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Abstract: Let G be a simple graph. Let f be a mapping from V (G)∪E(G) to {1, 2, · · · , k}.
Let Cf (v) = {f(v)} ∪ {f(vw)|w ∈ V (G), vw ∈ E(G)} for every v ∈ V (G). If f is a k-proper-
total-coloring, and if Cf (u) 6= Cf (v) for u, v ∈ V (G), uv ∈ E(G), then f is called k-adjacent-
vertex-distinguishing total coloring of G(k-AVDTC of G for short). Let χat(G) = min{k|G has
a k-adjacent-vertex-distinguishing total coloring}. Then χat(G) is called the adjacent-vertex-
distinguishing total chromatic number. The adjacent-vertex-distinguishing total chromatic
number on the Cartesion product of path Pm and complete graph Kn is obtained.
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1. Introduction

The graphs considered in this paper are connected, limited, undirected and simple graphs.

A k-proper-total-coloring of a graph G is a mapping f from V (G) ∪ E(G) to {1, 2, · · · , k} such

that

1). ∀u, v ∈ V (G), if uv ∈ E(G), then f(u) 6= f(v);

2). ∀e1, e2 ∈ E(G), e1 6= e2 , if e1, e2 have common end vertex, then f(e1) 6= f(e2);

3). ∀u ∈ V (G), e ∈ E(G), if u is the end vertex of e, then f(u) 6= f(e).

Let f be a k-proper-total-coloring of G. Let Cf (u) = {f(u)} ∪ {f(uw)|w ∈ V (G), uw ∈ E(G)}

(or simply denoted by C(u)) and Cf (u) = {1, 2, · · · , k} − Cf (u) (or simply denoted by C(u))

for every u ∈ V (G). Cf (u) is called the color set of u’s. If ∀u, v ∈ V (G), uv ∈ E(G), we have

Cf (u) 6= Cf (v), i.e., Cf (u) 6= Cf (v), then f is called a k-adjacent-vertex-distinguishing total

coloring (k-AVDTC in short). The number min{k|G has a k-adjacent-vertex-distinguishing total

coloring } is called the adjacent-vertex-distinguishing total chromatic number and is denoted by

χat(G).

The theory of vertex-distinguishing proper edge-coloring has been investigated in several

papers[1−3,5]. Adjacent strong edge coloring (i.e., adjacent-vertex-distinguishing proper edge-

coloring) is considered in [7] by Zhang Zhongfu et al. The concept about the adjacent-vertex-

distinguishing total coloring is proposed by Zhang Zhongfu and Chen Xiang’en et al in [6]. And
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the adjacent-vertex-distinguishing total colorings of cycle, complete graph, complete bipartite

graph, fan, wheel and tree are discussed in [6]. According to these results, for adjacent-vertex-

distinguishing total chromatic number, a conjecture is given in [6].

Conjecture 1.1 [6] For every connected graph G with order at least 2, we have χat(G) ≤

∆(G) + 3.

Let Pm and Kn be a path and a complete graph respectively:

V (Pm) = {u1, u2, · · · , um}, E(Pm) = {u1u2, u2u3, · · · , um−1um};

V (Kn) = {v1, v2, · · · , vn}, E(Kn) = {vivj |i, j = 1, 2, · · · , n, i < j}.

Construct a new graph Pm × Kn such that

V (Pm × Kn) = {wij |i = 1, 2, · · · , m; j = 1, 2, · · · , n},

E(Pm × Kn) = {wijwst|i = s and vjvt ∈ E(Kn) or j = t and vivs ∈ E(Pm)}.

The graph Pm × Kn is called the Cartesion product of Pm and Kn.

The adjacent-vertex-distinguishing total coloring on the Cartesion product of path Pm and

complete graph Kn is studied and the corresponding chromatic number is obtained in this paper.

Theorems 2.1 and 2.2 in this paper will illustrate that Conjecture 1.1 is valid for the Cartesion

product of path Pm and complete graph Kn.

The following lemma is obvious.

