On Totally Real Pseudo-Umbilical Submanifolds in a Complex Projective Space

ZHANG Liang

(College of Mathematics and Computer Science, Anhui Normal University, Anhui 241000, China) (E-mail: zhliang43@sohu.com)

Abstract Let M^n be a totally real submanifold in a complex projective space $\mathbb{C}P^{n+p}$. In this paper, we study the position of the parallel umbilical normal vector field of M^n in the normal bundle. By choosing a suitable frame field, we obtain a pinching theorem, in the case p > 0, for the square of the length of the second fundamental form of a totally real pseudo-umbilical submanifold with parallel mean curvature vector.

Keywords complex projective space; totally real submanifolds; pseudo-umbilical submanifolds; parallel mean curvature vector.

Document code A MR(2000) Subject Classification 53C40 Chinese Library Classification 0186.12

1. Introduction

Let $\mathbb{C}P^{n+p}$ be a 2(n+p)-dimensional complex projective space endowed with the Fubini-Study metric of constant holomorphic sectional curvature 4. Let M^n be an *n*-dimensional submanifold in $\mathbb{C}P^{n+p}$. M^n is called totally real if each tangent space of M^n is mapped into the normal space by the complex structure J of $\mathbb{C}P^{n+p}$. In [1,2], in the case p = 0, a pinching theorem and the corresponding rigidity theorem for totally real minimal submanifolds were obtained. In [3], Du investigated the conditions under which totally real pseudo-umbilical submanifolds must be minimal for p = 0. In this paper, we study the totally real pseudo-umbilical submanifolds with parallel mean curvature vector in $\mathbb{C}P^{n+p}$ for general complex codimension p. In order to choose a suitable frame field, one should consider the position of parallel umbilical normal vector field of totally real submanifold M^n in the normal bundle.

Let TM^n and $T^{\perp}M^n$ be the tangent bundle and the normal bundle of submanifold M^n . Write

$$V = \bigcup_{x \in M^n} J(T_x M^n).$$

Obviously, V is a rank n subbundle of $T^{\perp}M^n$, $J: T_xM^n \to V_x$ is an isomorphism. Denote by V^{\perp} the orthogonal complement of V in $T^{\perp}M^n$. For parallel umbilical normal vector field, we

Received date: 2006-03-02; Accepted date: 2006-10-12

Foundation item: the Natural Science Foundation of Anhui Educational Committee (No. KJ2008A05ZC); the Younger Teachers of Anhui Normal University (No. 2005xqn01).

first prove

Theorem 1 Let M^n be an $n(\geq 2)$ -dimensional totally real submanifold in $\mathbb{C}P^{n+p}$ and ξ be a parallel umbilical normal vector field of M^n . Then ξ must be in V^{\perp} , i.e., $\xi \in C^{\infty}(V^{\perp})$.

Remark In [3], it is proved that totally real pseudo-umbilical submanifolds with parallel mean curvature vector in $\mathbb{C}P^n$ must be minimal. This result is a direct corollary of Theorem 1.

Furthermore, according to Theorem 1, by choosing a suitable moving frame, we get the following pinching theorem for the square of the length of the second fundamental form.

Theorem 2 Let M^n be an n-dimensional compact totally real pseudo-umbilical submanifold with parallel mean curvature in $\mathbb{C}P^{n+p}$, $n \ge 2$, $p \ge 1$. If the square of the length of the second fundamental form

$$S \le \frac{n}{3}(2+5H^2),$$

where *H* is the mean curvature of *M*, then either $S = nH^2$, M^n is totally umbilical, or $S = \frac{n}{3}(2+5H^2)$. In the latter case, n = 2 and M^2 is locally isometric to the sphere $S^2(\sqrt{\frac{3}{1+H^2}})$ of radius $\sqrt{\frac{3}{1+H^2}}$.

