On Totally Real Pseudo-Umbilical Submanifolds in a Complex Projective Space

ZHANG Liang
(College of Mathematics and Computer Science, Anhui Normal University, Anhui 241000, China)
(E-mail: zhliang43@sohu.com)

Abstract

Let M^{n} be a totally real submanifold in a complex projective space $\mathbf{C} P^{n+p}$. In this paper, we study the position of the parallel umbilical normal vector field of M^{n} in the normal bundle. By choosing a suitable frame field, we obtain a pinching theorem, in the case $p>0$, for the square of the length of the second fundamental form of a totally real pseudo-umbilical submanifold with parallel mean curvature vector.

Keywords complex projective space; totally real submanifolds; pseudo-umbilical submanifolds; parallel mean curvature vector.
Document code A
MR(2000) Subject Classification 53C40
Chinese Library Classification O186.12

1. Introduction

Let $\mathbf{C} P^{n+p}$ be a $2(n+p)$-dimensional complex projective space endowed with the FubiniStudy metric of constant holomorphic sectional curvature 4. Let M^{n} be an n-dimensional submanifold in $\mathbf{C} P^{n+p}$. M^{n} is called totally real if each tangent space of M^{n} is mapped into the normal space by the complex structure J of $\mathbf{C} P^{n+p}$. In $[1,2]$, in the case $p=0$, a pinching theorem and the corresponding rigidity theorem for totally real minimal submanifolds were obtained. In [3], Du investigated the conditions under which totally real pseudo-umbilical submanifolds must be minimal for $p=0$. In this paper, we study the totally real pseudo-umbilical submanifolds with parallel mean curvature vector in $\mathbf{C} P^{n+p}$ for general complex codimension p. In order to choose a suitable frame field, one should consider the position of parallel umbilical normal vector field of totally real submanifold M^{n} in the normal bundle.

Let $T M^{n}$ and $T^{\perp} M^{n}$ be the tangent bundle and the normal bundle of submanifold M^{n}. Write

$$
V=\bigcup_{x \in M^{n}} J\left(T_{x} M^{n}\right)
$$

Obviously, V is a rank n subbundle of $T^{\perp} M^{n}, J: T_{x} M^{n} \rightarrow V_{x}$ is an isomorphism. Denote by V^{\perp} the orthogonal complement of V in $T^{\perp} M^{n}$. For parallel umbilical normal vector field, we

[^0]first prove
Theorem 1 Let M^{n} be an $n(\geq 2)$-dimensional totally real submanifold in $\mathbf{C} P^{n+p}$ and ξ be a parallel umbilical normal vector field of M^{n}. Then ξ must be in V^{\perp}, i.e., $\xi \in C^{\infty}\left(V^{\perp}\right)$.

Remark In [3], it is proved that totally real pseudo-umbilical submanifolds with parallel mean curvature vector in $\mathbf{C} P^{n}$ must be minimal. This result is a direct corollary of Theorem 1.

Furthermore, according to Theorem 1, by choosing a suitable moving frame, we get the following pinching theorem for the square of the length of the second fundamental form.

Theorem 2 Let M^{n} be an n-dimensional compact totally real pseudo-umbilical submanifold with parallel mean curvature in $\mathbf{C} P^{n+p}, n \geq 2, p \geq 1$. If the square of the length of the second fundamental form

$$
S \leq \frac{n}{3}\left(2+5 H^{2}\right)
$$

where H is the mean curvature of M, then either $S=n H^{2}, M^{n}$ is totally umbilical, or $S=$ $\frac{n}{3}\left(2+5 H^{2}\right)$. In the latter case, $n=2$ and M^{2} is locally isometric to the sphere $S^{2}\left(\sqrt{\frac{3}{1+H^{2}}}\right)$ of radius $\sqrt{\frac{3}{1+H^{2}}}$.

