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Abstract Let G be a simple graph. A total coloring f of G is called E-total-coloring if no

two adjacent vertices of G receive the same color and no edge of G receives the same color as

one of its endpoints. For E-total-coloring f of a graph G and any vertex u of G, let Cf (u) or

C(u) denote the set of colors of vertex u and the edges incident to u. We call C(u) the color

set of u. If C(u) 6= C(v) for any two different vertices u and v of V (G), then we say that f is a

vertex-distinguishing E-total-coloring of G, or a V DET coloring of G for short. The minimum

number of colors required for a V DET colorings of G is denoted by χe
vt(G), and it is called

the VDET chromatic number of G. In this article, we will discuss vertex-distinguishing E-total

colorings of the graphs mC3 and mC4.
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1. Introduction

The vertex-distinguishing proper edge colorings and vertex-distinguishing general edge col-

orings had been widely considered in [1–5, 8, 9] and [7, 10–14], respectively. The appropriate

chromatic numbers are called the vertex-distinguishing proper edge chromatic number (or strong

chromatic number, or observability) and point-distinguishing chromatic index, respectively.

For a total coloring (proper or not) f of G and a vertex v of G, denote by Cf (v), or simply

C(v), if no confusion arises, the set of colors used to color the vertex v as well as the edges

incident to v. We call C(v) the color set of vertex v. Let C(v) be the complementary set of C(v)

in the set of all colors we used. Obviously, |C(v)| ≤ dG(v) + 1 and the equality holds if the total

coloring is proper.

For a proper total coloring, if C(u) 6= C(v), i.e., C(u) 6= C(v) for any two different vertices u

and v, then the coloring is called vertex-distinguishing (proper) total coloring and the minimum

number of colors required for a vertex-distinguishing (proper) total coloring is denoted by χvt(G).
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This concept had been considered in [6, 15]. The following conjecture had been given in [15].

Conjecture 1 ([15]) Suppose G is a simple graph and nd is the number of vertices of degree

d, δ ≤ d ≤ ∆. Let k be the minimum positive integer such that
(

k
d+1

)

≥ nd for all d such that

δ ≤ d ≤ ∆. Then χvt(G) = k or k + 1.

From [15], we know that the above conjecture is valid for complete graph, complete bipartite

graph, path and cycle, etc.

When we define a proper total coloring of a graph G, we need three conditions for a total

coloring which are listed as follows:

Condition (v). no two adjacent vertices receive the same color;

Condition (e). no two adjacent edges receive the same color;

Condition (i). no edge receives the same color as one of its endpoints.

If we just consider the total coloring of graph G such that the Conditions (v) and (i) are

satisfied, then such a coloring is called E-total coloring of graph G.

Note that E-total coloring is total coloring, but total coloring is not necessarily E-total

coloring. The proper total coloring is E-total coloring and E-total coloring is not necessarily

proper total coloring.

If f is an E-total coloring of graph G with colors we use being 1, 2, . . . , k and ∀u, v ∈ V (G),

u 6= v, we have C(u) 6= C(v), then f is called k-vertex-distinguishing E-total coloring, or k-VDET

coloring.

The vertex-distinguishing E-total chromatic number of graph G, denoted by χe
vt(G), is the

minimum k for which G has a vertex-distinguishing E-total coloring using k colors.

The following proposition is obviously true.

Proposition 1 For each graph G, we have χe
vt(G) ≤ χvt(G).

For graph G, let ni denote the number of the vertices of degree i, δ ≤ i ≤ ∆. Suppose

η(G) = min
{

l|

(

l

2

)

+

(

l

3

)

+ · · · +

(

l

i + 1

)

≥ nδ + nδ+1 + · · · + ni, 1 ≤ δ ≤ i ≤ ∆
}

.

Lemma 1 For each graph G, we have χe
vt(G) ≥ η(G).

Proof In order to color G by the method of vertex-distinguishing E-total coloring, the number

of colors we used is at least l, where l is a positive integer and
(

l
2

)

+
(

l
3

)

+ · · · +
(

l
i+1

)

≥ nδ +

nδ+1 + · · ·+ni for each 1 ≤ δ ≤ i ≤ ∆, because the vertices of degree nδ, nδ+1, . . . , ni should be

distinguished by their color sets and each of their color sets contains 2, or 3, or 4, . . . , or i + 1

colors.

Thus χe
vt(G) is not less than the minimum value of such l’s.

From Lemma 1, we have

Lemma 2 If G is an r-regular graph, then η(G) = {l|
(

l
2

)

+
(

l
3

)

+ · · · +
(

l
r+1

)

≥ |V (G)|}.

Suppose mCn denotes the vertex-disjoint union of m cycles of lengths n. In this paper we

will determine the VDET chromatic numbers of mC3 and mC4.
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2. Vertex distinguishing E-total chromatic numbers of mC3

In order to give the vertex-distinguishing E-total coloring of mC3 and mC4 conveniently, we

define a matrix An firstly.

For n ≥ 6, we construct a matrix An such that An has n − 1 rows and n − 1 columns and

the entries of An are empty sets or the subsets of {1, 2, . . . , n} which contain n and have 2 or 3

elements. Each subset of {1, 2, . . . , n} which contains n and has 2 or 3 elements is an element of

An. The elements of An is given as follows.