2. Basic formulas

Let M^n be an *n*-dimensional totally real submanifold in $\mathbb{C}P^{n+p}$. Choose a local field of orthonormal frames

$$e_1, \dots, e_n, e_{n+1}, \dots, e_{n+p}, e_{1^*} = Je_1, \dots, e_{n^*} = Je_n, e_{(n+1)^*} = Je_{n+1}, \dots, e_{(n+p)^*}$$
$$= Je_{n+p}$$
(2.1)

in $\mathbb{C}P^{n+p}$, in such a way that, restricted to M^n , $\{e_1, \ldots, e_n\}$ are tangent to M^n . For convenience, we use the following convention on the range of indices:

$$A, B, C, \dots = 1, \dots, n + p, 1^*, \dots, (n + p)^*;$$

 $i, j, k, \dots = 1, \dots, n;$
 $\alpha, \beta, \gamma, \dots = n + 1, \dots, n + p, 1^*, \dots, (n + p)^*;$
 $\lambda, \mu, \dots = n + 1, \dots, n + p.$

Let $\{\omega^A\}$ be the dual frames of $\{e_A\}$. Then the structure equations of $\mathbb{C}P^{n+p}$ are given by

(

$$d\omega^A = \sum_B \omega^B \wedge \omega_B^A, \tag{2.2}$$

$$d\omega_B^A = \sum_C \omega_B^C \wedge \omega_C^A + \frac{1}{2} \sum_{C,D} K_{ABCD} \,\omega^C \wedge \omega^D, \qquad (2.3)$$

where^[1]

On totally real pseudo-umbilical submanifolds in a complex projective space

$$K_{ABCD} = \delta_{AC}\delta_{BD} - \delta_{AD}\delta_{BC} + J_{CA}J_{DB} - J_{DA}J_{CB} + 2J_{BA}J_{DC}.$$
 (2.5)

In (2.5), J_{AB} is the component of the linear transformation J, i.e.,

$$(J_{AB}) = \left(\begin{array}{c|c} \mathbf{0} & I_{n+p} \\ \hline -I_{n+p} & \mathbf{0} \\ i & \lambda & i^* & \lambda^* \end{array} \right) \begin{cases} i \\ \lambda \\ i^* \\ \lambda^* \end{cases}$$
(2.6)

where I_{n+p} denotes the identity matrix of degree n+p.

Restricting these forms to M^n , we have

$$\omega^{\alpha} = 0, \qquad (2.7)$$

$$\omega_i^{\alpha} = \sum_j h_{ij}^{\alpha} \omega^j, \quad h = \sum_{\alpha,i,j} h_{ij}^{\alpha} \omega^i \otimes \omega^j \otimes e_{\alpha},$$
$$h_{jk}^{i^*} = h_{ik}^{j^*} = h_{ij}^{k^*}, \qquad (2.8)$$

$$\begin{cases}
d\omega^{i} = \sum_{j} \omega^{j} \wedge \omega^{i}_{j}, \\
d\omega^{i}_{j} = \sum_{k} \omega^{k}_{j} \wedge \omega^{i}_{k} + \frac{1}{2} \sum_{k,l} R_{ijkl} \omega^{k} \wedge \omega^{l},
\end{cases}$$
(2.9)

$$R_{ijkl} = K_{ijkl} + \sum_{\alpha} (h^{\alpha}_{ik} h^{\alpha}_{jl} - h^{\alpha}_{il} h^{\alpha}_{jk}), \qquad (2.10)$$

$$d\omega_{\beta}^{\alpha} = \sum_{\gamma} \omega_{\beta}^{\gamma} \wedge \omega_{\gamma}^{\alpha} + \frac{1}{2} \sum_{k,l} R_{\alpha\beta kl} \, \omega^{k} \wedge \omega^{l}, \qquad (2.11)$$

$$R_{\alpha\beta ij} = K_{\alpha\beta ij} + \sum_{k} (h_{ik}^{\alpha} h_{kj}^{\beta} - h_{jk}^{\alpha} h_{ki}^{\beta}), \qquad (2.12)$$

where h is the second fundamental form of M^n , and R_{ijkl} , $R_{\alpha\beta ij}$ are the components of the Riemannian curvature tensor R and the normal curvature tensor R^{\perp} with respect to $\{e_A\}$. The mean curvature vector of M^n is defined as follows

$$\zeta = \frac{1}{n} \sum_{\alpha} \operatorname{tr} H_{\alpha} \cdot e_{\alpha} \,,$$

where $\operatorname{tr} H_{\alpha}$ is the trace of the matrix $H_{\alpha} = (h_{ij}^{\alpha})$. We call $H = |\zeta|$ the mean curvature of M^n . Write

$$S = \sum_{\alpha} \mathrm{tr} H_{\alpha}^2.$$

Let ρ be the scalar curvature of M^n . Then we have^[1]

$$\rho = n(n-1) + n^2 H^2 - S. \tag{2.13}$$

Define the covariant derivative of h_{ij}^{α} as follows

$$\sum_{k} h_{ijk}^{\alpha} \,\omega^{k} = dh_{ij}^{\alpha} + \sum_{\beta} h_{ij}^{\beta} \,\omega_{\beta}^{\alpha} - \sum_{l} h_{lj}^{\alpha} \,\omega_{l}^{l} - \sum_{l} h_{il}^{\alpha} \,\omega_{j}^{l}.$$
(2.14)

