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Abstract In this paper, the rotated cone fitting problem is considered. In case the measured

data are generally accurate and it is needed to fit the surface within expected error bound, it is

more appropriate to use l∞ norm than l2 norm. l∞ fitting rotated cones need to minimize, under

some bound constraints, the maximum function of some nonsmooth functions involving both

absolute value and square root functions. Although this is a low dimensional problem, in some

practical application, it is needed to fitting large amount of cones repeatedly, moreover, when

large amount of measured data are to be fitted to one rotated cone, the number of components in

the maximum function is large. So it is necessary to develop efficient solution methods. To solve

such optimization problems efficiently, a truncated smoothing Newton method is presented. At

first, combining aggregate smoothing technique to the maximum function as well as the absolute

value function and a smoothing function to the square root function, a monotonic and uniform

smooth approximation to the objective function is constructed. Using the smooth approximation,

a smoothing Newton method can be used to solve the problem. Then, to reduce the computation

cost, a truncated aggregate smoothing technique is applied to give the truncated smoothing

Newton method, such that only a small subset of component functions are aggregated in each

iteration point and hence the computation cost is considerably reduced.

Keywords rotated cone fitting; nonsmooth optimization; minimax problem; l∞ fitting; smooth-

ing Newton method.
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1. Introduction

Conical shaped parts, whole cones or sections of cones, are widely used in various mechanical

equipments. Remodeling conical shaped parts by reverse engineering is a cones fitting problem:

collecting data with three-coordinate measuring machine, and then find a cone that best fits the

collected data. While collecting data with three-coordinate measuring machine, the measured

coordinate system may departure from the coordinate system whose origin is located on the

cone apex and z-axis parallels to the cone axis. Hence, rotations and translation operations to
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measured data should be taken into account, and thus the rotated cone fitting problem arises.

If we fit the rotated cone in l2 norm, it becomes a nonlinear least square problem. In case the

measured data are generally accurate and it is needed to fit the surface within expected error

bound, it is more appropriate to use l∞ norm than l2 norm, as that was pointed out in [1] and

[8].

Let (uj, vj , wj) ∈ R3, i = 1, . . . , m, be the measured data. Define the transformation matrix

T (x) =


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,

then (uj , vj , wj , 1) is transformed to (ūj , v̄j , w̄j , 1) = (uj , vj , wj , 1)T (x), i.e.,

ūj(x) = (uj + x1) cosx5 + ((vj + x2) sin x4 + (wj + x3) cosx4) sin x5,

v̄j(x) = (vj + x2) cosx4 − (wj + x3) sin x4,

w̄j(x) = −(uj + x1) sin x5 + ((vj + x2) sin x4 + (wj + x3) cosx4) cos x5.

The fitting cone V is defined as w̄ = r
√

ū2 + v̄2, r ≥ 0. Denote the unknown variables x, r as x,

and residual errors

f̃j(x) =
∣

∣

∣
w̄j(x) − x6

√

ū2
j(x) + v̄2

j (x)
∣

∣

∣
, (1)

the fitting problem can be stated as:

min {f(x) = max
1≤j≤m

f̃j(x)},

s.t. x ∈ P = {x| − π ≤ x4 ≤ π,−π ≤ x5 ≤ π, 0 ≤ x6}.
(2)

It can be seen from (1) that f̃j(x) is nonsmooth function including the absolute value function

and the square root function. Moreover, when large amount of measured data are to be fitted

to a rotated cone, the number of components in the maximum function is large. Nonsmoothness

and large number of components make the optimization problem complex and need to develop

efficient solution methods.

Different algorithms have been proposed to solve minimax problems, such as subgradient

methods (see [15] for details), SQP methods [13, 17, 21], bundle-type methods [5, 6, 9, 22], smooth

approximation methods [2, 3, 7, 11, 14, 19] and etc.