The first row of An is ({n, 1}, {n, 2}, {n, 3}, . . . , {n, n− 1});

The second row of An is ({n, 1, 2}, {n, 2, 3}, {n, 3, 4}, . . . , {n, n− 2, n − 1}, ∅);

The third row of An is ({n, 1, 3}, {n, 2, 4}, {n, 3, 5}, . . . , {n, n− 3, n − 1}, ∅, ∅);

The fourth row of An is ({n, 1, 4}, {n, 2, 5}, {n, 3, 6}, . . . , {n, n − 4, n− 1}, ∅, ∅, ∅);

· · ·

The (n − 2)-th row of An is ({n, 1, n− 2}, {n, 2, n− 1}, ∅, ∅, . . . , ∅);

The (n − 1)-th row of An is ({n, 1, n− 1}, ∅, ∅, . . . , ∅);

For example

A6 =













{6, 1} {6, 2} {6, 3} {6, 4} {6, 5}
{6, 1, 2} {6, 2, 3} {6, 3, 4} {6, 4, 5} ∅

{6, 1, 3} {6, 2, 4} {6, 3, 5} ∅ ∅

{6, 1, 4} {6, 2, 5} ∅ ∅ ∅

{6, 1, 5} ∅ ∅ ∅ ∅













Suppose 1 ≤ i1 < i2 < · · · < ir ≤ n − 1, 1 ≤ j1 < j2 < · · · < js ≤ n − 1. The submatrix

An[i1, i2, . . . , ir|j1, j2, . . . , js] is the r × s matrix obtained from An by removing the rows with

indices not in {i1, i2, . . . , ir} and columns with indices not in {j1, j2, . . . , js}. A 3× 2 sub-matrix

B of An is called good if there exists an E-total coloring method of the vertex-disjoint union of

two C3’s such that the color sets of all the vertices of 2C3 are just all the entries of B.

For example, A6[2, 3, 4|1, 2] is good, since all the entries of A6[2, 3, 4|1, 2] are the color sets of

all the vertices of 2C3 in the following vertex-distinguishing E-total coloring:

j4 j1
j6
6

�
��2 @

@@
3

Figure 1 VDTC coloring of 2C3

j4 j5
j6
6

�
��1 @
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2

In this section, we will use the following three types of VDET coloring of C3.

jc jd
ja
a

�
��b @

@@
b

Figure 2 Coloring f(a, b; c, d)
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ja
a
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Figure 3 Coloring g(a; b, c; d, e)
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a

�
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Figure 4 Coloring h(a; b, c, d)
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The first type coloring is denoted by f(a, b; c, d). Under f(a, b; c, d), the color sets of three

vertices are {a, b, c}, {a, b, d} and {a, b}.

The second type coloring is denoted by g(a; b, c; d, e). Under g(a; b, c; d, e), the color sets of

three vertices are {a, b, c}, {a, d, e} and {a, b, d}.

The third type coloring is denoted by h(a; b, c, d). Under h(a; b, c, d), the color sets of three

vertices are {a, b}, {a, c} and {a, d}.

Lemma 3 An[i, i+1, i+2 | j, j +1] is a good 3× 2 submatrix when i ≡ 2(mod 3), j ≡ 1(mod 2)

and no entry of An[i, i + 1, i + 2 | j, j + 1] is ∅.

Proof If i = 2, then

An[i, i + 1, i + 2 | j, j + 1] =

( {n, j, j + 1} {n, j + 1, j + 2}
{n, j, j + 2} {n, j + 1, j + 3}
{n, j, j + 3} {n, j + 1, j + 4}

)

.

Obviously, {n, j, j+2}, {n, j+1, j+3}, {n, j+1, j+2} are the color sets of all vertices of C3 under

some vertex distinguishing E-total coloring. So are {n, j, j + 3}, {n, j + 1, j + 4}, {n, j, j + 1}.

If i ≥ 5, then

An[i, i + 1, i + 2 | j, j + 1] =

( {n, j, j + i − 1} {n, j + 1, j + i}
{n, j, j + i} {n, j + 1, j + i + 1}

{n, j, j + i + 1} {n, j + 1, j + i + 2}

)

.

Obviously, {n, j, j+ i−1}, {n, j+1, j+ i}, {n, j, j+ i} are the color sets of all vertices of C3 under

some vertex distinguishing E-total coloring. So are {n, j + 1, j + i + 1}, {n, j, j + i + 1}, {n, j +

1, j + i + 2}

The proof is completed. 2

Lemma 4 If n ≡ 1, 3, 4, 0(mod6) (n ≥ 7), then we can decompose all the entries of An (except

for ∅) into 1

3

(

n
2

)

groups such that each group contains exactly 3 subsets and three subsets in each

group are exactly the color sets of all vertices of C3 under some vertex-distinguishing E-total

coloring.

Proof By Lemma 3, we only consider the entries of An which are not empty set and are not in

any good 3 × 2 submatrices of An described in Lemma 3. Such entries are called left subsets in

this proof.

Case 1 n ≡ 1(mod 6).

For i ≡ 1(mod 6), 1 ≤ i ≤ n − 1, we consider such entries (left subsets) which are in the

i-th, (i + 1)-th columns and are not in the first row: {n, i, n− 1}, {n, i, n− 2}, {n, i + 1, n − 1}.

Obviously, they may become a desired group.

For the entries which are in the (i+2)-th, (i+3)-th, (i+4)-th, (i+5)-th columns and are not

in the first row, {n, i + 2, n − 2}, {n, i + 3, n − 1}, {n, i + 3, n − 2} may become a desired group,

and {n, i + 2, n− 1}, {n, i + 2, n− 3}, {n, i + 4, n− 1} may become another desired group.

Of course {{n, i}, {n, i + 1}, {n, i + 2}} is a desired group, i = 1, 4, 7, . . . , n − 3.
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Case 2 n ≡ 3(mod 6).

