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1. Introduction

Suppose {X; : i € Z} is a real-valued random variable sequence on a probability space
(Q,B, P). Let F]* denote the o-fieled generated by (X;:m < i < n). Let

a(n) = sup{|P(AB) - P(A)P(B)|: A€ F,,B € FX,..

The sequence {X;} is said to be a-mixing or strong mixing if a(n) — 0 as n — oo.

The moment inequalities of partial sum Y " ; X; are important tools in researching
asymptotic property of mixing sequences. So many scholars have been trying to develop
them. For example, in the ¢ - mixing or p - mixing cases, Billingsley!] and Peligrad(®-10]
gave some inqualities for some special order moments. Afterward, Shao Qiman(!%1¢l and
Yang Shanchao (18 obtained some better inequalities for general order moment. However,
the resemblance moment inequalities for strong mixing are rarely found. Yokoyama (19
got one only for a strictly stationary strong mixing sequence. That is

E|IN Xi"<Cn/? for r>2

=1
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as a(n) satisfies some conditions. Therefore, the main purpose of this paper is to develop
some more general moment inequalities for strong mixing sequences, and apply them to
discuss the asymptotic normality of the nonparametric weight function estimate for the
fixed design regression model.

2. Moment Inequality

Throughout this section, it is supposed that {X; : ¢ > 1} is a strong mixing random
variable sequence with EX; = 0 for all ¢ > 1, C denotes constant which only depends on
some given numbers, [z] denotes the integral part of z, and || X||, := (E|X| .

Theorem 2.1 Let {a; :1 > 1} be a real sequence.
(i) If E|X;|**® < oo for some § >0, then for alln > 1

B3 wXe? < (1420 Y ¥/ m)) Y a?l|Xil 345 (21)
=1 m=1 =1

(ii) If |X;| < b; a.s. Then for alln >1

E(Z a;X;)2<(1+8 i Z a?b?. (2.2)

Theorem 2.2 Let |X;| < b;,a.s.
(i) If1 < r < 2, then for given § € (0,1) and alln > 1

B3I Xl < Ol DY B + a(n )0 b)) (23
i=1

=1 =1

(i) Ifr > 2 and T2, a(i) < 0o, then for given 6 € (0,1) and alln>1

EISS X < Ot 30 BIXS +a(n () + (EN) (24)

=1 =1

Theorem 2.3 Let |X;| < b; as. » > 2 and ¥ a()<oo If there exist A > 1 and
0 < 8 < 1 such that 7/2 — A8 > 0 and a(n) = O(n™?), then for given ¢ > 0 and alln > 1

EIY_ X" < C{nf Y BIXm + 0725 b2y (2.5)
=1 =1 =1

Theorem 2.4 Let r > 2. Suppose there exist § > 0 and A > r(r + §)/28 such that
a(n) = O(n~*) and E|X;|"*® < co. Then for givene > 0 and alln > 1

B X < Cint S BIXT + (O IXdl20)/). (2.6)
i=1 i=1 1=1
Further, if {X; : i > 1} is a strictly stationary sequence, then for alln > 1

EIZX "< on™?|| Xy 4 (2.7)
=1

- 350 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



To prove our theorems, we first give the following lemmas.

Lemma 1013 Suppose that ¢ and 5 are F¥ - measurable and Fi4n - measurable random
variables, respectively.

(i) If|€| < C; a.s. and ||n| < Cy a.s., then

|E(&n) — (EE)(En)| < 4C1Cha(n).

(ii) If E|€|P < o0, E|n|? < 00 for some p, q,t>1 with1l/p+1/q¢+1/t =1, then

|E(€n) — (E€)(En)| < 10aM4(n)|[€]l, - [|nlly-

Lemma 2 For any z, y € R!, have
|z +y|" < lyl” + rzly[ " sgn(y) + 2Jz|", for 1<r<2, (2.8)

|z +yl" < |yl + dilz]" + daz|y|" 'sgn(y) + ds2®|y|""?, for r > 2, (2.9)
where dy = 27, dy =7, d3 = 2" - 72,

Proof It is easy to show that |1+ ¢|” <1+ rt 4 2[¢|" for r € (1,2],¢ € R and |1 +¢|7 <
14 dy|t|” + dot + dat® for r > 2,t € R'. This implies lemma 2.

