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Abstract  In the present pagper we investigate the number of periodic lutionsof the following differentid e
quation
dy Ai(y+ Ar(D) V2 + Aa() v® . .
dt = ao(t) + ar(t)y+ a(t)y .
which was discussed in pgper [1,2] , and obtain the theorem by the method of cross- ratio of the slutions of
( * *) without the traditional condition assunption that the functions A; (t) , g (t) (i=1,2,3; j=0,1,2)
are differentid .
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1. Introduction

It' s well - known that the question on the existence and the number of periodic lutions about
differential equation plays an important role in the studies of nonlinear ocillation and the qualtative
theory of ordinary differential equations. We see eadly that the resultsin thisareaisusfful to theexis
tence and uniqueness of limit cycle of differential systems and applied widely in Physics and Engineer-
ing.

Conds der the following differentia equation

dy _ F(t.y) = Ar(Dy+ Ar() VP + Ag(D) Y
dt Y a(t) + a()y + a () y?

(1.1

Congtructing one strip domain such that the olutionof (1.1) y(t) inthe boundary of this domain will
not leave it , and then by udng Brouwer fixed point theory , it iseasy to get the theoremsfor the exis
tence of periodic olutionsof (1.1)!*?. Comrade Lilin once obtained the theorem for the number of
periodic solutionsof (1.1) by the Lloyd s methodin [2] in the above theorem , however , it is needed
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that the condition at thefunctions A;(t) , a(t) (i=1,2,3; j=0,1,2) isnot only continuous T - pe-
riodic, but as differential (see Theorem 2.1in [2]) .

Out resultsin this paper , obtained by the method of cross- ratio of slutionsof (1.1) , givesthe
sufficient conditions under which equation (1.1) hasat most two non - trivia periodic solutions with-
out the traditiona assumption that A;(t) , g(t) (i=1,2,3; j=0,1,2) are differentid functions, as
iswell known such an assumption plays an important roa in the proofsof many results [1,2 ,etc].

2. Resultsin [2]

Change equation (1.1) to following form

dz
dt

where P (t) (i =0,1,2, ,n) are T- periodicfunctions, n may beinifinity , the number of T - pe

= Po(t) + Pi(t)z+ + P(t) 2", (2.1)

riodic olutionsof (2.1) has been discussed in paper'®* | thus we can use these resultsfor ours. First-
ly , we condder the problem to tranform (1.1) into (2.1).

Generally , ap(t) + ay(t) y+ az(t) y* may be decomposed into (bo(t) + by (t) y) (co(t) + ¢
(t)y) , where bo(t) ,co(t),by(t),ci(t) arerea functions, and bo(t) co(t) = ag(t) , by(t) ca(t)
= ay(t), bo(t) ca(t) + co(t) bi(t) = as(t). Here, weassume aZ(t) - 4a9(t) a(t) >0, then this
decomposdtion is suitable. Let

SV A— __bo()r
T bo(t) + by(t)y Y= 1. (o) r

Trandormation (2. 2) is topologicd in the neighbourhood of y =0. By the way, we aways assume
that the resultsof this section only hold in the neighbourhood of y=0. Using (2.2) , (1.1) becomes
(Q)_[ . (boby - byhbg) r?

r then (2.2)

Bi, + B3, + B3, + B1,) -
_d.[ _ ( ir 2r 3r 4r) bO bO ) (2 3)
dt ~ (co + er) :
where the® - denote the derivative with repect to t, and
a
e= (a- 4apa)?,
Aq
B, = ,
Y7 o
3A; b
Bz = Az - bO y (24)
3A 2
Bz = Agby - 2Azb + b
0
AL
Bs = Azbi - Aszbgb; - _l_l.
bo
Let z -—I— , then
Co + er
Z
r= I%QQQ' (2.5)
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We can think tranformation (2.5) is topologica. By (2.5) , (2.3) becomes

dz _Pyz®

dt = Pz + P222+ P323+1_ ez (2.6)
or
4z < on
at = ZPnz , 2.7
where
_(Bi1- ¢ by
PL = Co " bo’
Cpe - cge - 2Bic boe - bob; + by b
P2:O Co 11+Bz+0 bg by 10,(2.8)
Co bo
Bics
P3 = B3co - Bacy + ,
Co
Py = Bacf,
Ps = B4c%e.
Now , we assume B4 =0, that is
Asy? + Ay + Ay = 0, (2.9

t
by (t)
Theorem If & (t) ,A;(t) (i=0,1,2;j=1,2,3) are continuous differential T - periodic func
tions, (2.9) holds. Then when

where y = - , then P (k>3) of (2.7) iszero. By the resultsof [3], we give the following