2. Basic formulas

Let M^{n} be an n-dimensional totally real submanifold in $\mathbf{C} P^{n+p}$. Choose a local field of orthonormal frames

$$
\begin{align*}
e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{n+p}, e_{1^{*}} & =J e_{1}, \ldots, e_{n^{*}}=J e_{n}, e_{(n+1)^{*}}=J e_{n+1}, \ldots, e_{(n+p)^{*}} \\
& =J e_{n+p} \tag{2.1}
\end{align*}
$$

in $\mathbf{C} P^{n+p}$, in such a way that, restricted to $M^{n},\left\{e_{1}, \ldots, e_{n}\right\}$ are tangent to M^{n}. For convenience, we use the following convention on the range of indices:

$$
\begin{aligned}
A, B, C, \ldots & =1, \ldots, n+p, 1^{*}, \ldots,(n+p)^{*} \\
i, j, k, \ldots & =1, \ldots, n \\
\alpha, \beta, \gamma, \ldots & =n+1, \ldots, n+p, 1^{*}, \ldots,(n+p)^{*} \\
\lambda, \mu, \ldots & =n+1, \ldots, n+p
\end{aligned}
$$

Let $\left\{\omega^{A}\right\}$ be the dual frames of $\left\{e_{A}\right\}$. Then the structure equations of $\mathbf{C} P^{n+p}$ are given by

$$
\begin{gather*}
\mathrm{d} \omega^{A}=\sum_{B} \omega^{B} \wedge \omega_{B}^{A} \tag{2.2}\\
\mathrm{~d} \omega_{B}^{A}=\sum_{C} \omega_{B}^{C} \wedge \omega_{C}^{A}+\frac{1}{2} \sum_{C, D} K_{A B C D} \omega^{C} \wedge \omega^{D}, \tag{2.3}
\end{gather*}
$$

where ${ }^{[1]}$

$$
\begin{align*}
\omega_{i}^{j} & =\omega_{i^{*}}^{j^{*}}, \omega_{i}^{\lambda}=\omega_{i^{*}}^{\lambda^{*}}, \omega_{i}^{j^{*}}=\omega_{j}^{i^{*}} \\
\omega_{i}^{\lambda^{*}} & =\omega_{\lambda}^{i^{*}}, \omega_{\lambda}^{\mu}=\omega_{\lambda^{*}}^{\mu^{*}}, \omega_{\lambda}^{\mu^{*}}=\omega_{\mu}^{\lambda^{*}} \tag{2.4}
\end{align*}
$$

$$
\begin{equation*}
K_{A B C D}=\delta_{A C} \delta_{B D}-\delta_{A D} \delta_{B C}+J_{C A} J_{D B}-J_{D A} J_{C B}+2 J_{B A} J_{D C} \tag{2.5}
\end{equation*}
$$

In (2.5), $J_{A B}$ is the component of the linear transformation J, i.e.,

$$
\left(J_{A B}\right)=(\underbrace{(\underbrace{}_{\lambda}}_{i} \begin{array}{c|c}
I_{n+p} \tag{2.6}\\
\hline-I_{n+p} & \underbrace{\mathbf{0}}_{i^{*}} \underbrace{}_{\lambda^{*}}
\end{array}\}\left\{\begin{array}{l}
i \\
\lambda \\
i^{*} \\
\lambda^{*}
\end{array}\right.
$$

where I_{n+p} denotes the identity matrix of degree $n+p$.
Restricting these forms to M^{n}, we have

$$
\begin{gather*}
\omega^{\alpha}=0 \tag{2.7}\\
\omega_{i}^{\alpha}=\sum_{j} h_{i j}^{\alpha} \omega^{j}, \quad h=\sum_{\alpha, i, j} h_{i j}^{\alpha} \omega^{i} \otimes \omega^{j} \otimes e_{\alpha} \\
h_{j k}^{i^{*}}=h_{i k}^{j^{*}}=h_{i j}^{k^{*}}, \tag{2.8}\\
\left\{\begin{array}{l}
\mathrm{d} \omega^{\mathrm{i}}=\sum_{\mathrm{j}} \omega^{\mathrm{j}} \wedge \omega_{\mathrm{j}}^{\mathrm{i}}, \\
\mathrm{~d} \omega_{j}^{i}=\sum_{k} \omega_{j}^{k} \wedge \omega_{k}^{i}+\frac{1}{2} \sum_{k, l} R_{i j k l} \omega^{k} \wedge \omega^{l} \\
R_{i j k l}=K_{i j k l}+\sum_{\alpha}\left(h_{i k}^{\alpha} h_{j l}^{\alpha}-h_{i l}^{\alpha} h_{j k}^{\alpha}\right) \\
\mathrm{d} \omega_{\beta}^{\alpha}=\sum_{\gamma} \omega_{\beta}^{\gamma} \wedge \omega_{\gamma}^{\alpha}+\frac{1}{2} \sum_{k, l} R_{\alpha \beta k l} \omega^{k} \wedge \omega^{l} \\
R_{\alpha \beta i j}=K_{\alpha \beta i j}+\sum_{k}\left(h_{i k}^{\alpha} h_{k j}^{\beta}-h_{j k}^{\alpha} h_{k i}^{\beta}\right)
\end{array}\right. \tag{2.9}
\end{gather*}
$$