Proof of Theorem 2.1 By lemma 1(ii)

Zalx )<Za EX2+2OZ Z laia;1a®/ P+ (G — 0)[|Xilla46]1 X; 245

i=1 j=i+1

< (1420 Z a(’/(2+‘5)(m))Za?||Xi||§+a-
i=1

m=1

Hence (2.1) holds. Simarly, we get (2.2) by lemma 1(i). Completing the proof.
Fix n and redefine X;, b; as X; = X;,b; = b;for 1 <i<nand X; =0,b; =0fori > n.
Let

k= [(n/2)9], m= [(n/2)1_9], (2-10)
where 0 < 6 < 1. Clearly,
n<2m+1)k, [°]<k<2n®, m<nalf (2.11)
Denote M; = {2(i - 1)k +1, 26 = Dk +2, ..., (2i-1)k,}, M; = {(2i - D)k +1, (2i —
1k+2, ..., 2k} for ¢=1, 2, ..., m+ 1 Let
Yi= > X;, Zi= ) X;, Ai= Zb],A_ZbJ,B— > 8,
jEM; jEM; JEM; e, JEM;
= Y b, Ei= > EIX;I", E:= Y E|X,I",
jeM; jeM jeM;
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fori=1, 2, ..., m+ 1. Thus

n m+1 m+1
ZXi = Y; + Z Z;, (2.12)
i=1 =1 i=1
n m+1 m+1
b = E Ai + Z 4, (2.13)
i=1
m+1 m+1
=1
n m+1 m+1l
SEXIT =Y E+ Y E, (2.15)
=1 =1 =1

Proof of Theorem 2.2 As 1 <r<2 form (2.8), lemma 1 (i) and (2.13)
m+1 m+1 m+1
BI'S, Yil = Y+ % val” < B Z Y+l 3 Y| sgn( L Yi)+2EM[

=2

< BI"SS Vil + dra(k) Ay (3 b) 4 2BV
<... =2 =1
- m41 m n
<2 3 BVl +4ra(k)(X A)(X b) !
i=1 i=1 =1
m+1 n
<2y E|Vi" + dra(k)(3 b)) (2.16)
i=1 =1
In the same way
m+1 m+1
E]ZZ|’<2ZE|21 + 4raf k)Zb)’ (2.17)
Combining (2.12), (2.16) and (2.17)
mn+1 n
E|ZX " < 2 Z E|Y;|" + E|Zi|") + 8ra(k)(D_ bi) .
=1 =1 i=1

Using Minkowski inequality to E|Y;|” and E|Z;|” and noting (2.11), we get (2.3).
As r > 2, from (2.9) and lemma 1(i)

m+1 m+1

E| ZYI = ElY1 + ZYI

m+1 m+1 m+1
< E{] Z Yi|" + di[Ya]|" + do Y1 | Z Yi""tsgn( o Yi)+daYE] ¥ YiT?)
=2 =2 =2

’L—_.

m+1
< E| E i+ 1 EN|" + 4d2a(k)A1(E b)) + d3EY12E| D
i=1 =2

’L:.‘

ddza(k)A i(g1 bi)"
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m+1

< d; E EY;|" + 8dza(k )(2 bi) + dsA\, (2.18)
where A := Z EY?E| E Y;|"~%. Now we first prove the following
1= +1
m+1 m+1
E| Z Y[ < C{Z EYi +a Z sz r2y. (2.19)

=1

(1) As2 <7 <4, by Jessen inequality and theorem 1 (ii)

m m41 m n n
A< ZEY {E(Y V)32 <oS B Y e <odop2y/2. (2.20)
i=j+1 j=1 i=1 =1

Hence (2.18) implies (2.19).
(2) Suppose (2.19) hold for r — 2 with » > 4. Then

™ m—+1 n n
A<CY BYH{ L BV +a(k)( X b:) 2 + (3 07)-D/%)
j =1 =1 =1

J=1
" m+1
< CZEY Z ElY;|""% 4 Z sz ) /2 (2.21)

follows from theorem 1 (ii). And
m m+1 Tm m+1 m+1
X EYP ¥ BT < 3 EYH( L BYPPOTI( L B/t
=1 =1 J=1