Bi + Bou + bgu® > 0, (2.10)
where u = -cl(t)t . equation (1.1) has at most two nontrivial T - periodic sol utions.
Proof Snce (2.9) holds, (2.7) becomes
‘gtz = Piz+ Pz% + P37z, (2.11)

The resultsof paper [3] guarantee that (2.11) hasat most three T - periodic olutions, when (2. 10)
holds, that isthe Psof (2.11) ismorethan zero. Because z =0isoneof T - periodic olutionsof (2.
11) , and trandormation (2.2) , (2.5) are topologica , then (1.1) and (2.7) hasthe same number of
T - periodic lutions, that is, three. But z=0, thatis, y=0istrivid. Thenthe conclusonof The
orem 2.1 istrue.

3. Our Main Results

Firstly , we introduce the following lemma which is needed in the proof of the Theorem.

Lemmal® If | issomeopen interval, y 1, d'(y) existsanddg’'(y) = 0, andleta,b,c,d |
such that a< b<c< d, then
1 _ b _ d 1 c
Tt b a[j_ifb_ a| 9(y) dy+£_?d_ Clcg(y) dy] 2 - tJ’bg(y) dy. (3.1
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Which a9 can be written

d- c P i d
(c- a)(d- a)Jag(y) dy+( - b)(d - a)ch(y) dy

(3.2

The equality dgn holdsif andonly if g(y) islinearfory [a,d]. If ' (y) existsand d' (y) < 0,
then the inequality sgnof (3.1) and (3.2) is' <" and the equaity sgn holdsif and only if g(y) is
linear for y [ a,d].

We consider the differentia equation (1.1) . Where A;(t) ,a(t) (i=1,2,3;j=0,1,2) arecon
tinuous T - periodic functions, may not be differentia. Our mainideais dmilar to that of Theorem 1
inpaper [5], that is, if ¢;(t) (i =1,2,3,4) areffour different T - periodic olutions on the same
subinterval J of |, and f' (t,y) isconcave (convex) in yfor anyfixed t 1, by goplying the lemma,
the cross- ratio (with the solutions properly numbegr)

R(1) = o3(t) - @1(t) |@a(t) - 02('[)'
24(t) - 01(t) [ @a(t) - @2(t)
is monotone increasing (monotone decresing) , whjch contradicts with the hypothssthat R(t) is T -
periodic.

Here, we d® assumethat a (t)2- 4ao(t) a([t) >0, then ag(t) + ai(t) y + ax(t) y* may be deconr
posdinto (bo(t) + bi(t) y) (co(t) +c(t) y) , where bi(t), a(t), i =0,1; are red functions, and by
(1) co(t) =ao(t), bi(t) clt) =ax(t), bo(t) cift) +co(t) by (1) =a(t) , thus, we have

f(t.y) = Ar(y) + Ax(t) v + 3(t)2\/3
ao(1) + a(D)y + aé(t)y
_ Ay + Ap(t) v+ As(D) ¥
(bo(t) + bi(t)y) (cp(t) + ci(t)y)
do(t) di (1)
" oo (D + bi(Dy T (D +c(pny T RVYH AU,
Which di(t) (i =0,1,2,3) satify that docp + dibg + docay + dibiy + (day + d3) (@ + a1y +
azy?) = A1y + Ay? = Agy® | that is

dogp + dibp + dzag =0
doci1 + dilbp + agdz + dsar = Az
dra; + dzax = A

d2a2 = Aj3

(3.4
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We define that Q denotes the domain { y:bo(t) + by(t) y>0and co(t) + ci(t) y>0}, Qs de
notesthe domain { y:bo(t) + by(t) y>0and co(t) +c(t) y<0} {y:bo(t) + b (t) y<0and cgy
(t) + c1(t) y>0} and Q3 denotes the domain { bp(t) + by (t) y<0and co(t) +ci(t) y<O}.