where h is the second fundamental form of M^{n}, and $R_{i j k l}, R_{\alpha \beta i j}$ are the components of the Riemannian curvature tensor R and the normal curvature tensor R^{\perp} with respect to $\left\{e_{A}\right\}$. The mean curvature vector of M^{n} is defined as follows

$$
\zeta=\frac{1}{n} \sum_{\alpha} \operatorname{tr} H_{\alpha} \cdot e_{\alpha}
$$

where $\operatorname{tr} H_{\alpha}$ is the trace of the matrix $H_{\alpha}=\left(h_{i j}^{\alpha}\right)$. We call $H=|\zeta|$ the mean curvature of M^{n}. Write

$$
S=\sum_{\alpha} \operatorname{tr} H_{\alpha}^{2}
$$

Let ρ be the scalar curvature of M^{n}. Then we have ${ }^{[1]}$

$$
\begin{equation*}
\rho=n(n-1)+n^{2} H^{2}-S \tag{2.13}
\end{equation*}
$$

Define the covariant derivative of $h_{i j}^{\alpha}$ as follows

$$
\begin{equation*}
\sum_{k} h_{i j k}^{\alpha} \omega^{k}=d h_{i j}^{\alpha}+\sum_{\beta} h_{i j}^{\beta} \omega_{\beta}^{\alpha}-\sum_{l} h_{l j}^{\alpha} \omega_{i}^{l}-\sum_{l} h_{i l}^{\alpha} \omega_{j}^{l} . \tag{2.14}
\end{equation*}
$$

Then ${ }^{[4]}$

$$
\begin{equation*}
h_{i j k}^{\alpha}-h_{i k j}^{\alpha}=-K_{\alpha i j k} \tag{2.15}
\end{equation*}
$$

$$
\begin{equation*}
h_{i j k l}^{\alpha}-h_{i j l k}^{\alpha}=\sum_{m}\left(h_{m i}^{\alpha} R_{m j k l}+h_{m j}^{\alpha} R_{m i k l}\right)-\sum_{\beta} h_{i j}^{\beta} R_{\alpha \beta k l} . \tag{2.16}
\end{equation*}
$$

Note that M^{n} is an invariant submanifold ${ }^{[1]}$ in $\mathbf{C} P^{n+p}$, i.e., $K_{\alpha i j k}=0$, so

$$
\begin{equation*}
h_{i j k}^{\alpha}=h_{i k j}^{\alpha} . \tag{2.17}
\end{equation*}
$$

From (2.16), (2.17), the Laplacian of $h_{i j}^{\alpha}$ is

$$
\begin{align*}
\Delta h_{i j}^{\alpha} & =\sum_{k} h_{i j k k}^{\alpha} \\
& =\sum_{k} h_{k k i j}^{\alpha}+\sum_{k, m}\left(h_{i m}^{\alpha} R_{m k j k}+h_{k m}^{\alpha} R_{m i j k}\right)-\sum_{\beta, k} h_{k i}^{\beta} R_{\alpha \beta j k} . \tag{2.18}
\end{align*}
$$

For the frame field chosen above (see (2.1)), using (2.5), it is not difficult to obtain the following lemma.

Lemma 2.1 Let M^{n} be an n-dimensional totally real submanifold in $\mathbf{C} P^{n+p}$. Then
(1) $K_{i^{*} j^{*} k l}=K_{i j k l}=\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}$;
(2) $K_{\lambda A i j}=0, K_{\lambda^{*} A i j}=0$;
(3) $K_{\alpha i j k}=0, K_{\alpha \lambda j k}=0$.

3. Position of parallel umbilical normal vector field in the normal bundle

Let M^{n} be a totally real submanifold in $\mathbf{C} P^{n+p}$. D^{\perp} denotes the normal connection of $T^{\perp} M^{n}$. We can split $T^{\perp} M^{n}$ into the direct sum

$$
T^{\perp} M^{n}=V \oplus V^{\perp}
$$

where V and V^{\perp} are two subbundles of $T^{\perp} M^{n}$ as we state in the introduction.

