t)de = 0, te[0,T].
Q

It is well known that one of the main difficulties in numerical approximation of the un-
steady Navier-Stokes equations is how to treat the incompressibility constraint “div U =
0”. So far, various methods to overcome this difficulty come out (see [1-4]). A funda-
mental idea of these methods is to relax the incompressibility constraint in an appropriate
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way. One of them is the pressure stabilization method, initially introduced by Brezzi and
Pitkaranta (see [3]) for the approximation of the steady Stokes equations. When applied
to the unsteady Navier-Stokes equations, this method takes the form (see [4]):

8
—8; +(UP-V)UP + VPP - V0P = 1.9
1.2
opP
. ﬂ —_ 2 ﬁ = —_— =
V-UP - gViPF =0, 55 = 0

where 8 > 0 is a small parameter and 7 is unit outer normal on 99).
The generalized solution of (1.2) is the pair (U”, P#) ¢ (H}(Q))" x (HY(Q) N LI(Q))

satisfying

4
{ (agt )+ (U7 - V)P 0) + (VPP v) + »(VUP, Vo) = (f,v), Yoe (HMNQ))",

(V-UP,v)+ B(VPP,Vv) =0, Vv e HY{Q) N Li(N).
(1.3)

Since we approximate the incompressibility constraint by the second formula of (1.2),
we avoid the very difficult job of choosing the trial function space in which the divergence of
every element vanishes everywhere. Furthermore, the trial function spaces for the velocity
and the pressure need not to satisfy the Babuska-Brezzi inf-sup condition.

Shen Jie analyzed the semi-discretization of (1.2) by using a finite element method
(see [4]). Since spectral approximations have high accuracy, we consider Legendre spectral
approximation of (1.2) in this paper. We construct the fully discrete scheme in the next
section. Then we list some Lemmas in section 3, and prove the generalized stability and
the convergence strictly in the last two sections.

2. The Scheme

Let » > 0, we will use the standard notations L*(Q2), H"(Q) and H}(Q) to denote the
Sobolev spaces over (. The norm and inner product of (L*(2))" are || - || and (-,-). The
norm and semi- norm of (H"(2))" are denoted by || - ||, and | - |,. Besides, L™<(Q) is also
the usual Sobolev space with the norm || - ||... We also define

L3(Q) = {ve L?(Q)//SZ vdz = 0}.

In order to approximate the nonlinear term, we introduce a trilinear form J{-,-,-) :

(HY(Q))*)® - R? as follows:

Tn,0,6) = 34l V). ~ (9 V)

Clearly
J(n,0,6) + J(£,¢,m) = 0, (2.1)

and if V- = 0, then
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Therefore the weak formulation of (1.1) is to find (U, P) € (H}(Q))" x (HY ()N L())
such that

ou
(E—,v) + J(U,U,v) + (VP,v) + v(VU,Vv) = (f,v), VYve (H Q)"
(V-U,v) =0, Vo € L3(Q), (2.2)
U(z,0) = Uy(z).
Now we construct the scheme. For any positive integer N, we denote by Py the space
of all polynomials of degree up to N in each variable z;, for z = 1, -+, n. Define
Vn = {v(z) € Pn/v(z) = 0,Yz € 00}, Wi = Pn () L3(Q).

T

Let Py : (H}())™ — (Vi)™ be a projection operator such that for any v € (H2(Q))",
(V(v— Py’v),Vw) =0,  Ywe (Vy)"
Let T be the mesh size in time ¢ and
Sr={t=Ir/0<I< [%]}-

For simplicity, u(z,t) is denoted by u(t) or u usually. Let

wlt) = ~(ult +7) - u(t).

A fully discrete Legendre spectral scheme for (2.2) is to seek (u,p) € (Vn)* x Wy for
all t € S, such that

(ue,v) + J(u + 67uy,u,v) + v(V(u + o1u), Vo)

+(V{(p + 07p:),v) = (f,v), Vv € (V)" (2.3);
B(Vp,Vv)+ (V- -u,v) =0, Vv € Wy, (2.3)2
u(0) = Py Uy,

where 8,0 > 0 and 6§ > % are parameters.

