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Abstract: The existence of positive solutions to second-order Neumann BVPs —u"” +
Mu = f(t,u),u'(0) = v/(1) = 0 and "’ + Mu = f(t,u),u'(0) = «/(1) is proved by a

simple application of a Fixed Point Theorem in cones due to Krasnoselskiil1:],
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1. Introduction

Recently, Neumann boundary value problems have been studied by many different
methods[2-4], and Krasnoselskii fixed point theorem has been used to establish the exis-
tence of positive solutions to non-periodic BVPs by many authors [5 7-9]. However, as far
as we know, Neumann boundary value problems have not been studied by applying the
Krasnoselskii fixed point theorem.

In this paper we apply the Krasnoselskii fixed point theorem [1,6] to establish the
existence of positive solutions to the following equations

—u" 4+ Mu = f(t,u), 0<t<1, (1.1)
u' + Mu= f(t,u), 0<t<1 (1.2)
with the Neumann boundary value problems
v'(0) = 0, u'(1) = 0. (1.3)
The main results of the present paper are as follows.

Theorem 1 Assume that f(t,u) :[0,1] x [0,00) is nonegative and continuous. Then the
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)
Neumann boundary value problem (1.1) (1.3) (resp. (1.2) (1.3)) has a positive solution,
provided M > 0 (resp. M € (0, % )) and one of the following conditions holds:

(i) lim, g maXeio 1) f ) = 0 and lim,1, min,e(o,1 _1— = Foo,

or

(ii) lim, |, ming g, 1] = +o00 and lim, maX;e(o,1] —l = 0.
The proof of Theorem 1 is based on an application of the following

Krasnoselskii fixed point theorem|1, 6] Let E be a Banach space, and let K be a cone
in E. Assume Q,,§, are open subsets of E with 0 € 01,0 C Q,, and let

KN\ - K
be a completely continuous operator such that either

(i) lI2ul| <|juf] Yue KN, and |Pul| > ||u]| Yue KNoQ,, or
(i) (|®u] > [lull Yue KNoN; and |2ul| < ||lu]l VYue KN oQ,.

Then ¢ has a fixed point in K N (0 \ 04).
2. The proof of Theorem 1

In this section we suppose that the condition in Theorem 1 hold.
First we prove Theorem 1 for the boundary value problem (1.1)(1.3).
It is easy to see that problem (1.1) is equivalent to the integral equation

u(t) = /U1 G(t,s)f(s,u(s))ds, ' (2.1)

where m = v M and
chm(1 — t)chms

N ) Ss<t<,
G(t, 3) = mshm
chm(l-—s)chmt’ 0<t<s<l.
mshm
where chz = “’LT‘_‘ ; sha = €=¢° and consequently, it is equivalent to the fixed point

equation v = ®u in F = CJ0, 1] w1th <I> E — FE given by

Fu = /01 G(t, s)f(s,u(s))ds. (2.2)

It is obvious that & is completely continuous.

Definition let E be a Banach space, and K a closed, nonempty subset of E. K is a cone
provided (i) au 4+ fu € K, for all w,V € K and all a,f >0, and (ii) u,~u € K imply
u=0.
Now we define
K={ueE:u(t)>0 and min u(t)> ollul|}, (2.3)

tefo,1)
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where ||u|| = sup;coq{lu(t)] : v € E} and 0 = ch . It is obvious that K is a cone in
E = cjo,1].

Lemma 2.1 &(K) C K.
Proof A direct calculation shows that

=A<G(ts)<B=2m

mshm’

ie. (2.4)
>o forall 0<t,s<1.

m bh ™m

G(t,s)

1> &

Hence, for u € K we have

min ($u)(¢t) = min / G(t,s)f(s,u(s))ds

0<t<1 0<t<1
1
> >
_a/o B f(s,u(s))ds 0012132(1/ G(t,s)f(s,u(s))ds
> o||@ull.