In [10], for the nonsmooth max-function f(x) = maxj∈q fj(x), where q = {1, . . . , q} and

fj(x), j = 1, . . . , m, are smooth functions, based on the Jaynes’ maximum entropy principles, Li

proposed the following aggregate function with parameter p > 0,

Fp(x) =
1

p
ln

(

∑

j∈q
exp(pfj(x))

)

, (3)

which is a smooth uniform and monotonic approximation to f(x). However, the aggregate

function is a single smooth but complex function, and its gradient and Hessian calculations

are time-consuming. In [18], a truncated aggregate function was proposed and combined with

stabilized Newton method to form a truncated aggregate smoothing Newton algorithm (TASN)
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for solving unconstrained minimax problems. For any given x̃ ∈ Rn and constant µ > 0, denote

q̄ = {j | f(x̃) − fj(x̃) ≤ µ, j ∈ q} . (4)

A truncated aggregate function with respect to q̄ was defined as

F q̄
p (x) =

1

p
ln

(

∑

j∈q̄
exp (pfj(x))

)

. (5)

At each iteration, only a small subset of the components in the max-function are aggregated,

hence the number of gradient and Hessian calculations is reduced dramatically. The subset

is adaptively updated with some truncating criterions, concerning only with computation of

function values and not their gradients or Hessians, to guarantee the global convergence and

locally quadratic convergence with as few computational cost as possible.

We can not utilize TASN algorithm in [18] directly to solve (2), for that f̃j’s are not smooth

functions. Here, we try to extend the idea of TASN algorithm to solve the rotated cone fitting

problems, which minimize, under some bound constraints, the maximum function of some non-

smooth functions involving both absolute value and square root functions. At first, combining

aggregate smoothing technique to the maximum function as well as the absolute value function

and a smoothing function to the square root function, a monotonic and uniform smooth approx-

imation to the objective function is constructed. Using the smooth approximation, a smoothing

Newton method can be used to solve the problem. Then, to reduce the computation cost, the

truncated aggregate smoothing technique is applied to give the truncated smoothing Newton

method (TSN).

2. The TSN algorithm for l
∞

fitting rotated cone

Firstly, some deformations for (2) are necessary. Replace f̃j(x) = |fj(x)| by max{fj(x),−fj(x)},
then the fitting problem (2) is equivalent to

min {f(x) = max
1≤j≤2m

fj(x)},

s.t. x ∈ P,
(6)

where

fj(x) =







w̄j(x) − x6

√

ū2
j(x) + v̄2

j (x), j = 1, . . . , m,

−fj−m(x), j = m + 1, . . . , 2m.
(7)

Let g(x) = max {g1(x), . . . , g6(x)}, where g1(x) = x4 − π, g2(x) = −x4 − π, g3(x) = x5 − π,

g4(x) = −x5 − π, g5(x) = −x6, g6(x) = 0. Use penalty function with penalty parameter C > 0

to transform (8) into the following unconstrained programming problem

min

{

H(x) =

{

max
1≤j≤2m

fj(x) + Cg(x)

}}

. (8)

Proposition 2.1 The functions fj(x), j = 1, . . . , 2m, are locally Lipschitz at any x ∈ R5.

The following proposition concerning Clarke’s subdifferential in nonsmooth optimization from

[4] or [12] gives the first-order optimality condition for (8).
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Proposition 2.2 If (8) attains the extremum at x∗, then

0 ∈ ∂H(x∗) ⊂ conv
j∈q(x∗)

{∂fj(x
∗)} + C conv

s∈s(x∗)
{∂gs(x

∗)},

where q(x∗) = {j ∈ q = {1, . . . , 2m} | fj(x
∗) = f(x∗)} and s(x∗) = {s ∈ s = {1, . . . , 6} | gs(x

∗) =

g(x∗)}.
Since fj(x) in (2) is nonsmooth in Dj = {x|ū2

j(x) + v̄2
j (x) = 0}, we try to smooth it by the

following function

fj,p(x) =







w̄j(x) − x6

√

ū2
j(x) + v̄2

j (x) + 1/p + x6/
√

p, j = 1, . . . , m;

x6

√

ū2
j(x) + v̄2

j (x) + 1/p− w̄j(x), j = m + 1, . . . , 2m.
(9)

Proposition 2.3 For any p > 0, fj,p(x) defined as (9) is twice continuously differentiable and, for

any given x ∈ P, fj,p(x) is monotonically decreasing with respect to p > 0, and fj,p(x) → fj(x)

as p → ∞.

To smooth the objective function H(x) in (8), the following aggregate function can be used

Hp(x) = Fp(x) + CGp(x),

where

Fp(x) =
1

p
ln

(

∑

j∈q
exp (pfj,p(x))

)

, Gp(x) =
1

p
ln

(

∑

s∈s
exp (pgs(x))

)

.