Proof of Theorem 1 Suppose the parallel umbilical normal vector field $\xi=\xi_{1}+\xi_{2}$, where $\xi_{1} \in C^{\infty}(V), \xi_{2} \in C^{\infty}\left(V^{\perp}\right)$. It suffices to prove that $\xi_{1}=0$. Choose local field of orthonormal frames (2.1) such that

$$
\xi_{1}=\left|\xi_{1}\right| e_{1^{*}}, \quad \xi_{2}=\left|\xi_{2}\right| e_{n+1}
$$

From that ξ is umbilical, we have

$$
\left|\xi_{1}\right| h_{i j}^{1^{*}}+\left|\xi_{2}\right| h_{i j}^{n+1}=B \delta_{i j},
$$

where $B=\langle\xi, \zeta\rangle$. It is clear that the above formula is equivalent to

$$
\left|\xi_{1}\right| \omega_{i}^{1^{*}}+\left|\xi_{2}\right| \omega_{i}^{n+1}=B \omega^{i} .
$$

On the other hand, ξ is parallel, so

$$
\begin{aligned}
0= & D^{\perp} \xi=D^{\perp}\left(\left|\xi_{1}\right| e_{1^{*}}+\left|\xi_{2}\right| e_{n+1}\right) \\
= & \left(\mathrm{d}\left|\xi_{1}\right|+\left|\xi_{2}\right| \omega_{n+1}^{1^{*}}\right) \otimes e_{1^{*}}+\left(\mathrm{d}\left|\xi_{2}\right|+\left|\xi_{1}\right| \omega_{1^{*}}^{n+1}\right) \otimes e_{n+1}+ \\
& \sum_{\alpha \neq n+1,1^{*}}\left(\left|\xi_{1}\right| \omega_{1^{*}}^{\alpha}+\left|\xi_{2}\right| \omega_{n+1}^{\alpha}\right) \otimes e_{\alpha} .
\end{aligned}
$$

Therefore

$$
\left\{\begin{array}{l}
\mathrm{d}\left|\xi_{1}\right|+\left|\xi_{2}\right| \omega_{n+1}^{1^{*}}=0, \tag{3.1}\\
\mathrm{~d}\left|\xi_{2}\right|+\left|\xi_{1}\right| \omega_{1^{*}}^{n+1}=0, \\
\left|\xi_{1}\right| \omega_{1^{*}}^{\alpha}+\left|\xi_{2}\right| \omega_{n+1}^{\alpha}=0, \alpha \neq n+1,1^{*}
\end{array}\right.
$$

Taking exterior derivative of (3.3), we obtain

$$
\begin{align*}
0= & \left(\mathrm{d}\left|\xi_{1}\right|+\left|\xi_{2}\right| \omega_{n+1}^{1^{*}}\right) \wedge \omega_{1^{*}}^{\alpha}+\left(\mathrm{d}\left|\xi_{2}\right|+\left|\xi_{1}\right| \omega_{1^{*}}^{n+1}\right) \wedge \omega_{n+1}^{\alpha}+ \\
& \sum_{\beta \neq n+1,1^{*}}\left(\left|\xi_{1}\right| \omega_{1^{*}}^{\beta}+\left|\xi_{2}\right| \omega_{n+1}^{\beta}\right) \wedge \omega_{\beta}^{\alpha}+ \\
& \sum_{j}\left(\left|\xi_{1}\right| \omega_{1^{*}}^{j}+\left|\xi_{2}\right| \omega_{n+1}^{j}\right) \wedge \omega_{j}^{\alpha}+ \\
& \frac{\left|\xi_{1}\right|}{2} \sum_{i, j} K_{\alpha 1^{*} i j} \omega^{i} \wedge \omega^{j}+\frac{\left|\xi_{2}\right|}{2} \sum_{i, j} K_{\alpha n+1 i j} \omega^{i} \wedge \omega^{j} \\
= & -B \sum_{j} \omega^{j} \wedge \omega_{j}^{\alpha}+\frac{\left|\xi_{1}\right|}{2} \sum_{i, j} K_{\alpha 1^{*} i j} \omega^{i} \wedge \omega^{j}+\frac{\left|\xi_{2}\right|}{2} \sum_{i, j} K_{\alpha n+1 i j} \omega^{i} \wedge \omega^{j} \tag{3.4}
\end{align*}
$$