 $\mathrm{Then}^{[4]}$

$$h_{ijk}^{\alpha} - h_{ikj}^{\alpha} = -K_{\alpha ijk}, \qquad (2.15)$$

423

ZHANG L

$$h_{ijkl}^{\alpha} - h_{ijlk}^{\alpha} = \sum_{m} (h_{mi}^{\alpha} R_{mjkl} + h_{mj}^{\alpha} R_{mikl}) - \sum_{\beta} h_{ij}^{\beta} R_{\alpha\beta kl}.$$
 (2.16)

Note that M^n is an invariant submanifold^[1] in $\mathbb{C}P^{n+p}$, i.e., $K_{\alpha ijk} = 0$, so

$$h_{ijk}^{\alpha} = h_{ikj}^{\alpha}.$$
 (2.17)

From (2.16), (2.17), the Laplacian of h_{ij}^{α} is

$$\Delta h_{ij}^{\alpha} = \sum_{k} h_{ijkk}^{\alpha}$$
$$= \sum_{k} h_{kkij}^{\alpha} + \sum_{k,m} (h_{im}^{\alpha} R_{mkjk} + h_{km}^{\alpha} R_{mijk}) - \sum_{\beta,k} h_{ki}^{\beta} R_{\alpha\beta jk}.$$
(2.18)

For the frame field chosen above (see (2.1)), using (2.5), it is not difficult to obtain the following lemma.

Lemma 2.1 Let M^n be an *n*-dimensional totally real submanifold in $\mathbb{C}P^{n+p}$. Then

- (1) $K_{i^*j^*kl} = K_{ijkl} = \delta_{ik}\delta_{jl} \delta_{il}\delta_{jk};$
- (2) $K_{\lambda Aij} = 0, K_{\lambda^* Aij} = 0;$
- (3) $K_{\alpha ijk} = 0, K_{\alpha\lambda jk} = 0.$

3. Position of parallel umbilical normal vector field in the normal bundle

Let M^n be a totally real submanifold in $\mathbb{C}P^{n+p}$. D^{\perp} denotes the normal connection of $T^{\perp}M^n$. We can split $T^{\perp}M^n$ into the direct sum

$$T^{\perp}M^n = V \oplus V^{\perp},$$

where V and V^{\perp} are two subbundles of $T^{\perp}M^n$ as we state in the introduction.

Proof of Theorem 1 Suppose the parallel umbilical normal vector field $\xi = \xi_1 + \xi_2$, where $\xi_1 \in C^{\infty}(V), \xi_2 \in C^{\infty}(V^{\perp})$. It suffices to prove that $\xi_1 = 0$. Choose local field of orthonormal frames (2.1) such that

$$\xi_1 = |\xi_1|e_{1^*}, \quad \xi_2 = |\xi_2|e_{n+1}.$$

From that ξ is umbilical, we have

$$|\xi_1|h_{ij}^{1^*} + |\xi_2|h_{ij}^{n+1} = B\delta_{ij},$$

where $B = \langle \xi, \zeta \rangle$. It is clear that the above formula is equivalent to

$$|\xi_1|\omega_i^{1^*} + |\xi_2|\omega_i^{n+1} = B\omega^i.$$

On the other hand, ξ is parallel, so

$$0 = D^{\perp}\xi = D^{\perp}(|\xi_{1}|e_{1^{*}} + |\xi_{2}|e_{n+1})$$

=(d| ξ_{1} | + | ξ_{2} | $\omega_{n+1}^{1^{*}}$) $\otimes e_{1^{*}}$ + (d| ξ_{2} | + | ξ_{1} | $\omega_{1^{*}}^{n+1}$) $\otimes e_{n+1}$ +
$$\sum_{\alpha \neq n+1, 1^{*}}(|\xi_{1}|\omega_{1^{*}}^{\alpha} + |\xi_{2}|\omega_{n+1}^{\alpha}) \otimes e_{\alpha}.$$