It is obvious that for each fixed t € S,, (2.3);-(2.3), is a linear system for unknown
variable (u(t + 7),p(t + 7)). First of all, we assert that for each fixed ¢t € S,, there exists
a unique solution to (2.3);—(2.3),. Since the matrix of this linear system is square, and
therefore it suffices to prove either uniqueness or existence. In this case, the uniqueness is
clear. Indeed, using (2.3);, we obtain

(u(t +7),0) + 67J(u(t + 7), u(t), v) + 67(Vp(t + 7),v)+

t
vor(Vu(t + 7),Vv) = R(t)(v), Vv € (V)" (24)

where R(t) is a linear form defined on (Vx)™ and depends only on u(t),p(t) and f(¢).
Clearly, if R(t) = 0, then by putting v = u(t + 7) in (2.4), we get from (2.1) that

lu(t + 7)|)* + Or(Vp(t + 7),u(t + 7)) + vor|u(t + ‘r)|’f = 0. (2.5)
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It follows from (2.3); that
Blp(t +7)13 = (u(t +7), Vp(t + 7)) = 0. (2-6)
The combination of (2.5) and (2.6) leads to
llu(t + 7)II* + Borip(t + 7)1} + vorlu(t + 7)]f = 0.

Hence (u(t 4+ 7),p(t + 7)) = 0. This implies the uniqueness.

On the other hand, using (2.3); we can express p(t + 7) by u(t + 7), and then by
substituting this relational expression into (2.3);, we obtain u(t + ) firstly. Using this
relational expression again, we get p(t + 7) immediately. In this case, we can solve the
velocity and the pressure separately. This is one of the advantages of the pressure stabi-
lization treatment.

3. Some Lemmas

Throughout the paper, C' will denote various positive constants independent of N,
and any functions.

To analyze the convergence, we introduce the operator 131{, from H(Q)N L3(Q) to Wy
such that for any n € H'(Q2) N L2(9),

(V(n— PYn),Vw) =0, Yw € Wy.
Lemma 1 Ifve HY(Q)N L(Q) with r > 1, then
[lv - PI{Ivlllt < N, p=0,1. (3.1)

Proof By Poincaré inequality, H'(Q2)( L3(£) is a Hilbert space for the inner product
(Vu, V), and |v]; = (Vv, Vv)? is a norm equivalent to the standard norm of [lv]]1-

Let P} : H(Q) — Pn be the operator of orthogonal projection for the inner product
of H'(Q), that is, for each n € H(Q)

(n— Pam,9) + (V(n— Pyn), V) = 0, Vg€ Py.

We define the polynomial )
oV = d + PI},v.

The constant d is chosen in such a way that vV € Wy. By (9.7.14) of [5], we have
lv— "y = [v — Py < CNY7||o),. (3.2)
Thus the result (3.1) for p = 1 follows, noting that
lv— Pyoly < Jv—¢l1, Vo€ Wy.
In order to prove (3.1) for u = 0, we indicate the following regularity result.
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For any g € L%(f2), there exists a unique ¥ € H(Q) () L3(Q) such that
(V¥.V¢) = (g,4), Vo€ H'(Q)[)L5(Q). (3.3)

Moreover, 1 € H2({) and

ll¥ll2 < Cllgll- (3.4)
We use a well-known duality argument, based on the identity
. - Pt
lv — Pyv|| = sup (g’v—NL) (3.5)
9eL2 (%) llgll
9#0

Let 9 be the solution of (3.3) corresBonding to a given g. Then choosing ¢ = v — PI{,v in
(3.3) and recalling the definition of Py, we get

(9,v — Pyv) = (V9, V(v — Piv)) = (V(4 — Py9), V(v — Pyv)).
Estimate (3.1) with z = 1 and (3.4) yield
(g, v = Pv)l < CN7Ylgl| lv — Pyoha.
Again using (3.1) with g = 1, we obtain the desired result from (3.5).
Lemma 2 For any v € Py,

[vlloc < CN* {01, (3.6)

- d @ a > 0 is an arbitrary small constant, if n = 2,
"1, if n=3.

Proof By (9.4.3) of [5], we have that for each v € Py,
lollec < CN ¥ [lvllzuq), Vg € [1,00]). (3.7)
By the Sobolev’s imbedding theorems, the following two inclusions hold

HY(Q) = LY(Q), V¢ e[l,), if n=2, (3.8)
H(Q) — L8(Q), if n=3. (3.9)

The combination of (3.7) with n = 2 and (3.8) leads to
4
Ivllo < CNY[l0ll1, ¢ € [1,00).