We give some properties on the smoothing function Fp(x). The proofs can be induced from

Proposition 2.4 in [20] and the above Proposition 2.3.

Proposition 2.4 (i) For any p > 0, Fp(x) is twice continuously differentiable and,

∇Fp(x) =
∑

j∈q

ζj,p(x)∇fj,p(x)

where

ζj,p(x) =
exp (pfj,p(x))

∑

j∈q
exp (pfj,p(x))

∈ (0, 1),
∑

j∈q

ζj,p(x) = 1.

(ii) For any x ∈ P, Fp(x) is monotonically decreasing with respect to p > 0;

(iii) When (x, t) → (x∗, 0)(‖x∗‖ 6= ∞), it has Fp(x) → f(x∗), and ζj,p(x) → 0(j /∈ q(x∗)).

Now, the following algorithm is given for solving problem (8).

Algorithm 1 (Truncated Smoothing Newton Algorithm)

Data. x0 ∈ P.

Parameters. C > 0, p0 > 0, p̂ ≫ 1; α, β, κ1 ∈ (0, 1); η ∈ (0, (1 − α)κ2
1/32), δ̄ > 0; γ,

ω are sufficient big numbers; functions ǫa(p), ǫb(p), τ(p), ε(p): (0,∞) → (0,∞), satisfying

ǫb(p) ≥ ǫa(p) > τ(p) for all p > 0, limp→+∞ τ(p) = 0, ε1(p) = ητ(p), ε2(p) > 0.

Step 1. Set i = 0, k = 0, s = 1, xk,i = x0.

Step 2. Compute µ

µ =
1

pk

ln
(

max
{

1, (2γ − ε1)(q − 1)/ε1, (2ω + 6pkγ2 − ε2)(q − 1)/ε2

})

, (10)
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then compute q̄ according to (4) and compute

H q̄
pk

(xk,i) = F q̄
pk

(xk,i) + CGpk
(xk,i).

If ‖∇H q̄
pk

(xk,i)‖ > τ(pk), go to Step 3, else go to Step 8.

Step 3. Compute B(xk,i)

B(xk,i) = θ(xk,i)I + ∇2H q̄
pk

(xk,i), (11)

where θ(x) = max{0, δ̄ − e(x)} with e(x) denoting the smallest eigenvalue of ∇2H q̄
p (x). Then

compute Cholesky factor R such that B(xk,i) = RRT, and compute the reciprocal condition

number c(R) of R. If c(R) ≥ κ1, go to Step 4, else go to Step 5.

Step 4. Compute hk,i = −B(xk,i)
−1∇H q̄

pk
(xk,i), go to Step 6.

Step 5. Set hk,i = −∇H q̄
pk

(xk,i).

Step 6. Compute the step length λk,i = βl, where l ≥ 0 is the smallest integer satisfying

Hpk
(xk,i + λk,ihk,i) − Hpk

(xk,i) ≤ αλk,i〈∇H q̄
pk

(xk,i), hk,i〉. (12)

Step 7. Set xk,i+1 = xk,i + λk,ihk,i, i = i + 1. Compute µ, q̄. If

‖∇H q̄
pk

(xk,i)‖ ≤ τ(pk), (13)

go to Step 8, else go to Step 3.

Step 8. If s = 1, compute p∗ such that

ǫa(pk) ≤ ‖∇H q̄

p∗(xk,i)‖ ≤ ǫb(pk), (14)

go to Step 9, else set pk+1 = s(k + 2), k = k + 1, i = 0, go to Step 2.

Step 9. If p∗ ≤ p̂, set pk+1 = max{p∗, pk + 1}, k = k + 1, i = 0, go to Step 2, else set

s = max{2, (p̂ + 1)/(k + 1)}, pk+1 = max{pk + 1, s(k + 2)}, k = k + 1, i = 0, go to Step 2. 2

Let H̃p(x) = maxj∈q fj,p(x) + Cg(x), Ω = {x|H̃p0
(x) ≤ Hp0

(x0), }. Then, it has

Proposition 2.5 For any x0 ∈ Rn and p0 > 0, it has x0 ∈ Ω; Define Ωp = {x|H̃p(x) ≤ Hp0
(x0)},

then for any p > p0, it has Ωp ∩ P ⊂ Ω.