Derivate f (t,y) in y, we have

dg by dic1
fr(t, = dy - - ,
(Y = e hy)? ™ (@ + cay)?
2 2
f"(t,y) _ 2dob1 3+ 2d101 -
(bo + byy) (co + c1y)
6dgb} 6d,c
flll(t’y) - (VLR 101

(bo+ b1y)* (co+ cay)®
Thus, we obtain the following

Theorem 1 If Aj(t),a(t) (i=1,2,3;j=0,1,2) arecontinuous T - periodic functions, as -
4apa;>0, and - doby= 0, - dic;= 0, (or - dgby< 0, - dic; < 0). Then equation (1.1)

has at most two non - trivial T - periodic solutions at the domainQ; orQ, or Q3.

Proodf We discuss the case at the domain Q; the other casesis treated analogoudy.
Recdll that through any point (t9,{) | x R, there passes a unique maximal lution o(t, tg,
C)(t 1(to,) of (1.1)) ,inthefollowing to [0, T] isarbitrary, but fixed.
Next , we assume o (t) = o(t,t0,{;) (i =1,2,3,4;(1<{,<{3<{,) arefour different T - pe
riodic lutionsof (1.1) on the sameinterval J C 1, and such that ¢, < @, < 03 < 04.
From (1.1) , we get

92(t) - G5(t _ Dz(t)_f'_(_t_._)o_
02(t) - o1(1) _Iol(o o2(D) - (¥ U (3.5
And by intergration
oo(t) - o1(t _ _f'_(T_.J)_
n C(2-0C1 _I_[a(t) 2,(T) - ﬂl(T)ddy' (3.6)

where a(t) denotesthe domain to<T < t,0:(t) € y< 02(t) (see Fig.1). From (3.1) and (3.6) ,
we get

RO _ _ray) _ray
20 *Jfaw o0 20 - 0@ TV [ w0 w0 w) — o) T
[Joo 20 -0 TY [y wo @m0 - mm) TV

B4 - O3
= ¢ a dy +
J]a(t) (03 - 01) (04 - 01) .y day
- o1

[47] ,
JTC(t) (02 - 0) (04 - 01) (T ,y) ddy-

(04 - 093) (02 - 01) (04 + @3- @ - 07) ,
_[l’b(t) (03 - 01) (04 - @1) (04 - 02) (03 - @2) F.y ddy, (3.7)

where b(t) denotesthe domain to<T < t, @2(t) £ y< a3(t) ,and c(t) denotesthe domain
to ST < t, @3(t) € y < o4(t).
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Suppressing the variableT of intergrationin thelast threeintegras, let g(y) =f' (t,y) , putting
a=@1(T), b=g,(T), c=03() ,and d=o4(T) in(3.2) ,dearly, ¢g"(y) 2 0 (or g'(y) <0), y
R, for any fixedT [ to,t], hence we may goply the lemma, we obtain
94 - 03 r°2 92 - 91 %
f'(Ct,y)d f'(T ,y) dy -
(03 - @1) (04 - 01)_] o, . YT (os- 02 (o4 - 01)_] o @) dy

(04- 03) (B2 - 09)(@a+ @3- B> - B1) %
(03 - 01) (04 - 01) (04 - @2) (03- @2)] o,

(3.8

f' (T ,y) dy > 0.

Integrating the above inequality with respect toT from toto t, we get the last expressonin (3.
7) to bepostive. Thus, we conclude that R(t) ismonotoneincresng, that is, R(0) < R(t) , which
yields a contradiction with the fact that R(t) isa T - periodic function by the hypothss. S (1.1)
has at most three T - periodic solutions at the domain Q1 (Q,or Q3) , but y=0istrivia, then the
proof of Theorem is completed.
If a2- 4agap, <0, we have
A1V+A2V2+A3V3_& +A2612- A381+ Ey + F

o+ ary + ay? | &’ as ap + ay + apy’’

Azag Azapa - Azaf F_Asalao- Az @ ag
a a5 ' a3 '

Smilar to the proof of Theorem 1, we have

where E= A; -

Theorem 2 If Ai(t),a(t) (i=1,2,3; j=0,1,2) arecontinuous T - periodic functions, a3 -
4aya; <0, and
Ey + F
a + ay + ay’

"=20 (or £0).

Then equation (1.1) has at most two non - trivial T - periodic sol utions at the domainQ1 orQ, or
Qj.
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dy Ay + A ()Y + As(D) Y

dt = ag(D) + a0y + a()y? (=)
| (* %) (* %)
Ai(t),g(t) (i=1,2,3,j=0,1,2)
, [2] CUAD,a (D
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