424

On totally real pseudo-umbilical submanifolds in a complex projective space

Therefore

$$(d|\xi_1| + |\xi_2|\omega_{n+1}^{1^*} = 0,$$
 (3.1)

$$\begin{cases} d|\xi_2| + |\xi_1|\omega_{1^*}^{n+1} = 0, \end{cases}$$
(3.2)

$$(|\xi_1|\omega_{1^*}^{\alpha} + |\xi_2|\omega_{n+1}^{\alpha} = 0, \ \alpha \neq n+1, 1^*$$

$$(3.3)$$

Taking exterior derivative of (3.3), we obtain

$$0 = (d|\xi_{1}| + |\xi_{2}|\omega_{n+1}^{1^{*}}) \wedge \omega_{1^{*}}^{\alpha} + (d|\xi_{2}| + |\xi_{1}|\omega_{1^{*}}^{n+1}) \wedge \omega_{n+1}^{\alpha} + \sum_{\substack{\beta \neq n+1, 1^{*} \\ j \in [\xi_{1}|\omega_{1^{*}}^{j} + |\xi_{2}|\omega_{n+1}^{j}) \wedge \omega_{\beta}^{\alpha} + \frac{|\xi_{1}|}{2} \sum_{i,j} K_{\alpha 1^{*}ij} \omega^{i} \wedge \omega^{j} + \frac{|\xi_{2}|}{2} \sum_{i,j} K_{\alpha n+1ij} \omega^{i} \wedge \omega^{j} \\ = -B \sum_{j} \omega^{j} \wedge \omega_{j}^{\alpha} + \frac{|\xi_{1}|}{2} \sum_{i,j} K_{\alpha 1^{*}ij} \omega^{i} \wedge \omega^{j} + \frac{|\xi_{2}|}{2} \sum_{i,j} K_{\alpha n+1ij} \omega^{i} \wedge \omega^{j}.$$
(3.4)

From Lemma 2.1, we know that $K_{\alpha n+1ij} = 0$. And we also have

$$0 = \mathrm{d}\omega^{\alpha} = \sum_{j} \omega^{j} \wedge \omega_{j}^{\alpha},$$

so (3.4) reduces to

$$\frac{|\xi_1|}{2} \sum_{i,j} K_{\alpha 1^* i j} \omega^i \wedge \omega^j = 0,$$

i.e.

$$|\xi_1| K_{\alpha 1^* ij} = 0.$$

Setting $\alpha = 2^*$ and using Lemma 2.1 gives

$$0 = |\xi_1| (\delta_{2i} \delta_{1j} - \delta_{2j} \delta_{1i}).$$

Setting i = 2 and j = 1, we have $|\xi_1| = 0$. This completes the proof.

4. Pinching for the square of the length of the second fundamental form

According to Theorem 1, we can choose a local field of orthonormal frames

$$e_1,\ldots,e_n,e_{n+1},\ldots,e_{n+p},$$

$$e_{1^*} = Je_1, \dots, e_{n^*} = Je_n, e_{(n+1)^*} = Je_{n+1}, \dots, e_{(n+p)^*} = Je_{n+p}$$

in $\mathbb{C}P^{n+p}$, in such a way that, restricted to M^n , $\{e_1, \ldots, e_n\}$ are tangent to M^n , and $\zeta = He_{n+1}$. It is easy to see that

$$\operatorname{tr} H_{\alpha} = \begin{cases} nH, & \alpha = n+1\\ 0, & \alpha \neq n+1. \end{cases}$$
(4.1)

 Set

$$\tau = S - nH^2.$$

From (2.18), noting that M^n has parallel mean curvature vector and $\sum_k h_{kkij}^{\alpha} = 0$, one gets

$$\frac{1}{2}\Delta\tau = \sum_{\alpha\neq n+1} \sum_{i,j,k} (h_{ijk}^{\alpha})^2 + \sum_{\alpha\neq n+1} \sum_{i,j,k,m} h_{ij}^{\alpha} (h_{im}^{\alpha} R_{mkjk} + h_{km}^{\alpha} R_{mijk}) - \sum_{\alpha\neq n+1} \sum_{\beta,k} h_{ij}^{\alpha} h_{ki}^{\beta} R_{\alpha\beta jk}.$$
(4.2)