Lemma 1.2[6] If G does not have two distinct vertices of maximum degree which are adjacent,

then χat(G) ≥ ∆(G) + 1; If G has two distinct vertices of maximum degree which are adjacent,

then χat(G) ≥ ∆(G) + 2.

For the graph-theoretic terminology the reader is referred to [4].

2. Main results

If n = 1, then Pm × Kn = Pm. From the results in [6], we have

Theorem 2.1

χat(Pm × K1) =

{

3, m = 2, 3;
4, m ≥ 4.

Theorem 2.2 If n ≥ 2, then we have

χat(Pm × Kn) =

{

n + 2, m = 2;
n + 3, m ≥ 3.

Proof We distinguish 2 cases.

Case 1. m = 2.

In this case χat(Pm ×Kn) ≥ n + 2 by Lemma 1.2. In order to prove χat(Pm ×Kn) = n + 2,

we need only to prove that Pm × Kn has a (n + 2)-AVDTC. Let C = {1, 2, · · · , n + 2} be the
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set composed of all n + 2 colors. We appoint that if some color c is less than 1 or larger than

n + 2, then we identify c with r, where r ∈ {1, 2, · · · , n + 2} and c ≡ r(mod n + 2). Construct a

mapping f from V (Pm × Kn) ∪ E(Pm × Kn) to C as follows.

f(w1iw1j) = f(w2iw2j) = i + j − 2, i, j = 1, 2, · · · , n, i 6= j.

f(w1i) = n + i − 1, f(w2i) = n + i, f(w1iw2i) = n + 2i, i = 1, 2, · · · , n.

For the above coloring, we have that C(w11), C(w12), · · · , C(w1n) are equal to {n+1}, {n+

2}, {1}, {2}, · · · , {n − 2} respectively, and C(w21), C(w22), · · · , C(w2n) are equal to {n}, {n +

1}, {n + 2}, {1}, {2}, · · · , {n − 3} respectively. Thus two adjacent vertices have different color

sets. So f is a (n + 2)-AVDTC of Pm × Kn.

Case 2. m ≥ 3.

In this case χat(Pm ×Kn) ≥ n + 3 by Lemma 1.2. In order to prove χat(Pm ×Kn) = n + 3,

we need only to prove that Pm × Kn has a (n + 3)-AVDTC. Let C = {1, 2, · · · , n + 3} be the

set composed of all n + 3 colors. We appoint that if some color c is less than 1 or larger than

n + 3, then we identify c with r, where r ∈ {1, 2, · · · , n + 3} and c ≡ r(mod n + 3). Construct a

mapping f from V (Pm × Kn) ∪ E(Pm × Kn) to C as follows.

f(wkiwkj) = i + j − 2, k = 1, 2, · · · , m; i, j = 1, 2, · · · , n, i 6= j.

f(wkiwk+1,i) =

{

2(i − 1), 1 ≤ k ≤ m − 1 and k is an odd;
n + i, 1 ≤ k ≤ m − 1 and k is an even.

f(wki) =

{

n + i + 1, 1 ≤ k ≤ m − 1 and k is an odd;
n + i − 1, 1 ≤ k ≤ m − 1 and k is an even.

So far we have not colored the vertices wm1, wm2, · · · , wmn. Obviously, C(w1i) = {n + i −

1, n+ i} and C(w11), C(w12), · · · , C(w1n) are distinct. If 1 ≤ k ≤ m− 1 and k is an odd number,

then C(wki) = {n + i − 1} and C(wk1), C(wk2), · · · , C(wkn) are distinct. If 1 ≤ k ≤ m − 1 and

k is an even number, then C(wki) = {n + i + 1} and C(wk1), C(wk2), · · · , C(wkn) are distinct.

Meanwhile arbitrary two adjacent vertices in {w2j , w3j , · · · , wm−1,j} have different color sets for

every j = 1, 2, · · · , n.

In order to color the vertices wm1, wm2, · · · , wmn, we distinguish 4 subcases to be considered.