From Lemma 2.1, we know that $K_{\alpha n+1 i j}=0$. And we also have

$$
0=\mathrm{d} \omega^{\alpha}=\sum_{j} \omega^{j} \wedge \omega_{j}^{\alpha}
$$

so (3.4) reduces to

$$
\frac{\left|\xi_{1}\right|}{2} \sum_{i, j} K_{\alpha 1^{*} i j} \omega^{i} \wedge \omega^{j}=0
$$

i.e.

$$
\left|\xi_{1}\right| K_{\alpha 1^{*} i j}=0
$$

Setting $\alpha=2^{*}$ and using Lemma 2.1 gives

$$
0=\left|\xi_{1}\right|\left(\delta_{2 i} \delta_{1 j}-\delta_{2 j} \delta_{1 i}\right)
$$

Setting $i=2$ and $j=1$, we have $\left|\xi_{1}\right|=0$. This completes the proof.

4. Pinching for the square of the length of the second fundamental form

According to Theorem 1, we can choose a local field of orthonormal frames

$$
\begin{gathered}
e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{n+p} \\
e_{1^{*}}=J e_{1}, \ldots, e_{n^{*}}=J e_{n}, e_{(n+1)^{*}}=J e_{n+1}, \ldots, e_{(n+p)^{*}}=J e_{n+p}
\end{gathered}
$$

in $\mathbf{C} P^{n+p}$, in such a way that, restricted to $M^{n},\left\{e_{1}, \ldots, e_{n}\right\}$ are tangent to M^{n}, and $\zeta=H e_{n+1}$. It is easy to see that

$$
\operatorname{tr} H_{\alpha}= \begin{cases}n H, & \alpha=n+1 \tag{4.1}\\ 0, & \alpha \neq n+1\end{cases}
$$

Set

$$
\tau=S-n H^{2}
$$

From (2.18), noting that M^{n} has parallel mean curvature vector and $\sum_{k} h_{k k i j}^{\alpha}=0$, one gets

$$
\begin{align*}
\frac{1}{2} \Delta \tau=\sum_{\alpha \neq n+1} \sum_{i, j, k}\left(h_{i j k}^{\alpha}\right)^{2}+ & \sum_{\alpha \neq n+1} \sum_{i, j, k, m} h_{i j}^{\alpha}\left(h_{i m}^{\alpha} R_{m k j k}+h_{k m}^{\alpha} R_{m i j k}\right)- \\
& \sum_{\alpha \neq n+1} \sum_{\beta, k} h_{i j}^{\alpha} h_{k i}^{\beta} R_{\alpha \beta j k} . \tag{4.2}
\end{align*}
$$

By using (2.5), (2.10), (2.12), (4.1) and the fact that M^{n} is pseudo-umbilical, we can get

$$
\begin{align*}
& \sum_{\alpha \neq n+1} \sum_{i, j, k, m} h_{i j}^{\alpha}\left(h_{i m}^{\alpha} R_{m k j k}+h_{k m}^{\alpha} R_{m i j k}\right) \\
& =n\left(1+H^{2}\right) \tau+\frac{1}{2} \sum_{\alpha, \beta \neq n+1} \operatorname{tr}\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)^{2}-\sum_{\alpha, \beta \neq n+1}\left(\operatorname{tr}\left(H_{\alpha} H_{\beta}\right)\right)^{2} \tag{4.3}\\
& \sum_{\alpha \neq n+1} \sum_{\beta, k} h_{i j}^{\alpha} h_{k i}^{\beta} R_{\alpha \beta j k} \\
& =-\sum_{i} \operatorname{tr} H_{i^{*}}^{2}-\frac{1}{2} \sum_{\alpha, \beta \neq n+1} \operatorname{tr}\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)^{2} \tag{4.4}
\end{align*}
$$

From (4.2), (4.3), (4.4), we have
Lemma 4.1 For any real number a, the Laplacian of τ is

$$
\begin{aligned}
\frac{1}{2} \Delta \tau= & \sum_{\alpha \neq n+1} \sum_{i, j, k}\left(h_{i j k}^{\alpha}\right)^{2}+\sum_{i} \operatorname{tr} H_{i^{*}}^{2}-a n\left(1+H^{2}\right) \tau+ \\
& (1+a) \sum_{\alpha \neq n+1} \sum_{i, j, k, m} h_{i j}^{\alpha}\left(h_{i m}^{\alpha} R_{m k j k}+h_{k m}^{\alpha} R_{m i j k}\right)+ \\
& \frac{1-a}{2} \sum_{\alpha, \beta \neq n+1} \operatorname{tr}\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)^{2}+a \sum_{\alpha, \beta \neq n+1}\left(\operatorname{tr}\left(H_{\alpha} H_{\beta}\right)\right)^{2} .
\end{aligned}
$$

