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Abstract Through adjusting the order of interpolation nodes, we gave a kind of modified
Thiele-Werner rational interpolation. This interpolation method not only avoids the infinite
value of inverse differences in constructing the Thiele continued fraction interpolation, but also
simplifies the interpolating polynomial coefficients with constant coefficients in the Thiele-Werner
rational interpolation. Unattainable points and determinantal expression for this interpolation
are considered. As an extension, some bivariate analogy is also discussed and numerical examples
are given to show the validness of this method.
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1. Introduction

As an approximation tool, Thiele continued fractions interpolation has many advantages.
But in the construction of this interpolation, some inverse differences will probably be co, which
may produce unattainable points or cause unreliability. To avoid these problems, Werner gave a

generalized Thiele interpolation, namely, Thiele-Werner rational interpolation with the form

€

o(z) wi—1(z)
Pi@) 4t Pia) o

where wy(z) = (-2, ) (@ —Te, 1) (x—2a,), 5 =0,1,...,t=1and 3L_ (ds — cs + 1) = n+1,
and each P, (x) (s = 0,1,...,t—1) is a Newton interpolating polynomial that interpolates f(*)(x)
on X2 ={x;]i=cs,cs+1,...,ds}, and

RO(z) = Py(x) +

ws(x;) s=0,1,...,t—1;

(1) () —
P ) = oG = P@) i= eoncon L.,

(2)

Graves-Morris [1] had proved that this interpolation is a reliable method which avoids the
infinite value of inverse difference. It is obvious that Thiele continued fractions interpolation is

a special case of (1). In fact, if Thiele continued fractions interpolation is called a point-based
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interpolation, then Thiele-Werner rational interpolation can be called a block-based interpolation.
Zhao [9,10] generalized the point-based interpolation to the block-based one, and he gets many
new interpolation schemes by dividing interpolation set of support points into many subsets.
However [1,9,10] did not tell the way how to divide the set, and this is an important problem
for using the method. In this paper, a modified Thiele-Werner rational interpolation (MTWRI)
is presented, which not only gives a method of how to divide the interpolation set of support
points into subsets to avoid the infinite value of inverse differences, but also has some interesting

results such as uniqueness and determinantal expression.

2. Modified Thiele-Werner rational interpolation
2.1 Modified Thiele-Werner algorithm

Suppose n is an integer and values {f°,i = 0,1,...,n} are associated with distinct interpo-
lation points in the set Xo = {xo, z1, ..., Tn}, respectively.

Input: (z;, f2), i =0,1,...,m;

Output: A modified Thiele-Werner rational interpolant (MTWRI).

Initialization Take an x., from X arbitrarily, say x., = xo, if
=1, i=0,1,...,n, (3)

then the algorithm ends with R(®)(z) = f9.
Otherwise adjusting the order of the elements in Xy, and renumbering the support points
(x4, D), 7; € Xo, we have

4
f?#fg,i:d0+1,d0+2,...,n, (>

where dy € {0,1,...,n — 1}. Define by = fJ, X0 = {Z¢y s Teg41s--+» Tdo }, X1 = Xo\ X! and
wo(x) = (& — Ty ) (@ — Teg41) -+ - (T — 24,), €O to the next step.

{ sz:foou 7;:00700+17"'7d07(00:0)

Tteration For j € {1,2,...,n}, define

= wj—1(s)
j o Gt
’ fi] —Uj-1

where wj_1(2) = (x — ¢, ,)(x — 2, 41) - (® — 24q,_,), if

,i:Cj,Cj+1,...,TL,(Cj:dj,1+1), (5)

1= g‘j, i=cj,ci+1,...,n, (6)

K3

then the algorithm ends with ¢t = j and b; = b;.
Otherwise adjusting the order of the elements in X; = X;_1\X/~! , and renumbering the

support points (z;, ff), x; € Xj, we have

{flj— g],, i:Cj,Cj—l—l,...,dj,(Cj: j*l"’l)

. : 7
ff?é gj, t=d;+1,d;+2,...,n, ()

where d; € {¢j,¢; +1,...,n —1}. Define b; = f/ = fI (i = ¢j,¢j +1,...,d;), XJ =

Cj

{xcj B FUNTE PR xd].} ' Xjp1 = Xj\X,Z, and the recurrence stops as X; = ) for some j.
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Termination For j € {1,2,...,t— 1},