Case 2.1. m is an even number.

Let f(wmi) = n+i−1, i = 1, 2, · · · , n. Obviously, C(wmi) = {n+i, n+i+1}, i = 1, 2, · · · , n.

And C(wm1), C(wm2), · · · , C(wmn) are distinct. Thus f is a (n + 3)-AVDTC of Pm × Kn.

Case 2.2. m is an odd number, and n ≡ 1, 2(mod 3).

Let f(wmi) = n + i + 1, i = 1, 2, · · · , n. Obviously, C(wmi) = {n + i − 1, 2(i − 1)},

i = 1, 2, · · · , n. Now we prove that C(wm1), C(wm2), · · · , C(wmn) are distinct. Suppose that

C(wmi) = C(wmj), 1 ≤ i, j ≤ n. Thus

{n + i − 1, 2(i − 1)} = {n + j − 1, 2(j − 1)}.
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If n + i − 1 ≡ 2(j − 1), n + j − 1 ≡ 2(i − 1) (mod n + 3), then j ≡ 2(i − 1) + 1 − n(mod n + 3).

So 3n ≡ 3(i − 1)(mod n + 3). As n ≡ 1, 2(mod 3), i.e., (3, n) = 1, we have (3, n + 3) = 1 and

i ≡ n + 1(mod n + 3). This is a contradiction. So we have

n + i − 1 ≡ n + j − 1, 2(i− 1) ≡ 2(j − 1) (mod n + 3).

Thus i ≡ j (mod n + 3). Notice that 1 ≤ i, j ≤ n, so i = j. This illustrates that

C(wm1), C(wm2), · · · , C(wmn)

are distinct. So Pm × Kn has a (n + 3)-AVDTC.

Case 2.3. m is an odd number, n ≡ 0(mod 6).

Let f(wmi) = 2(i − 1), i = 1, 2, · · · , n. Obviously, C(wmi) = {n + i − 1, n + i + 1}, i =

1, 2, · · · , n. And C(wm1), C(wm2), · · · , C(wmn) are distinct. Thus f is a (n + 3)-AVDTC of

Pm × Kn.

Case 2.4. m is an odd number, n ≡ 3(mod 6).

Let f(wmi) = n + i + 1, i = 1, 2, · · · , n. Obviously, C(wmi) = {n + i − 1, 2(i − 1)}, i =

1, 2, · · · , n.

If n = 3, then C(wm1) = {3, 6}, C(wm2) = {4, 2}, C(wm3) = {5, 4}. So f is a 6-AVDTC.

Suppose that n ≥ 9 in the following. Assume that 1 ≤ i < j ≤ n and C(wmi) = C(wmj).

Then

n + i + 1 ≡ 2(j − 1), n + j + 1 ≡ 2(i − 1) (mod n + 3). (1)

So 3n ≡ 3(i−1) (mod n+3), i.e., there exists positive integer k such that 3n−3i+3 = k(n+3).

When k = 1, we have 3n−3i+3 = n+3, i.e. i = 2n
3 . When k = 2, we have 3n−3i+3 = 2(n+3),

i.e. i = n−3
3 . When k ≥ 3, we have 3n − 3i + 3 = k(n + 3), i.e. (k − 3)n + 3k + 3i = 3. This

is impossible. Thus i = 2n
3 or n−3

3 . From the symmetry of i and j in Equation (1) we know

that j = 2n
3 or n−3

3 . As 1 ≤ i < j ≤ n, we have i = n−3
3 , j = 2n

3 . This illustrates that the

n−1 sets C(wm1), · · · , C(wm,
n−3

3
−1), C(wm,

n−3

3
+1), · · · , C(wmn) are distinct. And C(wm,

n−3

3

) =

{n + n−3
3 − 1,

2(n−6)
3 } and C(wm, 2n

3
) = {n + 2n

3 − 1,
2(2n−3)

3 } are equal.