For i ≡ 3(mod 6), 3 ≤ i ≤ n − 12, the left subsets which are in the i-th, (i + 1)-th, . . . ,

(i + 5)-th columns and not in the first row can become 3 groups (obviously):

{{n, i, n− 2}, {n, i, n− 1}, {n, i + 1, n− 1}}, {{n, i + 2, n− 3}, {n, i + 2, n − 1}, {n, i + 4, n−

1}}, {{n, i + 3, n − 2}, {n, i + 3, n − 1}, {n, i + 2, n − 2}}.

For the left subsets which are in the first, second, (n−6)-th, (n−5)-th, (n−4)-th, (n−3)-th,

(n− 2)-th columns and are not in the first row as well as the subsets {n, n− 1}, {n, n− 2}, they

can become four desired groups: {{n, 1, n− 1}, {n, n− 1, n− 6}, {n, n− 1}}, {{n, n− 4, n− 2},

{n, n−2, n−6}, {n, n−2}}, {{n, n−5, n−1}, {n, n−3, n−2}, {n, n−3, n−1}}, {{n, n−4, n−1},

{n, n − 4, n− 3}, {n, n − 1, n− 2}}.

We can easily partition the subsets in the first row (except for {n, n − 1}, {n, n − 2}) into
n−3

3
desired groups: {{n, i}, {n, i + 1}, {n, i + 2}}, n = 1, 4, 7, . . . , n − 5.

Case 3 n ≡ 4(mod 6).

Assume that i ≡ 1(mod6), 1 ≤ i ≤ n− 15 (if n ≥ 16). The left subsets which are in the i-th,

(i + 1)-th, . . ., (i + 5)-th columns and not in the first row can become 3 groups (obviously):

{{n, i, n− 2}, {n, i, n− 1}, {n, i + 1, n− 1}}, {{n, i + 2, n− 2}, {n, i + 3, n − 1}, {n, i + 3, n−

2}}, {{n, i + 4, n − 1}, {n, i + 2, n − 1}, {n, i + 2, n − 3}}.

The left subsets which are in the (n − 9)-th, (n − 8)-th, . . ., (n − 3)-th, (n − 2)-th columns

and are not in the first row can become four groups: {{n, n − 9, n − 2}, {n, n − 1, n − 8},

{n, n − 9, n − 1}}, {{n, n − 7, n − 3}, {n, n − 2, n − 1}, {n, n − 7, n − 2}}, {{n, n − 7, n − 1},

{n, n − 3, n− 2}, {n, n − 3, n− 1}}, {{n, n− 6, n− 1}, {n, n − 1, n− 5}, {n, n − 6, n− 2}}.

Of course {{n, i}, {n, i + 1}, {n, i + 2}} are desired groups, i = 1, 4, 7, . . . , n − 3.

Case 4 n ≡ 0(mod 6).

Suppose i ≡ 5(mod 6), 5 ≤ i ≤ n − 13 (if n ≥ 18). We can decompose the left subsets which

are in the i-th, (i + 1)-th, . . . , (i + 5)-th columns and not in the first row into 3 groups:

{{n, i, n − 2}, {n, i + 1, n − 1}, {n, i + 1, n − 2}}, {{n, i + 2, n − 1}, {n, i, n − 1}, {n, i, n −

3}}, {{n, i + 4, n − 1}, {n, i + 4, n − 2}, {n, i + 5, n − 1}}.

For the left subsets which are in the first, second, third, fourth, (n − 7)-th, (n − 6)-th,

. . . , (n−2)-th, (n−1)-th columns and are not in first row as well as {n, n−1}, {n, n−2}, we can

decompose them into five groups: {{n, 1, n− 1}, {n, n − 3, n − 7}, {n, n− 3, n − 1}}, {{n, 4, n−

1}, {n, 3, n−1}, {n, 3, n−2}}, {{n, n−7, n−2}, {n, n−6, n−2}, {n, n−6, n−1}}, {{n, n−7, n−

1}, {n, n− 1}, {n, n− 5, n − 1}}, {{n, n− 2, n − 1}, {n, n− 2}, {n, n− 3, n− 2}}.

We can decompose the subsets which are in the first row of An except for {n, n−1}, {n, n−2}

into n−3

3
groups: {{n, i}, {n, i + 1}, {n, i + 2}}, i = 1, 4, 7, . . . , n − 5.

The proof is completed. 2

Lemma 5 If n ≡ 2, 5(mod 6), n ≥ 11, then we can decompose all the entries of An (except for

∅ and {n, 2}) into 1

3
[
(

n
2

)

− 1] groups such that each group contains exactly 3 subsets and three

subsets in each group are the color sets of all vertices of C3 under some vertex-distinguishing
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E-total coloring.

Proof by Lemma 3, we only consider the entries of An which are not empty sets and are not in

any good 3 × 2 submatrices of An described in Lemma 3. Such entries are called left subsets in

this proof.

Case 1 n ≡ 2(mod 6).

For i ≡ 1(mod6), 1 ≤ i ≤ n − 13 (if n ≥ 14), the left entries which are in the i-th, . . . ,

(i + 5)-th columns and not in the first row can be decomposed into 3 desired groups: {{n, i, n−

3}, {n, i, n− 1}, {n, i + 2, n− 1}}, {{n, i, n− 2}, {n, i + 1, n− 2}, {n, i + 1, n− 1}}, {{n, i+ 4, n−

2}, {n, i + 4, n − 1}, {n, i + 5, n − 1}}.

The left subsets which are in the (n− 7)-th , . . . , (n− 2)-th columns and are not in the first

row may become 3 desired groups: {{n, n− 7, n− 3}, {n, n−7, n− 1}, {n, n− 2, n−1}}, {{n, n−

6, n−2}, {n, n−6, n−1}, {n, n−7, n−2}}, {{n, n−5, n−1}, {n, n−3, n−1}, {n, n−3.n−2}} .