RO (2 :b_+wj(l’) wi-1(2) 8
=it g 1t ke ®)

The corresponding modified Thiele-Werner rational interpolation is obtained as follows

RO () = by + £ wia (@) 9

() =bo+ = Tk by ©)

Obviously all the inverse differences ff are not oo, and ff £0(i=c,a0+1,...,n;j =

1,2,...,t), and therefore b; # 0 (j = 1,2,...,t). By the tail-to-head rationalization, we obtain

a rational interpolant R(®)(z) = N(z)/D(z). We will clarify in Theorem 1 that the fraction

RO (z) = N(x)/D(x) has the interpolation properties RV (x;) = N(z;)/D(z;) = f° (i =
0,1,...,n).

2.2 Existence

Definition 1 Let R(*)(z) = N(z)/D(z) be an MTWRI. A point (z;, f°) (i € {0,1,...,n}) is
called an unattainable point for R\ (z) if
N(xi)

N(z;) = D(z;) f{ =0, but RO (z;) = D(x;) # 17
Obviously, the MTWRI (z) satisfies the interpolation condition R (xz;) = N(xz;)/D(z;) =
f2 (i = 0,1,...,n) is equivalent to that there is no unattainable point for R()(z) in the set
{(xi,f?)|i:(),1,...,n}.
Theorem 1 Consider an MTWRI of the form
RO () = by + £ wia (@) 10
(@) =bo+ = Tk by (10)
For some z; € X3 ' = {&c,_, @, ,41,---, Ta,_, } and s € {1,2,...,t}, the point (z;, f°) is

an unattainable point for R()(x) if and only if R®®)(x;) = 0, where R©®)(x) = N©®)(x)/D®) (x)
defined by

. _ -1
R®(z) =b,, RY(z)=0b;+w,(x) {R(”l)(:v)} G=t—-1,t—2,...,9), (11)

where wj(z) = (€ — 2, )(x — Tejq1) - (T —2q;) (=t —1,t—=2,...,5).
Proof Suppose R)(z;) =0 for some z; € X374 = {z¢,_, ,Te, 1415---+ Ta,_, |, that is, z — z;

is the factor of Ng(z). From Eq.(10), we have

wo(x) w1(z) ws—a(x) ws—1(x)

RO (z) = by + -
(2) = bo bi + b2 4 bso1 4+ Rs(x)

bi 4+ by 4o bea 4 Ry(x) ’
where R)(z) = N (2)/D®)(z) and N (z) = (z — )N (2), wj(z) = (z — z¢,)(x —
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Tejp1) - (x—24;), 5 =0,1,...,5 = 1. Since [ws_1(x)/(z —xi)]|$:wi #0,

O () = wo(;) wi () ws—2(x;) [ws—1()/(x — xl)Hw:“
R ( 1) bo + by + ba RS bs_1 + Rs(xi)
fpg ) el g

bi 44 b

Hence R (x;) # f?, which contradicts the assumption, and the sufficiency is proved.
If RO (x;) # 0, then from the Eq.(6), we have by, = fF = ;ﬁ% (k=0,1,...,t). So
o —br—1
;) wi(z;) ws—3(;) ws—2(;)
1o+ b 4 bs2 4+ b

RO (z;) = by + “’Ob(

wo(z;) ws—3(x;) wo(x;)
=by+ = =bg+
bl 4+ 4 fz 2 11

=bo+ f{ —bo = [},
and the necessity is proved.

Remark 1 If t = n, then the corresponding modified Thiele-Werner rational interpolation is

Thiele rational interpolation.

Remark 2 From Theorem 1, if we know all points (z;, f?) for z; in X!~ and X! are attainable,
then, by theorem 1, the points (z;, f0) for z; in the subset X!~2 can be directly tested to be

attainable or not. In fact,

(Te, s — @) (Te, 41 —Ti) (Ta,, — i)

(xct—l - ICt)(thflJrl - xct) e (xdt—l - Ict)

R (2;) = b1 + ( :;_1 —bi1) -

=b1+ (fi = b)) - k.

So the point (z;, f{) for z; in X/~? is unattainable if and only if by—y + (f ' —bi—1) -k =0,
t—1
namely iil = kgl.

2.3 Uniqueness and determinant expression

Next we will give the determinantal expression of the modified Thiele-Werner rational inter-

polant introduced above.

