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A Compact Determinantal Representation for Inverse
Difference *
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Abstract: A compact determinantal representation for inverse difference is given. From
the representation it is easy to know that the inverse difference of a function at some
n + 1 points zg, 21, -+, T, depends on the orderings of these points and it is locally
independent of the permutation of first n — 1 points. Moreover we define reciprocal
difference from another point of view, get the relation between inverse difference and
reciprocal difference and obtain the property that the reciprocal difference is globally
independent of the permutation of the points.
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For a given set of real points X = {2y, 21, -} C [a,b] C IR and a function f(z) defined
in [a, b], let

:c—:c0|+ ac—:c1|+.”+ T Ty

a I as Ay,

P(2)/Qn(2), (1)

then R,(z) is a rational function of type ([%*]/[%]) (which means that Pn(z) and Qn(z)
[

are polynomials of degree not exceeding [”2i1] and (5] respectively, where [z] denotes the
greatest integer not exceeding z) and we have ([2])

Rn(ﬁ) = ao+[

i

Po(z) = anPn1(z) + (2 — 2n-1)Pn-2(2), (2
Qn(z) anQn—l(:c) + (‘c - zn—l)Qn—2(z)' (3)
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Therefore
an = Pn(zn—l)/Pn——l(zn—l)
- Qn(zn-—l)/Qn—l(zn—l)-
It is not difficult to prove by induction that

L(P.(z)) = 1 for odd n,
L(Q.(z)) = 1 for even n,

where L(P,(z)) denotes the leading coefficient of the polynomial P,(z). Let

a; = ¢[$0,Z1,"‘,2i], 1= 0111"'anv

where ¢[zg, 21, - -, ;] is the inverse difference defined as follows

P[] = f(zp), i=0,1,---,m,
blzp, z4] = T iE
. _ Ti—Ti—)
Plzo,--- 2] = Ao, i —2,%; ]~ P[0, Tim2.Ti1]

In this case, one gets
Rn(zi) = f(:ci) = fi, 1= 0717"',""

Let . N
1 zo IRy ZO fO zofo IS zOfO

1 z - 2’{ fi 1 fy - z’ffl
1 oy - 93’2;5 fae Zanfor o0 2N for

1 =z - =z 0 0 0

Naw(z) = — k 1
1 2z -+ z5 fo =zofo -+ 25 ' fo

. k—
Loz - 2t A mfi - 2lf

: k-1
1 ozop - @5 fae Tokfar - 2y fok

1 zo -+ 2§ fo zofo - 2Hfo

1 2 - 3If fi zifr - :c’ffl

1 zop -+ 25, fa zanfar - 25, for

Dou(z) 0 0 --- 0 1 z ez

26\T) = X k-
1 2o - 2f fo =zofo - 332 *fo
1z - 2 fi wmfi - 2¥p

3 ke
1 2o - @ far zafa oo 2Nl fa
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k .
1 =z gt fo zo fo 6 fo
k
1 =z zyt! h 21 f ek fi
k+1
1 22kt 1'2;;1 foer1  Tokg1fors $’§k+1f2k+1
1 =z gkt 0 0 0
Nogyar(z) = (1) .
1 =z zf fo zo fo z§ fo ’
1 = ¥ h z1fi zh fy
1 2241 zng foryr Taet1forsr $§k+1fzk+1
(11)
zo e fo zo fo 6 fo
T 2 f z1f1 2§ fi
: o o
1 zak41 Tope1 Sokr1 Takgifoeer 25y 1 fokt1
0 0 0 1 z z*
Daper(2) = (~1)* (12)
1 =z g fo zy fo z; fo ’
1 =z ¥ h z fi z} fi
1 2o z§k+1 f2k+1 $2k+1fzk+1 -’cgk+1f2k+1

From the fact that N,(z)/Dn(z) determined by (9)-(12) is a rational function of type

([n + 1/2]/[n/2}),
1, L(Q2ar(z)) = 1 it follows

Pu(z) = Nu(z), Qu(z) = Du(z).

Let

k
1 1:0 PP ;c(}

1 2rpi4

k
1 T [ zl

n=201,2,-
Jfo fﬂufo

fl 931f1

k
i S Tepre Sl

No(z;)/Dp(2;) = fiyi = 0,1,---,7n (see [1], [4]) and L(Nag41(z)) =

.- (13)
‘cf)fo
i
z1 fi
1. (14)
f”ic+l+1fk+l+l

and denote by D,()ﬁ,’l) the determinant formed by deleting the p** row and the ¢** column

from D*!). Then we have

¢[1§0,€l}1,"',$n] =
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n=iy ra=2yy ([(25][5])
D([ 2 ]7[ 7 ])Dn;ﬂ_il 2 (15)
p T pUsltE )y’

= (-1)l(zn - 2am)
On the other hand, by (2), (3) and (6) we have

P(2)Qu_2(z) — Pu_s
Pp1(2)@n-2(2) = Pz

(-1)"

(2)@n(z)
(2)@n-1(2)

Pr(2)@n—2(2) = Pu-2(2)Qn(2)

(z —zo)(z —21) (2 — Tn_2)

¢[1§0,21,"‘,IB"] =

(16)

Since both Po(2)Qn—2(x) and Pr_s(z)Qn(z) are polynomials of degree n — 1, we get

$lzo, 21, -, 2n] = (—1)"L(Pu(2)Qn-2(2) — Pu—2(2)Qn(z)). (17)
With the relation ( 13) in mind, we obtain
¢[2§0,1§1,"',1§2k] = (N2k( )) - L(N2k 2( )) (18)
Blzo, 21, -, Tog1] = L(Dapy1(z ) L(Dar—1(= z)).
Let us define
p[IOaxh"')ka] = (NZ]\( ) ’ (19)
plzo, 21, 2akg1] = L(Dagr(2)),
then by (9) and (12) we have
; plk-1k)
_ k
plzoyer, 2] = (C1) panoy (20)
kD(k+1,k)
plzo,zr, - zaen] = (1) 555
and thus we derive another representation for inverse difference @[z, 21, -, 2,
Blzo, 21, - 2ak] = pleo,z1,- 0, 2] — plzo, 21, -, Tak—2)
D(k——l,k) pk—2k-1)
_ k
= (=1 (D(k,k—l) + D(k_1,k—2))’ (21)
¢[$0,$1,"',-’02k+1] = P[z()y‘cl; : w2k+1] - P[-’Uu,zl,"wfczk»l]
D(k+1k D(k,k—l)
= (- 1) ( Dk + D(k—l,k—l))' (22)

From relations (21) and (22), one observes that plzy, 21, -, z,] defined by (19) is the
very reciprocal difference of f(z) at points z¢,z1, -, z, (see [3]). From the determinantal
expressions (15) and (20) it is clear that the inverse difference @[z, 21, -, z,] depends
on the orderings of the points zg,2y, -+, z,, but is independent of the permutations of
Zy,%1, -, Zy-2 while the reciprocal difference p[zy, 21, - -, z,] is independent of the global
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permutations of all the points zg,2;,---,2,. As a by-product, from (15), (21) and (22)
we acquire the following identical relations

D=1k plk=1k=2) ¢ plk-2k-1) plkk-1)

k—1,k—1 k—1k
= (z2k — T2k—1)D )ng;zk+)1’

D(k+1,k)D(k——1,k—l) + D(k,k—l)D(k,k)

L o k.k
= (m2k+1 - :sz)D(k’k l)ng+?l;2k+2' (23)
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