We may partiton the entries which are in the first row (except {n, 2}) into n−2

3
desired groups:

{{n, 1}, {n, 3}, {n, 4}}, {{n, i}, {n, i+ 1}, {n, i + 2}}, i = 5, 8, . . . , n − 3.

Case 2 n ≡ 5(mod 6).

Suppose i ≡ 1(mod6), 1 ≤ i ≤ n − 10. The left subsets which are in the i-th, . . . , (i + 5)-

th columns and are not in the first row can become three groups: {{n, i, n − 2}, {n, i + 1, n −

2}, {n, i + 1, n− 1}}, {{n, i, n− 1}, {n, i, n− 3}, {n, i + 2, n− 1}}, {{n, i+ 4, n− 2}, {n, i + 4, n−

1}, {n, i + 5, n − 1}}.

For the left subsets which are in the (n− 4)-th , (n− 3)-th , (n− 2)-th columns and are not

in the first row, they can become two desired groups: {{n, n− 4, n− 2}, {n, n− 4, n− 3}, {n, n−

3, n − 1}}, {{n, n− 4, n − 1}, {n, n− 3, n − 2}, {n, n− 2, n− 1}}.

At last, we consider the entries which are in the first row and which are not in any group

constructed. We only give n−2

3
groups, and {{n, 1}, {n, 3}, {n, 4}}, {{n, i}, {n, i+ 1}, {n, i + 2}}

is a desired group, i = 5, 8, . . . , n − 3.

The proof is completed. 2

It is easy to see that χe
vt(C3) = 4.

Theorem 1 If
(

k−1

2

)

+
(

k−1

3

)

< 3m ≤
(

k
2

)

+
(

k
3

)

, m ≥ 2, k ≥ 4, m 6= 3, then χe
vt(mC3) = k;

χe
vt(3C3) = 5.

Proof Obviously, we have χe
vt(mC3) ≥ η(mC3) = k. So we need only to give k-VDET coloring

of mC3 in the following.

If m = 2, then two C3’s can be colored by f(1, 2; 3, 4) and f(3, 4; 1, 2). So χe
vt(2C3) = 4.

When m = 3, χe
vt(3C3) ≥ η(3C3) = 4. Suppose 3C3 has a 4-VDET coloring. Consider a

4-VDET coloring g of a 3C3.

When the colors of 3 edges of C3 are the same, then the color set of each vertex of C3 is 2-set

(i.e., it has 2 elements or 2 colors). When the number of the different colors of 3 edges of C3 is 2,

then the color set of one vertex of C3 is 2-set, and the color sets of other two vertices are 3-sets.
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When the colors of 3 edges of C3 are different, then the color set of each vertex of C3 is 3-set.

{1, 2, 3, 4} has six 2-subsets and four 3-subsets. And the color set of each vertex of 3C3 under

g is 2-subsets or 3-subsets of {1, 2, 3, 4}. Note that in 3C3, there are at least 3 color sets which

have 3 colors. We consider two cases as follows:

Case 1 If there exists one C3, say the first C3, such that the sets of all vertices of the C3 are

all 3-set, then the color sets of all vertices of other two C3’s must be 2-subsets of {1, 2, 3, 4}. So

the colors of edges of the second C3 are the same, say 1; The colors of edges of the third C3 are

the same, say 2. This illustrates that there are three 2-subsets which contain 1 and other three

2-subsets contain 2 among six 2-subsets of {1, 2, 3, 4}. This is a contradiction.

Case 2 The cardinals of the color sets of the three vertices of the first and the second C3 under

g are 2, 3, 3; The cardinals, for the third C3, are 2, 2, 2.

Denote the i-th C3 by Ci
3, then V (Ci

3) = {vi
1, v

i
2, v

i
3}, 1 ≤ i ≤ m. We may suppose that

C(v1
2) = {1, 2, 3}, C(v1

3) = {1, 2, 4}, C(v2
2) = {1, 3, 4}, C(v2

3) = {2, 3, 4}. Without loss of

generality we assume g(v1
2v1

3) = 1, g(v2
2v

2
3) = 3. The number of the different colors of 3 edges

of Ci
3 is 2 and g(vi

1v
i
2) 6= g(vi

2v
i
3) 6= g(vi

1v
i
3), i = 1, 2, so g(v1

1v
1
2) = g(v1

1v
1
3) = 2, g(v2

1v
2
2) =

g(v2
1v

2
3) = 4. By the characteristic of E-total coloring we know that g(v1

1) = 1, g(v2
1) = 3. So

C(v1
1) = {1, 2}, C(v2

1) = {3, 4}. Thus {C(v3
1), C(v3

2), C(v3
3)} ⊆ {{1, 3}, {1, 4}, {2, 3}, {2, 4}}.

This is a contradiction for the 3 edges of the third C3 accept the same color. So 3C3 has no 4-

VDET coloring. But we can color 3C3’s by f(1, 2; 3, 4), f(3, 4; 1, 2) and h(1; 3, 4, 5), respectively.

Thus χe
vt(3C3) = 5.

If 4 ≤ m ≤ 6, χe
vt(mC3) ≥ 5. 6C3 can be colored by f(1, 2; 3, 4), f(3, 4; 1, 2), h(1; 3, 4, 5),

h(2; 3, 4, 5), g(5; 3, 1; 2, 4) and g(5; 1, 2; 4, 3). Of course for 4C3 and 5C3 we can easily obtain their

5-VDET coloring. So χe
vt(mC3) = 5, if 4 ≤ m ≤ 6. Note that {5, 3}, {5, 4} are not color sets of

any vertex under the above 5-VEDT coloring of 6 C3.