Corollary 1 Let R (x) = Ny(2)/D;(x) be a modified Thiele-Werner rational interpolation of

the form

wo(x) wi—1(x)

R (x) = by + :
(@) =bo+ = Tk by

(12)
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then we have
bo (.UO(I)
-1 bl w1 (I)
-1 b2 CUQ(:E)
Ni(z) = ) (13)
-1 bi—2 wi—a(T)
-1 b wi—1()
-1 by
1 0
-1 bl w1 (.I)
-1 b2 wg(l')
Dy(z) = (14)
-1 bi—2 wi—2()
o L wi—1()
-1 by
Proof From Egs (13) and (14), we get
N](JJ) :ijj_l(LL')-‘rw]‘_l(,T)Nj_g(JJ), j=tt—1,...,2, (15)
DJ($) = bij_l(,T) +w]‘_1(x)Dj_2(fE), j=tt—1,...,2, (16)
where for j =¢,t—1,...,2,
bo (.UO(I)
—1 bl w1 (I)
-1 b2 CUQ(:E)
N;(@) = , (7)
-1 b2 wja(z)
-1 bj wj—1(x)
-1 b;
1 0
-1 bl w1 ($)
-1 b2 CUQ(:E)
Dj(z) = (18)
-1 bj2 wja(z)
-1 bj wj—1(z)
-1 b;
and
No(z) =bo, Do(x) =1, Ni(z)=bobr +wo(x), Di(z)=b1.
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If we define N_j(x) = 1 and D_;(x) = 0, then Ny(x) and D;(x) can be obtained by the

calculation through the recurrence relation for continued fractions of the form

wo(x) wi—1(x)
bo + —= . 19
T T 4k by (19)
So we have
Ne(x) wo(x) wi—1(x)
=bg + . 20
Dt (I) 0 bl —|— .. -|— bt ( )
O

2.4 Error estimation

Now we turn to discuss the error estimation of the modified Thiele-Werner rational interpo-

lation.

Theorem 2 Let [a,b] be the smallest interval containing X,, = {zg, x1,...,zn}, f(z) be differ-
entiable on [a,b] up to n+ 1 times and N(z) be a modified Thiele-Werner rational interpolation

of the form

wo(x) wi—1(z) o N(z)
bO+T 4Lt by  D(x) (1)
Then there exists a point & € [a,b] for Vz € [a,b], such that
fo)— Rio) - 2@) F@D@ — N@LZ" )

" D(z) (n+1)! ’
where w(z) = [[ 1 o(x — ;).

Proof Let E(z) = f(x)D(x) — N(z). Then E(x;) = 0 (i = 0,1,...,n). Making use of the
Newton interpolation formula, we have
E("'H)({) E(""'l)({)

E(z) =Y Elzo,1,...,z]@i(x) + w(a:)m = w(x)m,
i=0 ’ ’

where w;(z) = (x — xo)(z —x1) -+ (¥ — 24-1), £ € (a,b). It is easy to verify that

L B(z)  w(@) ECE)  w@) [f@)D() - N@)Y
f(z) - R(z) = D(z)  D(x) (n+1)! D(z) (n+1)! =

and the theorem is proved. O
2.5 Numerical examples

Let Xo = {0,1,2,3,4,5} and {f?, f9, f9, 2, f9} = {2,4,8,20,10,8}. Try to find a Thiele
rational interpolant and a modified Thiele-Werner rational interpolant to satisfy the interpolating

condition.

According to the Thiele algorithm, we have the table of inverse differences for Thiele rational
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interpolation
2
4 1/2
1/3 -6
20 1/6 -6 o0

10 1/2 o 0 0
8 5/6 12 1/6 0 oo

So we get the Thiele rational interpolation

T x—17—4x—8
05 + —6  x—4

Obviously, the points (4,10) and (5,8) are unattainable for R(x).

According to the modified Thiele-Werner rational interpolation algorithm, we can choose
Zeo = 0. Then dividing X, into X2 = {0}, X} = {1,4}, X2 = {2,5}, X2 = {3}, we have the
table of inverse differences for a modified Thiele-Werner rational interpolant

2
1/2

10 1/2

8 1/3 12
5/6 12

20 1/6 6 1/3

So we have a modified Thiele-Werner rational interpolant

B x (x —1)(z —4) (x — 2)(x —5)
_2+15‘+ 12 + L3

RO (z)

623 — 1022 — 622 + 100
- 522 — 31z + 50

After verification, the modified Thiele-Werner rational interpolant R()(x) satisfies all the given

interpolating conditions.