Lemma 4.2 ${ }^{[5]}$ Let $A_{1}, A_{2}, \ldots, A_{m}$ be symmetric $(n \times n)$-matrices, $m \geq 2$. Then

$$
\sum_{\alpha, \beta=1}^{m} \operatorname{tr}\left(A_{\alpha} A_{\beta}-A_{\beta} A_{\alpha}\right)^{2}-\sum_{\alpha, \beta=1}^{m}\left(\operatorname{tr}\left(A_{\alpha} A_{\beta}\right)\right)^{2} \geq-\frac{3}{2}\left(\sum_{\alpha=1}^{m} \operatorname{tr}\left(A_{\alpha}^{2}\right)\right)^{2}
$$

and the equality holds if and only if one of the following cases occurs:
(1) $A_{1}=\cdots=A_{m}=0$;
(2) Only two of the matrices $A_{\alpha}(\alpha=1, \ldots, m)$ cannot be zero. Moreover, if $A_{1} \neq 0, A_{2} \neq$ $0, A_{3}=\cdots=A_{m}=0$, then $\operatorname{tr} A_{1}^{2}=\operatorname{tr} A_{2}^{2}$, and there exists an orthogonal matrix T, such that

$$
T A_{1} T^{-1}=\frac{1}{2} \sqrt{\sum_{\alpha=1}^{m} \operatorname{tr} A_{\alpha}^{2}}\left(\begin{array}{cc|c}
0 & 1 & \cap \\
1 & 0 & 0 \\
\hline \mathbf{0} & \mathbf{0}
\end{array}\right), T A_{2} T^{-1}=\frac{1}{2} \sqrt{\sum_{\alpha=1}^{m} \operatorname{tr} A_{\alpha}^{2}}\left(\begin{array}{cc|c}
1 & 0 & 0 \\
0 & -1 & 0 \\
\hline \mathbf{0} & \mathbf{0}
\end{array}\right)
$$

Proof of Theorem 2 Setting $a=-1$ in Lemma 4.1, from Lemma 4.2, one can get

$$
\begin{equation*}
\frac{1}{2} \Delta \tau \geq \sum_{\alpha \neq n+1} \sum_{i, j, k}\left(h_{i j k}^{\alpha}\right)^{2}+\sum_{i} \operatorname{tr} H_{i^{*}}^{2}+\tau\left(n\left(1+H^{2}\right)-\frac{3}{2} \tau\right) \tag{4.5}
\end{equation*}
$$

If $S \leq \frac{n}{3}\left(2+5 H^{2}\right)$, i.e., $\tau \leq \frac{2}{3} n\left(1+H^{2}\right)$, then the right hand of (4.5) is nonnegative and τ is a subharmonic function on M^{n}. By Hopf's maximum principle, we know that τ is a constant.

Hence

$$
\begin{align*}
& h_{i j k}^{\alpha}=0, \quad \forall i, j, k, \alpha \tag{4.6}\\
& H_{i^{*}}=0, \quad \forall i \tag{4.7}\\
& \tau\left(n\left(1+H^{2}\right)-\frac{3}{2} \tau\right)=0 \tag{4.8}
\end{align*}
$$

(4.8) implies: if $S<\frac{n}{3}\left(2+5 H^{2}\right)$, i.e., $\tau<\frac{2}{3} n\left(1+H^{2}\right)$, then $\tau=0, M^{n}$ is totally umbilical, and if $S=\frac{n}{3}\left(2+5 H^{2}\right)$, i.e., $\tau=\frac{2}{3} n\left(1+H^{2}\right)$, then

$$
\sum_{\alpha, \beta \neq n+1} \operatorname{tr}\left(H_{\alpha} H_{\beta}-H_{\beta} H_{\alpha}\right)^{2}-\sum_{\alpha, \beta \neq n+1}\left(\operatorname{tr}\left(H_{\alpha} H_{\beta}\right)\right)^{2}=-\frac{3}{2} \tau^{2}
$$