If 7 ≤ m ≤ 11, then χe
vt(mC3) ≥ 6. we give the 6-VDET coloring of 11C3 as follows:

Based on the 5-VDET coloring of 6C3 given in the preceding paragraph, we color the

7, 8, 9, 10, 11-th C3 by f(6, 5; 1, 3), g(6; 1, 4; 2, 5), g(6; 3, 1; 2, 4), f(6, 4; 3, 5), h(6; 1, 2, 3). The re-

sulting coloring is a 6-VDET coloring of 11C3.

The restriction of 6-VDET coloring of 11C3 on mC3 (7 ≤ m ≤ 10) is a 6-VDET coloring of

mC3. So χe
vt(mC3) = 6, if 7 ≤ m ≤ 11.

If 12 ≤ m ≤ 18, then χe
vt(mC3) ≥ 7. Based on the 6-VDET coloring of 11C3, we only

need color 12-th, . . . , 18-th C3 by the method mentioned in Lemma 4 (the case n = 7). We

can obtain 7-VDET coloring of 18C3 and then the restriction of 7-VDET coloring of 18C3 on

mC3 (12 ≤ m ≤ 17) is a 7-VDET coloring of mC3. The coloring of 18C3 has used up all 2-subsets

and 3-subsets of {1, 2, 3, 4, 5, 6, 7} except {5, 3}, {5, 4}. So we have χe
vt(mC3) = 7.

If 19 ≤ m ≤ 28, then χe
vt(mC3) ≥ 8. Now in order to prove χe

vt(mC3) = 8, if 19 ≤ m ≤ 28,

we give the 8-VDET coloring of 28C3. The first 18C3 are colored by the 7-VDET coloring of

18C3. And the last 10C3’s are colored by h(5; 3, 4, 8), f(8, 1; 5, 7), h(8; 2, 3, 4), g(8; 6, 1; 2, 7),

f(8, 7; 3, 5), f(8, 6; 5, 7), g(8; 2, 4; 3, 1), g(8; 1, 4; 2, 5), g(8; 4, 6; 5, 3), g(8; 3, 6; 4, 7). It is easy to see
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that the above coloring is a 8-VDET coloring of 28C3. So far the 8-VDET coloring of 28C3 has

used up all 2-combinations and 3-combinations of {1, 2, . . . , 8}.

Suppose m ≥ 29 and the result is valid for the vertex-disjoint union of less than 29C3’s. We

consider mC3, where
(

k−1

2

)

+
(

k−1

3

)

+ 1 ≤ 3m ≤
(

k
2

)

+
(

k
3

)

, k ≥ 9.

If k ≡ 8, 0, 1(mod9), then by Lemmas 4 and 5 we can obtain VDET coloring of 1

3
[
(

k
2

)

+
(

k
3

)

]C3

using colors {1, 2, . . . , k}. Note that in the case when n ≡ 8(mod 9), k ≥ 17, {k, 2}, {k − 3, 2},

{k − 6, 2} are the color sets of all vertices of some C3. We can easily give k-VDET coloring of

mC3 when
(

k−1

2

)

+
(

k−1

3

)

< 3m <
(

k
2

)

+
(

k
3

)

.

If k ≡ 2, 3, 4(mod9), then by Lemmas 4 and 5 we can obtain VDET coloring of 1

3
[
(

k
2

)

+
(

k
3

)

− 1]C3 using colors {1, 2, . . . , k} and this coloring has used up all 2-subsets and 3-subsets

of {1, 2, . . . , k} but {k, 2} (if k ≡ 2(mod 9)) or {k − 1, 2} (if k ≡ 3(mod 9)) or {k − 2, 2} (if

k ≡ 4(mod9)). We can easily give k-VDET coloring of mC3 when
(

k−1

2

)

+
(

k−1

3

)

< 3m <
(

k
2

)

+
(

k
3

)

.

If k ≡ 5, 6, 7(mod9), then by Lemmas 4 and 5 we can obtain VDET coloring of 1

3
[
(

k
2

)

+
(

k
3

)

− 2]C3 using colors {1, 2, . . . , k} and this coloring has used up all 2-subsets and 3-subsets of

{1, 2, . . . , k} but two 2-combinations {k−3, 2}, {k, 2} or {k−4, 2}, {k−1, 2} or {k−5, 2}, {k−2, 2}.

We can easily give k-VDET coloring of mK3 when
(

k−1

2

)

+
(

k−1

3

)

< 3m <
(

k
2

)

+
(

k
3

)

.

The proof is completed. 2

3. Vertex distinguishing E-total chromatic numbers of mC4

A 2 × 2 submatrix B of An is called good if there exists an E-total coloring method for C4

such that the color sets of the all vertices of C4 are just all the entries of B.

Lemma 6 An[i, i+1 | j, j +1] is a good 2× 2 sub-matrix when i ≡ 0(mod 2), j ≡ 1(mod 2) and

no entry of An[i, i + 1 | j, j + 1] is ∅.

Proof Note that An[i, i + 1 | j, j + 1] =

(

{n, j, j + i − 1} {n, j + 1, j + i}
{n, j, j + i} {n, j + 1, j + i + 1}

)

.

Obviously, all the entries of An[i, i + 1 | j, j + 1] are the color sets of all the vertices of C4

under the following E-total coloring:

&%
'$

j + i
j + 1 &%

'$
j + i + 1

n

&%
'$

j + i
j

&%
'$
j + i − 1

n

Figure 5 VDET coloring of C4

The proof is completed. 2
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Lemma 7 If n ≡ 0, 1(mod8), n ≥ 8, then we can decompose all the entries of An (except for

∅) into 1

4

(

n
2

)

groups such that each group has 4 subsets and four subsets in each group are the

color sets of all vertices of C4 under some vertex-distinguishing E-total coloring of C4.