By using (2.5), (2.10), (2.12), (4.1) and the fact that M^n is pseudo-umbilical, we can get

$$\sum_{\alpha \neq n+1} \sum_{i,j,k,m} h_{ij}^{\alpha} (h_{im}^{\alpha} R_{mkjk} + h_{km}^{\alpha} R_{mijk})$$

$$= n(1+H^2)\tau + \frac{1}{2} \sum_{\alpha,\beta \neq n+1} \operatorname{tr}(H_{\alpha} H_{\beta} - H_{\beta} H_{\alpha})^2 - \sum_{\alpha,\beta \neq n+1} \left(\operatorname{tr}(H_{\alpha} H_{\beta})\right)^2, \quad (4.3)$$

$$\sum_{\alpha \neq n+1} \sum_{\beta,k} h_{ij}^{\alpha} h_{ki}^{\beta} R_{\alpha\beta jk}$$

$$= -\sum_{i} \operatorname{tr} H_{i^*}^2 - \frac{1}{2} \sum_{\alpha,\beta \neq n+1} \operatorname{tr}(H_{\alpha} H_{\beta} - H_{\beta} H_{\alpha})^2. \quad (4.4)$$

From (4.2), (4.3), (4.4), we have

Lemma 4.1 For any real number a, the Laplacian of τ is

$$\frac{1}{2}\Delta\tau = \sum_{\alpha\neq n+1} \sum_{i,j,k} \left(h_{ijk}^{\alpha}\right)^2 + \sum_i \operatorname{tr} H_{i^*}^2 - an(1+H^2)\tau + \\(1+a)\sum_{\alpha\neq n+1} \sum_{i,j,k,m} h_{ij}^{\alpha} \left(h_{im}^{\alpha}R_{mkjk} + h_{km}^{\alpha}R_{mijk}\right) + \\\frac{1-a}{2}\sum_{\alpha,\beta\neq n+1} \operatorname{tr} \left(H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha}\right)^2 + a\sum_{\alpha,\beta\neq n+1} \left(\operatorname{tr}(H_{\alpha}H_{\beta})\right)^2.$$

Lemma 4.2^[5] Let A_1, A_2, \ldots, A_m be symmetric $(n \times n)$ -matrices, $m \ge 2$. Then

$$\sum_{\alpha,\beta=1}^{m} \operatorname{tr}(A_{\alpha}A_{\beta} - A_{\beta}A_{\alpha})^{2} - \sum_{\alpha,\beta=1}^{m} \left(\operatorname{tr}(A_{\alpha}A_{\beta})\right)^{2} \ge -\frac{3}{2} \left(\sum_{\alpha=1}^{m} \operatorname{tr}(A_{\alpha}^{2})\right)^{2},$$

and the equality holds if and only if one of the following cases occurs:

(1) $A_1 = \cdots = A_m = 0;$

(2) Only two of the matrices $A_{\alpha}(\alpha = 1, ..., m)$ cannot be zero. Moreover, if $A_1 \neq 0, A_2 \neq 0, A_3 = \cdots = A_m = 0$, then $\operatorname{tr} A_1^2 = \operatorname{tr} A_2^2$, and there exists an orthogonal matrix T, such that

$$TA_{1}T^{-1} = \frac{1}{2}\sqrt{\sum_{\alpha=1}^{m} \operatorname{tr}A_{\alpha}^{2}} \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 0 \\ \hline \mathbf{0} & \mathbf{0} \end{pmatrix}, TA_{2}T^{-1} = \frac{1}{2}\sqrt{\sum_{\alpha=1}^{m} \operatorname{tr}A_{\alpha}^{2}} \begin{pmatrix} 1 & 0 & 0\\ 0 & -1 & 0 \\ \hline \mathbf{0} & \mathbf{0} \end{pmatrix}.$$

Proof of Theorem 2 Setting a = -1 in Lemma 4.1, from Lemma 4.2, one can get

$$\frac{1}{2}\Delta\tau \ge \sum_{\alpha \ne n+1} \sum_{i,j,k} (h_{ijk}^{\alpha})^2 + \sum_i \operatorname{tr} H_{i^*}^2 + \tau \left(n(1+H^2) - \frac{3}{2}\tau \right).$$
(4.5)

If $S \leq \frac{n}{3}(2+5H^2)$, i.e., $\tau \leq \frac{2}{3}n(1+H^2)$, then the right hand of (4.5) is nonnegative and τ is a subharmonic function on M^n . By Hopf's maximum principle, we know that τ is a constant.