3. Multivariate modified Newton-Thiele-Werner blending interpolation

The modified Thiele-Werner rational interpolation method can be generalized to the multi-
variate case. Here we consider the case of Newton-Thiele-Werner blending interpolation with the

form

B n(2,y) = Ao(y) + (& = 20) As(y) + - + (& —20) - (¢ — Zm—1) Am (y) (23)
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w? wii ! s ;
where Ai(y) = PO+ 315 St and wl() = (= ue) (0 = vere) -+ (=) (1 =
0,1,...,m; s=0,1,...,t —1).

Let m, m be nonnegative integers and values {f%0|i = 0,1,...,m; 7 = 0,1,...,n} be

associated with the distinct interpolation points in [], .., where [[,... = IL, %<IL., IL, =
{z;]i=0,1,...,m}and [[,, = {y; |1 =0,1,...,n}. To avoid the infinite value inverse difference,
we give a method of dividing [],, = {(zi,y;)]j =0,1,...,n} into subsets Hiz = {(zs,y5)l7 =
CsyCs+ 1, ...,ds} with s =0,1,...,¢ fori e {0,1,...,m}.

3.1 Modified Newton-Thiele-Werner algorithm and property

Step 1. Define

(0,0) 0,00 . f(O;O)
0,0 1,0 m,0
o B
M=|"""h " (24)
0,0 0,0 0,0
(g,n) 1(,n) f1(71n)
Forj=0,1,...,n;p=1,2,....m;i=p,p+ 1,...,m, define
(».0) (p—1,0) _ f(P*ll_vo)
p,0) _ Ji,j p—1,j
fij = T — Tp1 . (25)
By Eq.(25), we change M into
(0,00 (1,00 f(m70)
0,0 1,0 m,0
ARSI S REEER A
M, = ’ ) ’ = [Moy, Mi1,..., Mp]*. (26)
0,0 1,0 m,0
£O D g

Step 2. We change the elements of each row M;; of M; into M;s> by Modified Thiele-Werner

algorithm, and denote

b8 bfl) b?n
B b, :

M,y = ) ) ) = [Mos, M12, ..., Mpa] . (27)
o b

Therefore, the set [[,, = {(zi,y;)[7 =0,1,...,n} is divided into

is

H ={(zi,yj) i =cs,cs+1,...,ds } for every i € {0,1,...,m}, where s =0,1,...,%;.

in
Remark 3 tg,ty,...,t, are not always the same, so My may not be a matrix. For convenience,
we still note it with a matrix form.

Step 3. Using the elements of My = [b9,59,...,b5]T (i = 0,1,...,m), we can construct the

1771
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modified Thiele-Werner rational interpolation

Ai(y)—bg+%§y)+'”+wf%j(y> (i=0,1,...,m), (28)
where Wi (y) = (y = Ye: ) (Y = Yes+1) -+~ (y —yaz) with s = 0,1, t; —Land Y[ (d5 —cf +1) =
n+ 1.

Step 4. Let
R, y) = Ao(y) + (z —20) As(y) + - + (z = 20) -+ (2 — T 1) A (y)- (29)

Finally we get a blending fraction R,, . (z,y) and if

Run(ziy) = fY , i=0,1,...,m; j=0,1,...,n, (30)
then Ry, n(x,y) is called a modified Newton-Thiele-Werner blending interpolant (MNTWBI).

Definition 2 Let Ry n(x,y) = Npn(2,9)/Dmn(z,y) be an MNTWBI with the form (23).
A point (:Ci,yj,ffjo) (i € {0,1,...,m}, j € {0,1,...,n}) is called an unattainable point for
Royn(z,y) if

Nm,n(ﬁﬂiayj) 4 00
Dm-,n(xivyj) E

Let Ry n(%,y) = Nynon(2,9)/ D n(,y) be an MNTWBI with the form (23). A point (x;,y;, fi})
(1€{0,1,...,m}, j € {0,1,...,n}) is called an unattainable point for R, ,(z,y) if

Rm,n(xiuyj) - fgo : Dm,n(xiuyj) = 07 but Rm,n(xiayj) =

Nm,n(xiu y])

Rm.n TiyYj _fZOODm,n Tiy Yj :Ov but Rmn iy Yj) =
)~ 8 D) (o) = el

2.
Theorem 3 Consider an MNTWBI of the form (23). The point (x;,y,, fZQjO) is an unattainable
point for Ry, ,,(x,y) if and only if Al(-s) (y;) =0 for some s € {1,2,...,t;}, where j =t; — 1,t; —
2,...,s, and wf(y) =(y- ycz)(y - ycg+1) (Y- ydz)

The proof is analogous to that of Theorem 1.