Proof By Lemma 6, we only consider the entries of An which are not empty sets and are not

in any good 2 × 2 submatrices of An described in Lemma 6. Such entries are called left subsets.

Case 1 n ≡ 0(mod 8).

When n ≥ 16, suppose i ≡ 1(mod8), 1 ≤ i ≤ n − 15. We can decompose the left subsets

which are in the i-th, (i + 1)-th, . . . , (i + 7)-th columns and not in the first row into 3 groups:

{{n, i, n− 2}, {n, i, n− 1}, {n, i + 2, n− 2}, {n, i + 2, n− 1}}, {{n, i + 4, n − 2}, {n, i + 4, n−

1}, {n, i+6, n−2}, {n, i+6, n−1}}, {{n, i+1, n−1}, {n, i+3, n−1}, {n, i+5, n−1}, {n, i+7, n−1}}.

For {n, n−1}, {n, n−2}, {n, n−3} as well as the left subsets which are in the (n−7)-th, (n−6)-

th, . . . , (n−2)-th, (n−1)-th columns and are not in first row, we can decompose them into three

groups: {{n, n−2, n−1}, {n, n−3, n−2}, {n, n−3, n−1}, {n, n−1}}, {{n, n−4, n−1}, {n, n−

6, n−1}, {n, n−3}, {n, n−2}}, {{n, n−7, n−2}, {n, n−7, n−1}, {n, n−5, n−2}, {n, n−5, n−1}}.

We can decompose the subsets which are in the first row of An except for {n, n− 1}, {n, n−

2}, {n, n− 3} into n−4

4
groups: {{n, i}, {n, i + 1}, {n, i + 2}, {n, i + 3}, i = 1, 5, 9, . . . , n − 7.

Case 2 n ≡ 1(mod 8).

Suppose i ≡ 1(mod8), 1 ≤ i ≤ n − 8. The left subsets which are in the i-th, (i + 1)-th, . . . ,

(i+7)-th columns and not in the first row are the sets: {n, i, n−1}, {n, i+2, n−1}, {n, i+4, n−1},

{n, i + 6, n − 1}. These sets may become a desired group.

Of course, the subsets in the first row may become n−1

4
desired groups: {{n, i}, {n, i +

1}, {n, i + 2}, {n, i + 3}}, i = 1, 5, 9, . . . , n − 4.

The proof is completed. 2

Lemma 8 If n ≡ 2(mod 8), then we can decompose all the entries of An (except for ∅ and

{n, n − 1}) into 1

4
[
(

n
2

)

− 1] groups such that each group contains exactly 4 subsets and four

subsets in each group are the color sets of all vertices of C4 under some vertex-distinguishing

E-total coloring of C4.

Proof As before we only consider the left subsets.

For i ≡ 1(mod 8), 1 ≤ i ≤ n − 9 . We can decompose the left subsets which are in the i-th,

(i + 1)-th, . . . , (i + 7)-th columns and not in the first row into 3 groups: {{n, i, n− 2}, {n, i, n−

1}, {n, i + 2, n− 2}, {n, i + 2, n − 1}}, {{n, i + 4, n − 2}, {n, i + 4, n − 1}, {n, i + 6, n − 2}, {n, i +

6, n − 1}}, {{n, i + 1, n − 1}, {n, i + 3, n − 1}, {n, i + 5, n − 1}, {n, i + 7, n − 1}}.

For the entries which are in the first row (except for {n, n−1}), they may become n−2

4
desired

groups: {{n, i}, {n, i + 1}, {n, i + 2}, {n, i + 3}, i = 1, 5, 9, . . . , n − 5.

The proof is completed. 2

Lemma 9 If n ≡ 3(mod8), then we can decompose all the entries of An (except for ∅, {n, n −
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2, n − 1}, {n, n − 4, n − 2} and {n, n − 3, n − 1}) into 1

4
[
(

n
2

)

− 3] groups such that each group

has 4 subsets and four subsets in each group are the color sets of all vertices of C4 under some

vertex-distinguishing E-total coloring of C4.

Proof We only consider the left subsets as well as four sets {n, n− 4, n− 2}, {n, n− 4, n − 3},

{n, n − 3, n− 2}, {n, n − 3, n− 1}.

Suppose i ≡ 1(mod 8), 1 ≤ i ≤ n − 18. The left subsets which are in the i-th, (i + 1)-th,

. . . , (i + 7)-th columns and not in the first row are the sets: {n, i, n − 1}, {n, i + 2, n − 1},

{n, i + 4, n − 1}, {n, i + 6, n − 1}. These subsets may become a desired group.

We now consider the left subsets which are in the (n − 10)-th, (n − 9)-th, . . . , (n − 6)-th,

(n − 5)-th columns and are not in the first row and the subsets in the (n − 4)-th, (n − 3)-th,

(n−2)-th, (n−1)-th columns (except for {n, n−3}, {n, n−4}). Obviously, these subsets (except

for {n, n − 2, n − 1}, {n, n − 4, n − 2} and {n, n − 3, n − 1}) are the color sets of all vertices of

2C4 under the following E-total coloring:

��
��
n − 10

n ��
��
n − 8

n − 1

��
��
n − 6

n��
��
n − 4

n − 1

��
��
n − 2

n − 3 ��
��
n − 4

n

��
��
n − 2

n��
��
n − 1

n

Figure 6 VDET coloring of 2C4

We may partition the entries which are in the first row (except for {n, n−1}, {n, n−2}) into
n−3

4
desired groups: {{n, i}, {n, i + 1}, {n, i + 2}, {n, i + 3}}, i = 1, 5, 9, . . . , n − 6.