-+l
< (8 pypyi 'S By < oS @y S B 2
follows by Hélder inequality and theorem 1(11) From (2. 18) (2 21) and (2 22), we have

(2.19). That implies that (2.19) hold for all » > 2. Similarly, E|E7*!Z;|" has the same
bound on the right-hand side of (2.19). Thus

mn+1
E[ZX| < C{Z E|Yi[" + E|Zi]") + Z +(Zb2 r/2}. (2.23)

Therefore, (2.4) follows by Minkowski inequality.
Proof of Theorem 2.3 Since a(k) < Ck™ < Cn~* so
)(sz)r < Cnr/z—)\ﬁ(z b?)r/Z.
i=1 i=1

Hence, from (2.23)

1 141
IS X < C{ Y (BIIF + EIZ) + n /(3 8)712), (2.24)
=1 =1 =1
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for » > 2. By Minkowski inequality, (2.11) and (2.15)

E|2X|T<C{n9(r 1) ZElX' +n r/2—-26 sz r/2}

=1 1=1 =1

Applying the inequality above to E|Y;|” and F|Z;|" in (2.24), and noting (2.11) and (2.15),

m+1 n
El ZX |r < C{ Z k(i r—1) (E + E ) kr/Z—AG(B:‘/Z + B:‘/Z)) + nr/2—/\0(z bf)r/Z}
i=1 =1 i=1

<C{n (r—1) Z E[X |r+nr/2 AG(E b2)r/2}

Again, applying the mequahty above to E|Y;|" and E|Z |” in (2.24), and repesting ¢ times
in this way, we have

E|ZX| < c{n®'t-1) ZE|X| + a2 *G(Z b2y /2y, (2.25)

i=1 1=1 =1
for integer ¢ > 1. Since 0 < § < 1, 8*(r — 1) < € for some ¢ > 1. Thus (2.5) holde.

Proof of Theorem 2.4 Denote 8y = §/r(r+6),V; = ¥ ||X;||2,5 fori=1,2,---,m+1
]e i

and f(n) = 14 10dy(k/2a (k))"/1"=2) 4 10d3(ka®(k))"/(*=2). By Minkowski inequality
and Halder inequality
m+1
() Willasll S Vil < a0 S v

'L—.-

m+1
< VP 4 (k2P0 (k) /C-DE|'SY Vi, (2.26)
i=2

2 2 mi1 r—
Po(k )I!Y1||,+<sll Z Yill7? < oo (k)RVA| E Y;llr?

1=2

< VM2 4 (koo (k) /=D E| 2 Yil". (2.27)

Since A > r(r +68)/26 = 1/2fy, so ABy > 1/2. In (2.10), choose 0 = (14 (MBo—1/2)r/(r —
1))~1. Then from (2.11)

m(kY 2o (k) /=1 < Opl=f(1+(Me=1/2)r/(r-1)) < C, (2.28)
m(ka (k) /(r=2) < Cpl=80+(6=1/2)2r/(r-2)) < (. (2.29)
(2.28) and (2.29) implies
()" < . (230)
Apply lemma 1(ii) to the first inequality of (2.18) and use (2.26), (2.27) and (2.30),

m+1 m+1
E| E Yi[" < Ej Z Yil" + diE|Y1]" + 10dza (k)| |Yallr46l] 2 Yilli 7'+
=2

1=2

m+1
ds EYE| Z Y72 + 10d30® (k)| Y12 51l 3 Yillr~?
=2

1=2
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m+1 m-+1
F(ME| S Yil" + iEIYA|™ + 20d3V]/? + dsEYPE| s> Vi 2
=2 =2

<
m+1 ) m+1 /2
< (f(n))™{d1 ¥ E|Yi" +20ds 3 V,'" +dsA}
=1 =1
m+1 n
< ¢{ ) ElYi|" + (El 1X:l12,6)77% + A}, (2.31)

where A := 2;7;1E162E|22’;’;11Y,;|"2. From theorem 1 (ii) and using the resembalance
ways of (2.20), (2.21), and (2.22), we have

‘ m+1 n
A< C{Y BV + (X2 5) 72} (2.32)
1=1 =1

Combining (2.31) and (2.32),

m+1 m+1 n
E| Y Yil" < C{3] EIYil" + (X 11X:l1%5)72).