Let γp(x) = max {‖∇fj,p(x)‖ | j ∈ q}, ωp(x) = max
{∥

∥∇2fj,p(x)
∥

∥ | j ∈ q
}

; Given the fol-

lowing assumptions:

Assumption 2.6 The level set Ω is a bounded closed set.

Under Assumption 2.6, it has the following proposition:

Proposition 2.7 ∂fj,p is bounded in Ω × [p0, +∞].

Assumption 2.8 γ is sufficiently big number such that γ ≥ max{γp(x), | x ∈ Ω, p ∈ [p0,∞)}.
With Assumptions 2.6 and 2.8, the similar conclusion of Corollary 2.3 in [18] still holds, i.e.,

for any x ∈ Ω, p > 0, ε1(p) > 0 and ε2(p) > 0, if q̄ is set as (4) and (10), it has

‖∇Hp(x) −∇H q̄
p (x)‖ ≤ ε1(p).
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Then, together with Propositions 2.2–2.5 and 2.7, we have

Lemma 2.9 Suppose that sequences {pk} and {x1,i}, {x2,i}, . . . , {xk,i}, . . ., are generated by

Algorithm 1. Under Assumptions 2.6 and 2.8, for any xk,i ∈ Ω such that ‖∇H q̄
pk

(xk,i)‖ > τ(pk),

it has

(i) (1 − η)‖∇H q̄
pk

(xk,i)‖ ≤ ‖∇Hpk
(xk,i)‖ ≤ (1 + η)‖∇H q̄

pk
(xk,i)‖;

(ii) λk,i is computed using a finite number of function evaluations;

(iii) xk,i+1 ∈ Ω.

Lemma 2.10 Suppose that sequences {pk} and {x1,i}, {x2,i}, . . . , {xk,i}, . . ., are generated by

Algorithm 1. Under Assumptions 2.6 and 2.8,

(i) For any k, the sequence {xk,i} is finite, i.e., there exists a ik ∈ N such that (13) holds

for i = ik;

(ii) The sequence {pk} is strictly monotone increasing and pk → ∞ as k → ∞.

The proofs of Lemmas 2.9–2.10 are similar with that in [18], and omitted here.

Theorem 2.11 Under Assumptions 2.6 and 2.8, there exists an infinite subsequence N ′ ⊂ N

such that xk,ik → x∗ as k → ∞ with k ∈ N ′, and

0 ∈ conv
j∈q(x∗)

{∂fj(x
∗)} + C conv

s∈s(x∗)
{∂gs(x

∗)}.

Moreover, if x∗ /∈ D =
⋃

1≤j≤m Dj , then 0 ∈ ∂H(x∗).

Proof From Lemma 2.9, it has xk,ik ∈ Ω for any k ∈ N , and hence there exists an infinite

subsequence N ′ ⊂ N such that xk,ik → x∗ as k → ∞ with k ∈ N ′. Since ‖∇H q̄
pk

(xk,ik )‖ ≤ τ(pk)

and τ(pk) → 0 as k → ∞, we have ‖∇H q̄
pk

(xk,ik )‖ → 0, as k → ∞. Together with

‖∇Hpk
(xk,ik ) −∇H q̄

pk
(xk,ik )‖ ≤ ητ(pk),

it follows that ‖∇Hpk
(xk,ik )‖ → 0, as k → ∞ with k ∈ N ′, i.e.,

lim
k→∞

k∈N′

∇Hpk
(xk,ik ) =

∑

j∈q

ζj,pk
(xk,ik )∇fj,pk

(xk,ik ) + C
∑

s∈s

ξs,pk
(xk,ik )∇gs(x

k,ik ) = 0,

where ζj,pk
(xk,ik ) is defined as that in Proposition 2.4 and ξs,pk

(xk,ik ) = exp(pkgs(xk,ik ))
∑

s∈s
exp(pkgs(xk,ik ))

. By

the boundedness of ∇fj,pk
(xk,ik ), it has

lim
k→∞

k∈N′

∇fj,pk
(xk,ik ) = ηj ∈ ∂fj(x

∗).