The proof is completed. 2

Lemma 10 If n ≡ 4(mod 8), then we can decompose all the entries of An (except for ∅, {n, n−1},

and {n, n−3}) into 1

4
[
(

n
2

)

−2] groups such that each group has 4 subsets and four subsets in each

group are the color sets of all vertices of C4 under some vertex-distinguishing E-total coloring.

Proof We only consider the left subsets.

For i ≡ 1(mod 8), 1 ≤ i ≤ n − 11, the left subsets which are in the i-th, (i + 1)-th, . . . ,

(i + 7)-th columns and not in the first row can become 3 desired groups: {{n, i, n− 2}, {n, i, n−

1}, {n, i + 2, n− 2}, {n, i + 2, n − 1}}, {{n, i + 4, n − 2}, {n, i + 4, n − 1}, {n, i + 6, n − 2}, {n, i +

6, n − 1}}, {{n, i + 1, n − 1}, {n, i + 3, n − 1}, {n, i + 5, n − 1}, {n, i + 7, n − 1}}.

The left subsets which are in the (n − 2)-th, (n − 3)-th columns and not in the first row:

{n, n−2, n−1}, {n, n−3, n−1}, {n, n−3, n−2} together with {n, n−2} may become a desired

group.

We may partion the entries which are in the first row (except for {n, n − 1}, {n, n − 2},

{n, n−3}) into n−4

4
desired groups: {{n, i}, {n, i+1}, {n, i+2}, {n, i+3}}, i = 1, 5, 9, . . . , n−7.
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The proof is completed. 2

Lemma 11 If n ≡ 5(mod 8), n ≥ 5, then we can decompose all the entries of An (except for

∅ and {n, n − 2, n − 1}, {n, n − 4, n − 1}) into 1

4
[
(

n
2

)

− 2] groups such that each group contains

exactly 4 subsets and four subsets in each group are the color sets of all vertices of C4 under

some vertex-distinguishing E-total coloring.

Proof As before we consider the left subsets.

When n ≥ 13, for i ≡ 1(mod 8), 1 ≤ i ≤ n − 12, we have four left subsets which are in the

i-th, (i + 1)-th, . . . , (i + 7)-th columns and not in the first row: {n, i, n − 2}, {n, i + 2, n − 1},

{n, i + 4, n − 1}, {n, i + 6, n − 1}}. These subsets may become a desired group.

For the subsets which are in the first row, we may give n−1

4
desired groups, {{n, i}, {n, i +

1}, {n, i + 2}, {n, i + 3}, i = 1, 5, 9, . . . , n − 4.

The proof is completed. 2

Lemma 12 If n ≡ 6(mod 8), n ≥ 6, then we can decompose all the entries of An (except for ∅,

{n, n − 2, n − 1}, {n, n − 3, n − 1} and {n, n − 3, n − 2}) into 1

4
[
(

n
2

)

− 3] groups such that each

group has 4 subsets and four subsets in each group are the color sets of all vertices of C4 under

some vertex-distinguishing E-total coloring.

Proof As before, we only consider the left subsets.

When n ≥ 14, for i ≡ 1(mod8), 1 ≤ i ≤ n − 13, we can decompose the left subsets

which are in the i-th, (i + 1)-th, . . . , (i + 7)-th columns and not in the first row into 3 groups:

{{n, i, n−2}, {n, i, n−1}, {n, i+2, n−2}, {n, i+2, n−1}}, {{n, i+4, n−2}, {n, i+4, n−1}, {n, i+

6, n− 2}, {n, i + 6, n− 1}}, {{n, i + 1, n− 1}, {n, i + 3, n− 1}, {n, i + 5, n− 1}, {n, i + 7, n− 1}}.

We have six left subsets which are in the (n−2)-th, (n−3)-th, (n−4)-th, (n−5)-th columns

and are not in first row. Among these subsets and {n, n − 1}, it is obvious that {n, n − 1},

{n, n− 4, n− 1}, {n, n− 5, n− 1}, {n, n− 5, n− 2} are the color sets of all vertices of C4 under

the following E-total coloring:

��
��
n − 4

n − 1 ��
��

n

n − 5

��
��
n − 2

n

��
��
n − 1

n

Figure 7 VDET coloring of C4

At last, we consider the entries which are in the first row (except for {n, n− 1}). They may

become n−2

4
desired groups, {{n, i}, {n, i + 1}, {n, i + 2}, {n, i + 3}}, i = 1, 5, 9, . . . , n − 5.

The proof is completed. 2

Lemma 13 If n ≡ 7(mod8), n ≥ 7, then we can decompose all the entries of An (except for ∅
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and {n, n− 2, n− 1}) into 1

4
[
(

n
2

)

− 1] groups such that each group contains exactly 4 subsets and

four subsets in each group are the color sets of all vertices of C4 under some vertex-distinguishing

E-total coloring of C4.

Proof As before, we only consider the left subsets.

When n ≥ 15, for i ≡ 1(mod 8), 1 ≤ i ≤ n − 14, the left subsets which are in the i-th,

(i + 1)-th, . . . , (i + 7)-th columns and not in the first row are the sets: {n, i, n− 1}, {n, i+ 2, n−

1}, {n, i + 4, n − 1}, {n, i + 6, n − 1}}. These subsets may become a desired group.

We have three left subsets which are in the (n−6)-th, (n−5)-th, . . ., (n−2)-th columns and

are not in first row. For these subsets and the subsets {n, n − 1}, {n, n − 2}, it is obvious that

{n, n − 1}, {n, n − 2}, {n, n − 4, n − 1}, {n, n − 6, n − 1} are the color sets of all vertices of C4

under the following E-total coloring:

��
��
n − 4

n − 1 ��
��
n − 6

n

��
��
n − 2

n��
��
n − 1

n

Figure 8 VDET coloring of C4

For the subsets which are in the first row (except for {n, n−1}, {n, n−2}), we may give n−3

4

groups: {{n, i}, {n, i + 1}, {n, i + 2}, {n, i + 3}, i = 1, 5, 9, . . . , n − 6.