This implies (3.6) for n = 2, due to ¢’ € [1, 00).
On the other hand, (3.6) for n = 3 follows from (3.7) with n = 3 and ¢ = 6 together
with (3.9). .

Lemma 3 For each v € Py,
4
l[olly < - N*|Jolj.
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Proof The conclusion comes from (2.3.15) of [5].

Lemma 4 For all n,&,¢ € (HL(Q))",

A

(el < Clalilehllelzlel?,

(e, &) < ClehlellnliznlZ,
(e, &) < Clnhléhlel-

Proof The conclusions can be proved by integration by parts, the inclusion (3.9) and

Holder’s inequality.
Lemma 5 ((9.7.14) of [5]). Ifv € HY(Q)N H"(Q) with r > 1, then
v — P3|l < CN* o)), p=0, 1.

Lemma 6 (Lemma 4.16 of [6]) Suppose that the following conditions are fulfilled
(i) Z(t) is a non-negative function defined on S;, D1,D; and p are non-negative
constants;

(ii) H(E) is a real-valued function defined on R, such that H(£) < 0 for £ < Ds;
(iii) for allt € S, andt > 0,

2ty <p+1 Y (DiZ(t) + H(Z(Y));

t'<t—r

(iv) Z(0) < p and peP'*' < D, for some t; € S;.
Then for allt € S, and t < t,, we have

Z(t) < pePrt. (3.10)

Remark 3.1 If H(£) < 0 for all € € RY, then (3.10) holds for all t and any p satisfying
(iii).
4. The generalized stability

In this section, we analyze the generalized stability of Scheme (2.3);—-(2.3),. Suppose

that the initial values and the right terms of Scheme (2.3);~(2.3) have the errors @(0), f(t)
and §(t) respectively, which induce the errors % and p of u and p. They satisfy

(e, v) + J(u+ 8Ty, @, 0) + J(@+ 67dy, u + @,v) + v(V(d+ oTil), Vo)+
(V(5+675:),) = (£,9), Yoe (Ww)", (41
(V(p+0713,),Vv)+(V(ﬁ+0rﬁ,),v) = (§+€T§t,v) Yov € WN (41)2

Let ¢ > 0 be a suitably small constant to be chosen below. Using (2.1) and the identity
2(i(t), (1) = (Ila(&)?), - Tlade)?, (42)
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we have by taking v = 24 + 2071, in (4.1); that

(I2)e +7(26 = 1 = e)[aall* + 200af} + vr(o + O)(1@2). + v7(260 — 7 — )] yf3-
3 ‘ 62 .

205 + 075,V - (@ + 0r)) + 3 Fi(1) < all” + (1 + I,

J=1

(4.3)
where
Fi(t) = 2J(u+ b1us, @,4 + 071,),
Fy(t) 27(0 - 8)J (@, u,qy),
F5(t) = 27(0 - §)J(a,u,u).

By taking v = 2p + 267p; in (4.1); and noting the fact that ||§ + 675:|| < C|p + 07p¢|1, we

get

B+ 0rll + 2(V - (a4 0ri) 4+ 0734) < 513+ 073l (4.4
Adding (4.4) to (4.3), we obtain
(Nal?)e + 7(20 = 1 = e)l|ael)® + 2v(alf + vr(o + 0)(|a@l}): + v72(206 — o — 0)|@l3+
Bl5 + il + £ F(0) < 0l + (14 TN + 15 + 67l

(4.5)
Let ||lu|ll = Itré%x[]u(t)“l, etc.. We now estimate | F;(t) | (j=1, 2, 3). First we have

from Lemma 4 that

N - gLl L
Clu 4 dTwe|y | + 07|y ||| 2 @]}

R <
< evtiff + evr?fanf; 4 CEFEEIE O o
Fa(t)] < Crl6 - 8] fulylal* @) faly
< evtaff + evrfinft + SO L aptan
By Lemma 2, we have
B < Crlo — sl(1al] 1@l + 2] 1l )
< Crlo - 81N ] [ah i,
< evrtlaf + SOV g