Thus -
BIYS Xl < CLY (B + BIZ) + (31Xl s)72). (2.33)
=1 =1 i=1

From (2.33) and the same way of proving (2.25),

B[ X" < C{n” DS B + (O I1X:12,5)7/7), (2.34)
=1 =1 =1

for integer ¢ > 1. Since 0 < § < 1, hence (2.34) implies (2.6).
3. Application

To show the application of the inequalities in section 2, here we discuss the asymp-
totic normality of the general linear estimator for the fixed design regression. Therefore,
consider observations

},ni = g(wni) + Eni, 1 < i < n, (31)
where the design points z,,1, ... , z,, € A, which is a compact set of R?,¢ is a bounded
real valued function on A4, and €nl, ..., Enn are regression errors with zero mean and

finite variance o?. A common estimate of g is
i n
g“(z) = ani(z)Yni’ (32)
=1
where weight function w,;(z), i = 1, 2, ..., n, depend on the fixed design points
Znly ««.y Ty and on the number of observations n.
In the independent case, the estimate (3.2) has been considered by much literature,

such as, Priestly and Chao[“], Clark[g], Georgiev[4‘7] and the references therein. In var-
ious dependence cases, g,(z) has been also researched very much. Fox example, Fanl3],
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Roussas’?l, Roussas, Tran and Ioannides('¥], Tran, Roussas, Yakowitz and Van!7! and the
references therein.

Under the strong mixing condition, asymptotic normality of (3.2) has been established
by [14]. Here our purpose is to use the moment inequalities in section 2 to give some more
weaker conditions for asymptotic normality of the estimate (3.2). Adapting the basic
assumptions of [14], we assume the followings.

Assumption (Al). (i) g:A — R is a bounded function defined on the compact subset
A of RY; (i) {& :t =0, £1, ...} is a strictly stationary and a - mixing time series with
E¢ =0, var(§;) = 0? € (0,00); (iii) For each n, the joint distribution of {e,,; : 1 < i < n}
is the same as that of {{;, ..., .}

Denote

wp(z) 1= max{|w,(z)] : 1 <i < n}, oX(z) = Var(g.(z)). (3.3)

Assumption (A2). (i) T, |wmi(z) < C forall n > 1; (ii) wa(z) = O(T2,w2;(2));
(i) 1,02, (2) = O(c2(2)).

Assumption (A3). There exist positive integers p := p(n) and ¢ := ¢(n) such that
p+ g <n for sufficiently large n and as n — oo,

n

gp~' — o0, npla(g) = 0, ngp~t) wii(z) -0, (3.4)
i=1

pY w(z) — 0. (3.5)

=1

Here we will prove the following results.

Theorem 3.1 Let Assumptions (A1) ~ (A3) be satisfied. If P(|{1| < C) =1 and
a(n) = O(n™?*) for some X > 1, (3.6)
then
0u(2) ~ Eon(z) 4
a.(z)

Theorem 3.2 Let Assumptions (A1) ~ (A3) be satisfied. If for some s > 0, E|&;|*™* <
00, and

N(0, 1). (3.7)

a(n) = O(n™*) for some X\ > (2 4+ s)/s, (3.8)
then (3.7) holds.

Remark 3.1 Theorem 2.1 of [14] is a corollary of theorem 3.1 here. Indeed, conditions
(3.5) and (3.6) are substituted by the followings in theorem 2.1 of [14]

p? Zw,z”-(z) - 0 (as n — 00), (3.9)
i=1
Za””””(i) < oo for some s > 0. (3.10)
=1
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Remark 3.2 Compare theorem 3.2 here with theorem 3.1 in [14]. Theorem 3.1 of [14]
uses the conditions (3.9) and (3.10). Clearly, (3.9) is stronger than (3.5). Furthermore,
(3.8) is almost as weak as (3.10). Our proof of theorem 3.1 and theorem 3.2 is much more
simple then that of [14].

