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Abstract The definition of property A with constant o was introduced by D. M. Speegle, who
proved that every infinite dimensional separable uniformly smooth Banach space has property
A with constant « € [0,1). In this paper, we give a sufficient condition for a Banach space to
have property A with constant « € [0,1), and some remarks on Speegle’s paper [1].

Keywords property A with constant «; modulus of convexity; \-EP; A-UEP.
Document code A

MR(2000) Subject Classification 46B20
Chinese Library Classification 0177.2

The definition of property A with constant a € [0, 1) was introduced by Speegle in [1].

Definition 1 We say a Banach space E has property A with constant « if there is a normalized
weak* null sequence {e}}, an o € [0,1), and a normalized sequence {e,} in E such that (1)
er(en) — 1 and (2) S(en, )\ —S(em, ) = 0 for all integers n and m, where S(e,a) = {e* €
B(E*) : e*(e) > a}.

In [1, Proposition 4], Speegle showed us that every infinite dimensional separable uniformly
smooth Banach space has property A with constant « € [0,1) . Observing the proof of Proposi-
tion 4 more carefully, we can get the following theorem to give a somewhat weaker condition for
an infinite dimensional Banach space to have property .4 with constant « € [0, 1).

In this paper, X, E will stand for separable Banach spaces with infinite dimensions.

Theorem 1 Let X be an infinite-dimensional separable Banach space. If for any sequence {yy }
in S(X) we have inf,, 6(yn,1/4) > 0, where

2+ ynll
2 b

then X has property A with some « € [0, 1).

6(yn, 1/4) = inf{1 — z € S(X), [z —yal = 1/4},

Proof We construct the necessary sequences {y}, {y»} and a. Let {z,} be a sequence which
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is dense in B(X). Let yi be in S(X*), and let y; be in S(X) such that yf(y;) > 1 —1/2.
Let S1 = {a* € S(X*) : |2*(y1)] < 1/2%,2%(z1) < 1/2}. Since X is infinite dimensional, by
the Josefson-Nissenzweig’s theorem, there is a normalized sequence which is w*-null. Hence
we know that S; # 0. So, let y5 € S; and y» € S(X) such that y3(y2) > 1 — 1/22 Let
Sy = {x* € S(X*) : |z*(y:)| < 3/23, a*(x;) <1/3,1 <4 < 2}. Similarly, So # 0. So, let y} € So
and y3 € S(X) such that y3(y3) > 1 —1/23. Continuing in this fashion, we get
Vier € S = {0 € S(X) 5 o ()] < s 7 (@) < — 5, 1< i <),

where y; € S(X) satisfying y; (y;) > 1 —1/2%

Obviously, the sequence {y(yn)} is convergent to 1. Since {z,} is dense in B(X), we
can show that the sequence {y*} is convergent to # in the weak* topology. In fact, given
x € B(X), e > 0, there is @y, € {x,} such that ||z — 2, || < €. For any large enough n with
n > max{mo, 1/}, we have that v (zn,) < 1/n for y} € S,_1. Hence,

Y (@) < [yn (%) = Y (@mo)| + [y (@mo)| < |2 = @me || +1/n < 2.

Let a =1 — inf,, (yn, 1/4). From the condition of X, we have that o € [0,1). So, it remains to
show that
S(i,a)[)=S(yj,a) =0 forall i, j€N.

Obviously, it holds for i = j. For ¢ > j > 1,
1 20711 1
lys + 5l = lyi (i +y)l > 1= 5 5 )
Suppose that z* € S(y;, @) () —S(y;, ). WLOG, z* € S(X*). Let € S(X) such that z*(z) >
e We claim that ||z — y;| < 1/4 and ||z + y;|| < 1/4. Conversely, if ||z — y;|| > 1/4, then we

have
* 14+
i i -+ 1+3
a=1—infd(y,,1/4) > 1 —6(y;, 1/4) > ||:v—;y I > x (x;—y) > 2 5 @ —Z @
It follows that o > 1. A contradiction! It is similar for ||z+y;|| > 1/4. Hence, S(y;, o) () —S(y;, @)
(). The proof is completed. O

Remark 1 Let dx(g) be the modulus of convexity of the Banach space X. If §x(1/4) > 0, then
X has the property A with constant o = 1 — 0x(1/4).

Remark 2 In [1, Proposition 4], X needs to be reflexive and dx-(1/4) > 0. Although, we have
no concrete nonreflexive Banach space which satisfies the conditions described in the Theorem 1,
we conjecture that ¢o with the Day’s norm is such a case. By the definition, dx () < inf,, §(yn, )
for any sequence {y,} in X. We should note that, even inf,, 6(yn, 1/4) > 0 for any sequence {y, },
we can’t claim that dx (1/4) > 0. Moreover, it is not sufficient to claim that X is uniformly convex
if 5y (1/4) > 0.