EV

By substituting the above estimations into (4.5), we have

(Hal*)e +7(20 = 1 = e)lll|* + »(1 - 2¢)|aff + vr(o + O)(|2l}): + BIF + 075:3+

_ . . . 4.
v72(200 — 0 — 0 — 3¢)[af? < Myl + B(lal)lal? + G (t) (4.6)
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where

C{(1+6*)(1+ 8)*+ (8 - §)*}

M, = 1+ s et
o C(0 — §)2N%n
B(la) = v+ ST e,
T2 C . . _
Gi(t) = (L+ TP + Gla + 67l

We are now in a position to choose the constant . Let 7o > 0 be sufficiently small. If

1
o> 3 and 4 > 7 1,we take ¢ and ry such that

o —
2 3
202max(1+e+ru,m>,
20 — 1
thus we have
7(20 — 1 — €)||@® + v7%(200 ~ 0 — 6 — 3¢)|iwe|? > ro7|ae))?. (4.7)
Ifo< , and
20 -1 9
4 20 -1
2T N4 (4.8)

3" S o10-240"
we take £ and rg such that

4
20> 1+7r+e+ %(a+a-2ao+3e)zv4.
-In this case, (4.7) also holds, due to Lemma 3. Consequently, we have in both cases that

_ _ v, - o
(12l1*)e + rorl[@ell® + S1al} + vr(o + O)(1aR): + BIE + 67h[3

(4.9)
< My|jalf® + B(llal)ialf + Gi(t).

=
4=.
S
X
Il

WO+ Y {rorla@) + F1a)R + BI5e) + 07 )
teS, <t .
GO} + vr(o + OO +7 3 Ga(e).

teS, t'<t

e~

—_
L

~—
Il

By summing (4.9) for all ¢’ € S, and ¢’ < ¢, we obtain

Bapt)<pt)+r Y {MB(@5,Y)+B(lat)la)E} .

t'eS- t'<t
Using Lemma 6, we have the following result.

- Theorem 1 Assume that
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€V2

(1) p(T)e _ C(o _ 6)2N2a" *
In addition, either of the following two conditions is satisfied:

(11) ag > ﬁ,
0 dvt 20 -1

(iii) o < 5
Then for allt € S,,

5. The convergence

We now turn to consider the convergence of Scheme (2.3);—(2.3),. First we introduce
two function spaces which the exact solutions belong to. Let B be a Banach space with
the norm || - ||p. We denote by C(a, b; B) (a < b) the space of strongly continuous functions
w(z) from [a,b] to B, and by L?(a,b; B) the space of measurable functions v(z) from (a, b)
to B satisfying respectively

€=

: b
lwlle(as:) = Iélagg] lw(z)llp < 00, [lvllz2(ap:B) = (/ lv(2)lI3 dz) < 0.

z€[a
Let the pair (U, P) be the solution of (2.2) and
U*(t) = Py U(t), P*(t) = PyP(t).
Then we have from (2.2) that
(Ug,v) + J(U* 4 67U, U, v) + (V(P* + 07 P;),v) + v(V(U* + o7U;), V)
6
= (f,v)+ X Elv), Vv e (W)™,
=1 9 (51)
B(V(P* 4+ 07P;),Vu) + (V- (U* + 0rU;),v) = ¥ Ei(v), Vve Wy,
U*(0) = Py,

where
Ei(v) = (U; %t]—,v), Ey(v) = J(U*,U*,v) — J(U,U,v),
E3(v) = é7J(U;, U, v), E4(v) = (V(P* - P),v),
Es(v) = 01(V P, v) Eg¢(v) = vor(VU,, Vv),
E7(v) = B(V(P + 07PF,),Vv), Eg(v)=(V-(U*-1U),v),
Eo(v) = 07(V - U}, v).

Let the pair (u,p) be the solution of (2.3);—(2.3),. Define

U=u-U*, P=p-P*
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By subtracting (5.1) from (2.3);—(2.3)2, we have

(Us,v) + J(U* + 8707, U, ) + J(U + 670, U* + U, v)+
. . . . 6
v(V(U + o71U;),Vv) + (V(P + 07F),v) = = 3 Ei(v), VYve (Vy)?,
=1
. . . - 9
B(V(P + 07F),Vv)+ (V- (U + 67U:),v) = = 3 Ei(v), Yv € Wy,
=7

7(0) = 0.