First we suppose (i) hold. Since lim, o maxcy 1) ﬁf‘—"l = 0, so, for fixed ¢ > 0 Be < 1,
we may choose R; > 0 such that

0< f(t,u) <eu whenever 0<u< Ry, te€][0,1]. (2.5)

Thus, if v € K and ||u|| = Ry, then it follows from (2.4) and (2.5) that
1
1Bul < B [ fs,u(s))ds < Beljull < Ry = [ju] (2:6)
0
Now, we let Q; := {u € E : ||u|]| < Ry}, then (2.6) shows that

|®u|| < ||Ju|| Yue KN oQy.

On the other hand, also from (i), we have lim, o, minggpg 1 J—l +oo so, for fixed
n >0, Aon > 1, we can chose Ry > R;/o, such that

f(t,u) > nu whenever u > oRy, te€[0,1] (2.7)

If u € K with ||u|| = Rs, then it follows from (2.4), (2.7) and (2.3) that
1
1l = 4 [ f(s,u(s)ds = Aonllull > Bz = |ju|

Let Qy := {u € E : |jul]| < Ry}, then we get
[|u|| > ||u|| Yu € K noN,. (2.8)

Therefore, by the first part of the Krasnoselskii fixed point theorem, it follows that & has 4
a fixed point u € K N(Q2\ Q). Furthermore, R; < ||u|| < R;. Since G(t,s) > 0, it follows
that u(t) > 0for 0 <t < 1.
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Next we suppose (ii) hold. Since lim, o min,ep 1) f—(ffﬂ = 400, so, for fixed n > 0,
Aon > 1, we may choose R; > 0 so that

f(t,u) > nu whenever 0 < u< Ry. (2.9)

Thus, for u € K with ||u|| = Ry, by (2.4) and (2.9), we have
1
1l 2 4 [ f(s,u(s))ds > Aomliull > Ry = [ull

If we put Q; := {u € E :||ul] < R1}, then (2.1) shows that
|®ull > [lu] Yue€ KnNo. (2.10)

On the other hand, also from (ii), since limy, 1o maxyeo 1) L%l = 0, there exists Rg > 0
such that
f(t,u) < eu whenever u > Ry, t€]0,1], (2.11)

where ¢ > 0 satisfies Be < 1.
If max,¢[oq) f(t,u) is unbounded for u € [0, +00), then we choose R, > Rg + Ry so

-that
f(t,u) < maxyepoq) f(t, R2) < €Ry, for wue (0,Ro], te[0,1],

f(t,u) <eu<eR,, for wu€[RoR;], tel0,1].

Thus we have
f(t,u) <eR, for we[0Ry], tel0,1]. (2.12)

For u € K with |Ju|| = Rs, it follows from (2.11) and (2.12) that
1
1 Bul| > B/ f(s,u(s))ds < BeRy < Rz = |Jull.
0 .
If max,¢[oq] f(¢,u) is bounded on [0, +o0), say

ft,u) <N forall »>0, tel0,1] (2.13)
In this case, we let R; > Ry 4+ N/e. For u € K with ||u|| = Rz, from (2.13) we have

1
B > B/ f(s,u(s))ds < BN < BeRy < Ry = |[u.
0

Therefore, in either case we may put Q; := {u € E : ||lu|| < R}, and we have
|®ull < ||ul] Yu € K N aIN,.

By the second part of the Krasnoselskii fixed point theorem, it follows that (1.1) (1.3)
has a positive solution. This completes the proof of Theorem 1 for problem (1.1) (1.3).
If we consider

cos m(1l — t) cos ms

: , 0<s<t<1,
Gt, = msm m
(t,5) cos m(1 — s)cos mt 0<t<s<1
s
msin m ’ =
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and

K={u€cE:u(t)>0 and tIEIEé:,[}] u(t) > aflu||},
where lu|| = supipoyy{lu(t)| : v € E} and o = cos’m. , we can prove theorem 1 for
problem (1.2) (1.3) similarly as for problem (1.1), (1.2). This complete the proof of
Theorem 1.
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