If n = 9, then 2 ∈ C(wm2) ∩ C(wm8). We redefine the color of the edge wm2wm8 such that

f(wm2wm8) = 2 (Note that the original color of the edge wm2wm8 is 8). The new coloring is

also a proper total coloring and, for this new coloring, C(wm1), C(wm2), · · · , C(wm9) are equal

to {9, 12}, {10, 8}, {11, 4}, {12, 6}, {1, 8}, {2, 10}, {3, 12}, {4, 8}, {5, 4}, respectively. They are

distinct. So Pm × K9 has a 12-AVDTC.

Suppose that n ≥ 15 in the following. Construct a 4 × n matrix:











n n + 1 n + 2 n + 3 1 · · · n
3 − 5 · · · 2(n−6)

3 · · · n − 5 n − 4

n + 1 n + 2 n + 3 1 2 · · · n
3 − 4 · · · 2(n−6)

3 + 1 · · · n − 4 n − 3

n + 2 n + 2 1 2 3 · · · n
3 − 3 · · · 2(n−6)

3 + 2 · · · n − 3 n − 2

n + 3 2 4 6 8 · · · 2(n−6)
3 · · · n

3 − 5 · · · 2(n − 2) 2(n − 1)
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The above matrix is denoted by A. The entries in the first row of A are the colors of vertices

wk1, wk2,· · ·, wkn respectively (k is an even number); The entries in the second row of A are the

colors of edges wk1wk+1,1, wk2wk+1,2, · · ·, wknwk+1,n respectively (k is an even, 1 ≤ k ≤ m− 1);

The entries in the third row of A are the colors of vertices wk1, wk2,· · ·, wkn respectively (k is an

odd number); The entries in the fourth row of A are the colors of edges wk1wk+1,1, wk2wk+1,2,· · ·,

wknwk+1,n respectively (k is an odd number, 1 ≤ k ≤ m − 1).

Let n = 6l+3, l ≥ 2. The color n
3 −5 in the first row (n−3

3 )th column of A is the same as the

color in the fourth row (n−9
6 )th column of A. Thus n

3 − 5 ∈ C(wm, n−9

6

) ∩ C(wm, n−3

3

). Redefine

the color of wm,
n−9

6

wm,
n−3

3

such that

f(wm,
n−9

6

wm,
n−3

3

) =
n

3
− 5.

Note that the original color of wm, n−9

6

wm, n−3

3

is n−9
2 , and n−9

2 6≡ n
3 − 5(mod n + 3). Now we

will prove that C(wm1), C(wm2), · · · , C(wmn) are distinct under the above new coloring. In the

above n sets, there are n − 3 (if l is even) or n − 5 (if l is odd) sets which do not contain color
n−9

2 and which are distinct. So we only consider the sets contain color n−9
2 .

If l is an even number, the following 3 sets which contain color n−9
2 :

C(wm, n−9

6

) = {
7n − 15

6
,
n − 9

2
}, C(wm, n−3

3

) = {
n − 9

2
, 2(

n − 6

3
)},

C(wm, n−1

2

) = {
n − 9

2
, n − 3}.

We may easily verify that 7n−15
6 , 2(n−6

3 ) and n− 3 are not congruent each other modulo (n+3).

If l is an odd number, the following 5 sets contain color n−9
2 :

C(wm, n−9

6

) = {
7n− 15

6
,
n − 9

2
}, C(wm, n−9

4
+1) = {

5n − 9

4
,
n − 9

2
},

C(wm,
n−3

3

) = {
n − 9

2
, 2(

n − 6

3
)}, C(wm,

n−1

2

) = {
n− 9

2
, n − 3}.

C(wm, 3n+1

4

) = {
7n − 3

4
,
n − 9

2
}.

We may easily verify that 7n−15
6 , 5n−9

4 , 2(n−6
3 ), n − 3 and 7n−3

4 are not congruent each other

modulo (n + 3).

Thus C(wm1), C(wm2), · · · , C(wmn) are distinct. So Pm × Kn has a (n + 3)-AVDTC.

The proof is completed.
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