We estimate |Ej(v)], [ =1,2,---,9. It is easily seen that

. - . . 6> ou
|B1(20 + 20702)| < 017 + erl[Tell® + (1 + Z)I0; - S 11

By using Lemma 1, Lemma 4 and Lemma 5, we have
|E2(20 + 2070,)| < |J(U,U* = U,20 +2070,)| + |J(U* - U,U*, 20 + 2677,)|
SC(UL + [UT)IU + 07U 1 |U™ - Ufy
< en|U1} + evr?|U:5 + —(L+ )| UIFIT™ - UL,
and

6 - - - . C
X IB(20 +20700) - < evlU1} +evr®|0f + (1 4+ S O VATH U
|P* = P|)? + 627%|| By} + v2 02| U, |12}

Similarly

|E7(2P + 267 B,)]

IN

|P + 67 P.J; +68(1 + 6*7°)(|P]} + |P.I})
- < 3

B+ orBit+ S0 - U,

30272
B

So far, we can obtain a conclusion similar to Theorem 1, but with

)= 0O +or(a +0)UQE+7 D Ga(t),

t'eS, <t

|Bs(2P + 267 B)|

IN

| Eo(2P + 207 P,)|

IA

WD w| o™

|P+ 0P} + 113

where

LA 1/ C .
Go(t) = (1 + T)”Ut - Eﬂz + e—y(l + {UIBIU* - U2+

Er2|U2NUNE + || P - P|? ; 0%72|| P12 + v2o 72| U2 }+
68(1 + 6°72)(|P|3 + |P2) + B—(IIU* = U|]?> + 6*72|U[13).

It means that if
A(T) = O(N=2), (5.)
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then we have for allt € §, o
E(0, B,t) = 0(4(1)).

In order to obtain the convergence, we only need to estimate the order of p(t) and verify
(5.2). Let » > 1 and k > max{1,r — 1}. Since

P8 _up=-1 /tm(t rr- 208 4

ot g2
Then
1wz - 290 < ooy - vz + o) - 298
ot ot
1 t+TaU’9/'lF ot U /'l?
gcr-zN-'{/t i 3(tt)||;dt} +Crd {/t ||———————Btgt)]|2dt} .

By Lemma 1 and Lemma 5, we have
|U* = Ul < CN~"|joll,, |U*=Uh < CN'T||Uy,
|IP™ = P|| < CN*||Pllx.

1 t+7
<t ([
1 t

dP(t))

ot

Furthermore

oU(t))
ot

1| [ aU(t)
||Utu1_;‘|_/t 70 gy

i ([

Thus we have from the above estimates that

9 1
dat’') .
1

2 3 i
dt') , U(0) = 0.

1

p(t) < My{B~H(r? + N™7) + N7 4 g},

where M, is a positive constant depending only on v and the norms of U and P in the
spaces mentioned in the above. Finally by an argument similar to the proof of Theorem
1, we have the following result.

Theorem 2 Assume that

(i) condition (ii) or (iii) of Theorem 1 holds;

(ii) For » > 1, corresponding to n = 2, or r > 2, corresponding to n = 3, and
k > max{l,r — 1},

ov

U e CO.T;(H@) E@)), S € 0.7 (H (@),
azU 2 . n
5 € L0, T (@),

P o COTEYQ), O € 10,7 H(Q))
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(iii) For certain positive constant Ms,

ev?

M3T fn—1¢..2 -2r N2—2r < )
M2€ {IB (T +N )+ +:B} = 0(9—6)2N2a"

Then for all t € S,
NU@) - wl® < Me{B7Y(r* + N72) + N> 4 B},

where M3 and M, are two positive constants depending only on v and the norms of U
and P in the spaces as mentioned above.

Remark 5.1 Indeed, condition (iii) is not too restrictive. We consider for instance the
casen = 3, corresponding a,, = 1. Then on the assumption thatr = 2, k =1, 7 = O(N~2)
and C; < fN? < C, for some positive constants C; and C2, we have

ﬂ—l(_rz + N—Zr) + N2—2r +ﬂ — O(N—2) — O(N—?.a,,).

Remark 5.2 Iff# = §, then condition (iii) can be eliminated.
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