To prove the theorems, now we first give some denotions. For convenient writing,
omit everywhere the argument z and set Sp, = 0, (gn — Egn), Zni = 07 wpi€n; for
1=1,2, ..., n, sothat 5, = 3i"; Z,;. Let k= [n/(p+ ¢)]- Then S,, may be split as
Sn = S,’l + SI+ S, where :

k k
" / 111 '
= z Ynm, Sn = Z Yom> Sn = Ynk+1s

m=1 m=1
k,,,+1)—1 lvrl+q—l n
Ynm = Z Z”i, y1,'1m - Z an’ y:’Lk'*'l = Z Z"’i’
i=k,, j:l"l i:(l)+Q)+1
km. = (m - 1)(p + q) + la l‘ln = ('ITL - 1)(p + q) + p + 1v m = 17 Tt k. Thus, to prove

(3.7), it suffies to show that E(S))? — 0, E(S")? — 0, and

s 4 N(o, 1). (3.11)

Proof of Theorem 3.1 By Theorem 2.1(ii), Assumption (A2) (ii) and (iii), and (3.4),
we have
5 ko kimtg-1
E(S)<C ¥ ¥ o0.%wl < Ckgo?wl; < C2-quy,

m=1 i=ky, ptq

<C(l+gp7 ") 'ngp™t Y wk -0, (3.12)
i=1
B(SU) = BWan P SC % op?uli < Cln— k(p + 9))o; w}
1=k(ptq)+1
n
SC(ﬂ——l)(prq)wnSClJrqp pzw ;= 0. (3.13)
Let s2 = B* _ var(y,,.). From Lemma 2.2 of [14]

E(S/)* -1 and s2 — 1. (3.14)

Let &, stand for the characteristic function of the r. v. X. Then, by Theorem 7.2 in
Roussas and Ioannides'® and (3.4),

k
2.0, (6) = ] 5. (O € C(k = 1)a(q) < Crp~la(g) - 0. (3.15)
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Hence, {ynm : m = 1, ..., k } may be assumed to be independent random variablds.
From (3.14) and according to Berry-Esseen central limit theorem, for (3.11) it suffies to

show that
k

Z E|ynm|” — 0 for some r > 2. (3.16)
m=1 ]
Since A > 1 in (3.6), we may choose 0 < § < 1 such that \d > 1. Let » = 2)0. Thus
r>2 and r/2 — A0 = 0. Given positive ¢ < (r — 2)/2. By Theorem 2.3 and Assumption
(A3), we get

k k km+[’—1 km+p—1
Do Elyaml < C Y {p° D ElZul +( Y oi?wk) %}
m=1 m=1 i=km 1=k

< C{pc Za’;rlwnilr +p(r—2)/2 Z Iwnilr/z} < Cp(r—Z)/ZZ lwni,r/2

=1 1=l 1=l

< Cplr I r=B/2 < C(pi wh) 7P 0.

=1
Completing the proof.

Proof of Theorem 3.2 By Theorem 2.1 (i), it is in the same way to get (3.12) and (3.13).
And (3.14) and (3.15) also hlod. So we only have to prove (3.16). Since A > (2 +s)/s in
(3.8), hence we may choose positive t such that 0 < t < s/2 and (2 + s)/s < (1 +t)(2 +
s)/(s—2t) <A Letr=2(1+¢t) and§=s—2t. Thenr+6=2+s and

r(r46)  (140(2+s)

= A
26 s— 2t <

Given positive € < (r — 2)/2. Using Theorem 2.4, Assumption (A2) and (3.5), we have

k k knz+P—l km+P"1

DBl  SC Y0 D ElZul +( Y. ontwlillells) )
m=1 m=1 l’:km izkm

< C{ps Z |wm_|r/2 + p(r—z)/z Z !wm’lr/z}

=1 =1
< Cp(r—Z)/2 Z |wm_’r/2 < Cp(r—Z)/2w$Lr—2)/2 Z |wni|
<CpY wi)rA2 0.
=1

Completing the proof.
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