The proof is completed. 2

It is easy to see that χe
vt(C4) = 4.

Theorem 2 If
(

k−1

2

)

+
(

k−1

3

)

+ 1 ≤ 4m ≤
(

k
2

)

+
(

k
3

)

, m ≥ 2, k ≥ 4, then χe
vt(mC4) = k.

Proof Obviously we have χe
vt(mC4) ≥ η(mC4) = k. So we need only to give k-VDET coloring

of mC4 in the following. Denote the i-th C4 by Ci
4, and V (Ci

4) = {vi
1, v

i
2, v

i
3, v

i
4}; E(Ci

4) =

{vi
1v

i
2, v

i
2v

i
3, v

i
3v

i
4, v

i
4v

i
1}, 1 ≤ i ≤ m.

If m = 2, then two C4 can be colored by 4 colors 1, 2, 3, 4 as follows:

Let v1
1 , v

1
2 , v1

3 , v
1
4 receive 2, 3, 2, 4 respectively; Let v1

1v
1
2 , v1

2v
1
3 , v

1
3v1

4 , v
1
4v1

1 receive 1, 1, 3, 1, re-

spectively; Let v2
1 , v

2
2 , v

2
3 , v2

4 receive 3, 4, 3, 1 respectively and let v2
1v2

2 , v
2
2v

2
3 , v2

3v
2
4 , v2

4v
2
1 receive

2, 2, 4, 2, respectively. The resulting coloring is obviously 4-VDET coloring of a C4 and it has

used up all 2, 3-combinations of {1, 2, 3, 4} but {1, 4} and {3, 4}

So χe
vt(2C3) = 4.

If 3 ≤ m ≤ 5, χe
vt(mC4) ≥ 5. Based on the 4-VDET coloring of 2C4 given above, the third,

fourth C4 of 5C4 can be colored by the method given in Lemma 11. The fifth C5 of 5C4 can

be colored as follows: we assign 1, 3, 1, 3 to v5
1 , v5

2 , v
5
3 , v5

4 respectively and assign 4, 4, 5, 4 to

v5
1v

5
2 , v5

2v
5
3 , v5

3v
5
4 , v5

4v
5
1 , respectively. The resulting coloring is 5-VDET coloring of 5C5. Of course

for 3C4 and 4C4, we can easily obtain their 5-VDET colorings.
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So χe
vt(mC4) = 5, if 3 ≤ m ≤ 5.

Suppose m ≥ 6, we consider mC4, where
(

k−1

2

)

+
(

k−1

3

)

+ 1 ≤ 4m ≤
(

k
2

)

+
(

k
3

)

, k ≥ 9.

If k ≡ 0, 1, 3, 5, 7(mod8), then by Lemmas 7, 9, 11 and 13 we can obtain k-VDET coloring

of (1

4
[
(

k
2

)

+
(

k
3

)

])C4 using colors {1, 2, . . . , k}. Note that in the case when k ≡ 3(mod 8), k ≥ 11,

{k − 1, k − 2}, {k, k − 2, k − 1}, {k, k − 3, k − 1} and {k, k − 4, k − 2} are the color sets of

all vertices of some C4 under some vertex-distinguishing E-total coloring; when k ≡ 5(mod 8),

k ≥ 13, {k, k − 2, k − 1}, {k, k − 4, k − 1}, {k − 1, k − 2} and {k − 1, k − 4} are the color sets of

all vertices of some C4 under some vertex-distinguishing E-total coloring; when k ≡ 7(mod 8),

k ≥ 7, {k, k− 2, k− 1}, {k− 1, k− 3, k− 2}, {k− 1, k− 4, k− 3} and {k− 1, k− 4, k− 2} are the

color sets of all vertices of some C4 under some vertex-distinguishing E-total coloring. We can

easily obtain k-VDET coloring of mC4 when
(

k−1

2

)

+
(

k−1

3

)

< 4m <
(

k
2

)

+
(

k
3

)

.

If k ≡ 2(mod 8), then by Lemma 8 we can obtain VDET coloring of (1

4
[
(

k
2

)

+
(

k
3

)

− 1])C4

and this coloring has used up all 2, 3-combinations of {1, 2, . . . , k} but {k, k − 1}. We can easily

obtain k-VDET coloring of mC4 when
(

k−1

2

)

+
(

k−1

3

)

< 4m <
(

k
2

)

+
(

k
3

)

.

If k ≡ 4(mod 8), k ≥ 12, then by Lemma 10 we can obtain VDET coloring of (1

4
[
(

k
2

)

+
(

k
3

)

− 2])C4 with all colors 1, 2, . . . , k. This coloring has used up all 2, 3-combinations but two

2-combinations {k, k − 1}, {k, k − 3}. We can easily obtain k-VDET coloring of mC4 when
(

k−1

2

)

+
(

k−1

3

)

< 4m <
(

k
2

)

+
(

k
3

)

.

If k ≡ 6(mod 8), k ≥ 6, then by Lemma 12 we can obtain VDET coloring of (1

4
[
(

k
2

)

+
(

k
3

)

−3])C4

with all colors 1, 2, . . . , k. This coloring has used up all 2, 3-combinations but three subsets

{k, k − 2, k − 1}, {k, k − 3, k − 2} and {k, k − 3, k − 1}. We can easily obtain k-VDET coloring

of mC4 when
(

k−1

2

)

+
(

k−1

3

)

< 4m <
(

k
2

)

+
(

k
3

)

.

The proof is completed. 2
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