From Lemma 4.2 and (4.7), there exist $\alpha_{1}, \alpha_{2} \in\left\{n+2, \ldots, n+p,(n+1)^{*}, \ldots,(n+p)^{*}\right\}$, such that

$$
\begin{gather*}
H_{\alpha_{1}}=\frac{\sqrt{\tau}}{2}\left(\begin{array}{cc|c}
0 & 1 & 0 \\
1 & 0 & 0 \\
\hline \mathbf{0} & \mathbf{0}
\end{array}\right), \quad H_{\alpha_{2}}=\frac{\sqrt{\tau}}{2}\left(\begin{array}{cc|c}
1 & 0 & 0 \\
0 & -1 & 0 \\
\hline & \mathbf{0} & \mathbf{0}
\end{array}\right), \tag{4.9}\\
H_{\alpha}=0, \quad \alpha \neq n+1, \alpha_{1}, \alpha_{2} . \tag{4.10}
\end{gather*}
$$

Using (4.6), (4.10) and noting that M^{n} has parallel mean curvature vector, $\omega_{n+1}^{\alpha}=0$, we have

$$
\begin{aligned}
0 & =\mathrm{d} h_{i j}^{\alpha}+\sum_{\beta} h_{i j}^{\beta} \omega_{\beta}^{\alpha}-\sum_{l} h_{l j}^{\alpha} \omega_{i}^{l}-\sum_{l} h_{i l}^{\alpha} \omega_{j}^{l} \\
& =\mathrm{d} h_{i j}^{\alpha}+h_{i j}^{\alpha_{1}} \omega_{\alpha_{1}}^{\alpha}+h_{i j}^{\alpha_{2}} \omega_{\alpha_{2}}^{\alpha}-\sum_{l} h_{l j}^{\alpha} \omega_{i}^{l}-\sum_{l} h_{i l}^{\alpha} \omega_{j}^{l}
\end{aligned}
$$

Setting $\alpha=\alpha_{1}, i=1, j \geq 3$ and $\alpha=\alpha_{2}, i=2, j \geq 3$, we see that

$$
\begin{align*}
\omega_{j}^{2}=0, & j \geq 3 \tag{4.11}\\
\omega_{j}^{1}=0, & j \geq 3 \tag{4.12}
\end{align*}
$$

Taking exterior derivative of (4.11) and using (4.9)-(4.12) and Lemma 2.1 gives

$$
0=\omega^{2} \wedge \omega^{j}, \quad j \geq 3
$$

This shows that $n=2$. By Gauss equation, we compute the sectional curvature of M^{2}

$$
\begin{aligned}
R_{1212} & =K_{1212}+\sum_{\alpha}\left[h_{11}^{\alpha} h_{22}^{\alpha}-\left(h_{12}^{\alpha}\right)^{2}\right]=1+H^{2}-\left(\frac{\sqrt{\tau}}{2}\right)^{2}-\left(\frac{\sqrt{\tau}}{2}\right)^{2} \\
& =\frac{1}{3}\left(1+H^{2}\right)
\end{aligned}
$$

Since H is a constant, M^{2} is locally isometric to the sphere $S^{2}\left(\sqrt{\frac{3}{1+H^{2}}}\right)$. This completes the proof.

Remark From (2.13), Theorem 2 also gives a pinching constant $n\left(n-\frac{5}{3}\right)\left(1+H^{2}\right)$ for the scalar curvature.

References

[1] CHEN Bangyen, OGIUE K. On totally real submanifolds [J]. Trans. Amer. Math. Soc., 1974, 193: $257-266$.
[2] LUDDEN G D, OKUMURA M, YANO K. A totally real surface in $C P^{2}$ that is not totally geodesic [J]. Proc. Amer. Math. Soc., 1975, 53(1): 186-190.
[3] DU Hongquan. Totally real pseudo-umbilical submanifolds in a complex projective space [J]. J. Hangzhou Univ. Nat. Sci. Ed., 1998, 25:8-14. (in Chinese)
[4] CHERN S S, DO C M, KOBAYASHI S. Minimal Submanifolds of a Sphere with Second Fundamental form of Constant Length [M]. Berlin: Spring-Verlag, 1970, 59-75.
[5] LI Anmin, LI Jimin. An intrinsic rigidity theorem for minimal submanifolds in a sphere [J]. Arch. Math. (Basel), 1992, 58(6): 582-594.

[^0]: Received date: 2006-03-02; Accepted date: 2006-10-12
 Foundation item: the Natural Science Foundation of Anhui Educational Committee (No. KJ2008A05ZC); the Younger Teachers of Anhui Normal University (No. 2005xqn01).