We recall that a pair of Banach spaces (F, X) with F a closed subspace of X is said to have
the A-into-C'(K') extension property (A-EP for short) if for every C(K) space, and every bounded
linear map T : E — C(K), there is an extension T : X — C(K) of T such that |T|| < \|T].
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We will say that a separable space F has the A-universal extension property (A-UEP) if (E, X)
has the \-EP where E imbeds as a (closed) subspace of a separable space X.
In [1], Speegle showed us that every Banach space satisfying property A with constant « €

_o (1, Theorem 3]

[0,1) fails the (1 + ¢)-UEP for any 0 < e < }Jr—a . Moreover, two claims were given

in [1] without proofs, though the claims are not so clear. Next, we will give the proofs.

Claim 1 Every Banach space F with property A with constant « fails the (1 4 ¢)-into-cg

extension property, where 0 < € < ﬁ—g

*

Proof For any weak* null sequence {e}:} in S(E*), define amap ® : E — ¢ by ®(x) = (e} (z))n-
Obviously, ® is well defined and linear. Moreover, |®|| < 1. Suppose, on the contrary, that
(E, X) has the (1+4¢)-into-¢g extension property for some X containing F isometrically and some
0<e< }jr—g That is, there is an extension ¥, defined on X to cg, of ® with || ¥|| < (1 +¢)|P|.
Let ¥ (x)(n) be the nth coordinate of ¥(x). Define ff : X — R by f(z) = ¥(x)(n). Obviously,

fr is well defined and linear. Moreover, we have

V][ = sup [[W(z)[|= sup sup|¥(zx)(n)|
z€B(X) z€B(X) n
=sup sup |[fy(2)] < (1+e)®] < (1+¢).
n zeB(X)

That is, || f|| < (1 +¢) for any n € N.

We say that f* is an extension of €. Indeed, f:(y) = ¥(y)(n) = ®(y)(n) = eX(y) for any
y € E. By the definition, {f*} is obviously convergent to 6 in the weak* topology. Hence,
we get a weak*-weak™ continuous function from E* into X* which maps e, to f and satisfies
the conditions described in [1, Proposition 1]. So, (F, X) has the (1 4 €)-into-C(K) extension
property, which contradict with [1, Theorem 3]. The proof is completed. O

Claim 2 ¢ has property A with constant « for all « > 0 if we consider slices of the extreme
points of B(ly) rather than slices of B(ly). Hence, ¢ fails the (2 — ¢)-UEP.

Proof The result is not clear. If we modify the definition of property A as above, the proof of
[1, Theorem 3] will not stand any longer. Because we need the slices to be open in the weak*
topology. But the slices of extreme points of B(l1) are obviously not weak*-open. So, we need
to show it in another way.

Let {e,} be the standard unit basis for ¢y, and let S], = S(en, &) ()extB(ly), where

extB(l1) = {(&,) € S(l1): there is ng € N, such that |&,,| = 1}

is the set of all extreme points of B(l1). Obviously, Sj, (=S, = 0 for any integers n and m and
any o € [0,1). Let
K'=B)\ | J S, and K =B(l)\ | S(en, a).
n=1 n=1
Then C(K) C Cy(K') for K C K'. From the proof of [1, Theorem 3], ¢y can be isometrically
imbedded into C'(K). Hence, ¢o can be isometrically imbedded into Cyp(K’). We claim that
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(co, Cp(K")) fails the (1 + €)-EP. In fact, for e, the nth coefficient function of the basis {e,}
in B(l1), let ®, be any extension of e, defined on Cy(K’). Then ®,|c(x) 2 ln is an extension
of ef defined on C(K). If ||®,] < (1 +¢), then ||u,] < (1 +¢€). By the proof of [1, Theorem
3], pn(f) is bounded away from 0, where f is the constant one function in C'(K). Hence, ®,,(f)
is also bounded away from 0, if f is considered as an element of C,(K’). That is, the sequence
{®,,} cannot converge to 6 in the weak* topology. By [1, Proposition 2], (cg, Cy(K')) fails the
(1 + ¢)-EP. The Claim is proved. O

From the proof of Claim 2 above, we can get the following corollary immediately.

Corollary 1 If (E,X) fails the \-EP and Z is a superspace of X, then (E,Z) fails the \-EP

either.
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