Now, we have

lim
k→∞

k∈N′

∇Hpk
(xk,ik ) =

∑

j∈q(x∗)

ζ̂jηj + C
∑

s∈s(x∗)

ξ̂s∇gs(x
∗) = 0,

where ζ̂j , ξ̂s ≥ 0,
∑

j∈q(x∗) ζ̂j =
∑

s∈s(x∗) ξ̂s = 1, hence

0 ∈ conv
j∈q(x∗)

{∂fj(x
∗)} + C conv

s∈s(x∗)
{∂gs(x

∗)}.
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Moreover, if x∗ /∈ D =
⋃

1≤j≤m Dj , then fj(x) is smooth at x∗ for all j ∈ q, and

lim
p→∞,x→x∗

∇fj,p(x) = ∇fj(x
∗),

hence 0 ∈ ∂H(x∗). 2

The above theorem proves the convergence of Algorithm 1. Moreover, for the fixed p, Al-

gorithm 1 is locally quadratic convergent under some conditions, and the detailed analysis is

similar to Theorem 3.5 in [18].

3. Numerical experiment

We have implemented truncated smoothing Newton algorithm in MATLAB programming

language and compared it with SQP method (SQP method is implemented by calling matlab

function fminimax directly. Theoretically, SQP method can only be used to solve minimax

problems with smooth component functions, we tried to use it to solve the rotated cone fitting

problem with nonsmooth component functions and it worked.) and smoothing Newton method

(SN) which substitutes exact aggregate function smoothing for the truncated aggregate function

in Algorithm 1.

Parameters in Algorithm 1 are set as α = 0.5, β = 0.8, p̂ = 105 ln q, κ1 = 10−7, κ2 = 1030,

κ3 = 1000p̂, p0 = 1, (ǫa, ǫb) = (0.1, 0.45), γ = 102, ω = 10, τ2(p) = min{10−1, 1000/p}, ε1 =

10−2, ε2 = 10−1, δ̄ = 0.02, C = 100.

All the computations are done by running MATLAB 7.6.0 on a laptop with AMD Turion(tm)

64 ×2 Mobile Technology TL-58 CPU 1.9 GHz and 896M memory, and only the matlab functions

chol, rcond and eigs (A,1, ‘SA’) are utilized to compute the Cholesky decomposition, reciprocal

condition number and the smallest eigenvalue. The results are listed in the following tables, where

x∗ denotes the final approximate solution point, f∗ is the maximum residual error obtained by

x∗, time is the CPU time in seconds. Here, we also give the gradient computing number in

Algorithm 1 and SN, denoted as N , except for SQP which is implemented by calling matlab

internal function and difficult to count the amount.

In this section, we apply our algorithm to two fitting problems. The first one appears in

manufactural parts matching and another is an artificial problem.

Example 3.1 This metrical data set is from input shaft of aerogenerator’s accelerator.

Method x∗ f∗ Time N

TSN (2.955782, 0.441657, . . . , 89.593986) 0.748557 3.167 85525

SN (2.955844, 0.441514, . . . , 89.593986) 0.748557 5.828 416720

SQP (2.939973, 0.505359, . . . , 89.892013) 0.751025 6.143 −

Table 1 The numerical results of Example 3.1, m = 5209 , x0 = (3, 0,−1558, 3.14, 0, 2)T

Example 3.2 We also test our algorithm for the artificial rotated cone data points which are

generated as that in [16]. At first, produce points (x̃j , ỹj, z̃j), i = 1, . . . , m, on an unrotated

cone by defining x̃j = rj tan(π/6) cos γj , ỹj = rj tan(π/6) sin γj , z̃j = rj , where rj and γj are
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equally distributed pseudorandom numbers in [0.1, 10] and [0, 2π], respectively. Then, perturb

z̃j by adding error item which follows Gaussian distribution N(0, 0.3), and make rotations and

translation to obtain the final data (uj , vj , wj , 1) = (x̃j , ỹj , z̃j, 1)T−1(2.1,−1.4, 1.3, π/20, π/25).

Method x∗ f∗ Time N

TSN (−2.146208, 1.408664, . . . , 1.738858) 0.784598 4.012 100344

SN (−2.146208, 1.408664, . . . , 1.738858) 0.784598 13.614 1120000

SQP (−2.140351, 1.403742, . . . , 1.740741) 0.784606 7.824 −

Table 2 The numerical results of Example 3.2, m = 20000, x0 = (−2, 2,−2, 0, 0, 0.6)T
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