We now turn to discuss the error estimation of the modified Newton-Thiele-Werner blending
interpolation. It is easy to verify the following theorem based on bivariate Newton interpolation
formula.

Theorem 4 Suppose D = [a,b] x [c,d] is a rectangular domain containing [, and f(z,y) €
Ctm+2)(D). Let

P(z,

R (513) = A0(3) + 0 = 20) ) ++++ (@ =)+ (0 = 2 )An) = o2 (31)
be a modified Newton-Thiele-Werner blending interpolant on [],.. Then for ¥(x,y) € D, we
have

f(‘ru y) - Rm,n(xu y)

L 1wl oMol L W) QP
C(n+ D! Q(z,y) drntl | . (m+1)! Qx,y) dymt |,
L @ty oTRQ-P
(n+DIm+1)!  Q(z,v) Oantioym+l | _z o
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with &, € € (a,b) and n, 7 € (¢, d), where

wx)=(x—x)(x—x1) (T — 2p_1),

Wy =W—yo)y—v1) (Y= Ym-1)

3.2 Numerical examples

Given the data

Yo = y1=1 y2 =2 ys =3
To =1 1 2/3 1 7/4
21 =2 3/11 5 19/4
7o = 3 20/3 37/3 231/20

Table 1 Interpolation data

By the Newton-Thiele blending interpolation algorithm, we have the corresponding inverse
difference table

1 -3 0 7/2
2 1 00 0
1 2 1 2

Table 2 Inverse difference

So we get the classical Newton-Thiele interpolation function

Yy y—1 y—2
T =1+ Z - <L =
Yy y—1 y—2 Yy y—1 y—2
-1 l2+2 Z— D@-2)|1+2 L=
(x)+1+oo+0+(:r )(I)+2+1+2
292 —3y+5 y? + 4y — 2

o +@x-1)24+y) +(x—-1)(x—2)

Obviously the point (1,3,7/4) is unattainable for T'(x, y).

Next, we give the modified Newton-Thiele-Werner blending interpolation. For convenience,
we choose yo = 0 for every z; (i = 0,1,2) by the modified Newton-Thiele-Werner blending
interpolation algorithm,

Ilos = {(z0.;)|j = 0,1,2,3} is divided into [Tg3 = {(1,0),(1,2)}, TTgs = (1. 1), [Tp =
(1,3), Ths = {(21,95) 1 = 0,1,2,3} is divided into [T;3 = (2,0), TTi3 = {(2,1),(2,2)}, TT}3 =
(2,3), and [[ps = {(z2, ;) [j = 0,1,2,3} is divided into [[55 = (3,0), [T = (3,1), [T53 = (3,2),

gg =(3,3).

From Eq.(28), we have

4y — 2

Ao(y)zl—i—y(y?’_?) N (ygl)’
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From Eq.(29), we finally obtain

yy-2) y-1
Rmn ; =1
n(@y) =1+ == L +
y  (y-Dy-2) y y—-1 y-—2
“le+2d M H 1) 142 L= L=
(z-1) +1+ 1 +(z—1(z-2) +2_|_ 1 + 2
292 —3y+5 2y° — 5y + 6 244y —2
:u+(x_1)y27y+(x_1)(x_2)u,
y+5 y* =3y +3 4y — 2

which has been verified to satisfy the interpolation condition.

4.

Conclusion

This paper presents a kind of univariate and bivariate modified Thiele-Werner rational in-

terpolation, which can be obtained by modified Newton-Thiele-Werner algorithm, and their

existence and uniqueness are discussed. Our future work will be focused on the following as-

pects:

e Study the type of this interpolation.

e Find a method to solve the unattainable points of this interpolation.

e Study the application in image process.

We conclude this paper by pointing out that it is not difficult to generalize the Modified

Thiele-Werner rational interpolation to vector-valued or matrix-valued case.
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