Hence

$$h_{ijk}^{\alpha} = 0, \quad \forall i, j, k, \alpha \tag{4.6}$$

$$H_{i^*} = 0, \quad \forall i \tag{4.7}$$

$$\tau \left(n(1+H^2) - \frac{3}{2}\tau \right) = 0. \tag{4.8}$$

(4.8) implies: if $S < \frac{n}{3}(2+5H^2)$, i.e., $\tau < \frac{2}{3}n(1+H^2)$, then $\tau = 0$, M^n is totally umbilical, and if $S = \frac{n}{3}(2+5H^2)$, i.e., $\tau = \frac{2}{3}n(1+H^2)$, then

$$\sum_{\alpha,\beta\neq n+1} tr(H_{\alpha}H_{\beta} - H_{\beta}H_{\alpha})^2 - \sum_{\alpha,\beta\neq n+1} (tr(H_{\alpha}H_{\beta}))^2 = -\frac{3}{2}\tau^2.$$

From Lemma 4.2 and (4.7), there exist $\alpha_1, \alpha_2 \in \{n + 2, ..., n + p, (n + 1)^*, ..., (n + p)^*\}$, such that

$$H_{\alpha_{1}} = \frac{\sqrt{\tau}}{2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ \hline 0 & 0 \end{pmatrix}, \quad H_{\alpha_{2}} = \frac{\sqrt{\tau}}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ \hline 0 & 0 \end{pmatrix}, \quad (4.9)$$

$$H_{\alpha} = 0, \quad \alpha \neq n+1, \alpha_1, \alpha_2. \tag{4.10}$$

Using (4.6), (4.10) and noting that M^n has parallel mean curvature vector, $\omega_{n+1}^{\alpha} = 0$, we have

$$\begin{split} 0 &= \mathrm{d} h_{ij}^{\alpha} + \sum_{\beta} h_{ij}^{\beta} \omega_{\beta}^{\alpha} - \sum_{l} h_{lj}^{\alpha} \omega_{i}^{l} - \sum_{l} h_{il}^{\alpha} \omega_{j}^{l} \\ &= \mathrm{d} h_{ij}^{\alpha} + h_{ij}^{\alpha_{1}} \omega_{\alpha_{1}}^{\alpha} + h_{ij}^{\alpha_{2}} \omega_{\alpha_{2}}^{\alpha} - \sum_{l} h_{lj}^{\alpha} \omega_{i}^{l} - \sum_{l} h_{il}^{\alpha} \omega_{j}^{l}. \end{split}$$

Setting $\alpha = \alpha_1, i = 1, j \ge 3$ and $\alpha = \alpha_2, i = 2, j \ge 3$, we see that

$$\omega_j^2 = 0, \quad j \ge 3, \tag{4.11}$$

$$\omega_j^1 = 0, \quad j \ge 3. \tag{4.12}$$

Taking exterior derivative of (4.11) and using (4.9)–(4.12) and Lemma 2.1 gives

 $0 = \omega^2 \wedge \omega^j, \quad j \ge 3.$

This shows that n = 2. By Gauss equation, we compute the sectional curvature of M^2

$$R_{1212} = K_{1212} + \sum_{\alpha} [h_{11}^{\alpha} h_{22}^{\alpha} - (h_{12}^{\alpha})^2] = 1 + H^2 - \left(\frac{\sqrt{\tau}}{2}\right)^2 - \left(\frac{\sqrt{\tau}}{2}\right)^2$$
$$= \frac{1}{3}(1 + H^2).$$

Since H is a constant, M^2 is locally isometric to the sphere $S^2(\sqrt{\frac{3}{1+H^2}})$. This completes the proof.

Remark From (2.13), Theorem 2 also gives a pinching constant $n(n-\frac{5}{3})(1+H^2)$ for the scalar curvature.

References

- [1] CHEN Bangyen, OGIUE K. On totally real submanifolds [J]. Trans. Amer. Math. Soc., 1974, 193: 257–266.
- [2] LUDDEN G D, OKUMURA M, YANO K. A totally real surface in CP² that is not totally geodesic [J]. Proc. Amer. Math. Soc., 1975, 53(1): 186–190.
- [3] DU Hongquan. Totally real pseudo-umbilical submanifolds in a complex projective space [J]. J. Hangzhou Univ. Nat. Sci. Ed., 1998, 25:8-14. (in Chinese)
- CHERN S S, DO C M, KOBAYASHI S. Minimal Submanifolds of a Sphere with Second Fundamental form of Constant Length [M]. Berlin: Spring-Verlag, 1970, 59–75.
- [5] LI Anmin, LI Jimin. An intrinsic rigidity theorem for minimal submanifolds in a sphere [J]. Arch. Math. (Basel), 1992, 58(6): 582–594.