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1. Introduction

Let P,x(z) = C¥z*(1 — 2)" %,z € [0,1],n € N, we denote the Bernstein operators
by Bnf = Ba(f,2) = ko Poi(z)f(})- It is well-known that the operators are positive
linear contractions in C[0,1] and reproduce linear functions. The Bernstein-Durrmeyer
operators defined by

Duf = Dalfi#) = - Pas(e)n+ 1) [ Pas()f(e)it
k=0

were introduced by Durrmeyer(?) and studied by Derriennicl®!, Heilmann(¥ and Ditzian et
al.l®l It was shown that D, f are positive linear contractions in L,[0,1], self-adjoint and
commute (i.e., DyDnf = D,Dif). But these operators do not reproduce linear func-
tions. Thus, Chen!) modified the Bernstein-Durrmeyer operators as M, f = M,(f,z) =

Y k=0 Pnk(2)®nk(f), where

f(O)a k= 0;
$.6(f) =4 (n=1)f} Paapa(t)f(t)dt, k=1,2,---,n—1;
f(l)v k =n.
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Obviously, the operators M, f are linear positive contractions in C[0,1] and reproduce
linear functions. Here we will study the direct and converse results on simultaneous
approximation by the modified operators M, f. In the point-wise sense, an equivalence
characterization of simultaneous approximation by M, f will be given.

2. Main results and lemma

Let A f(z) = f(z +t) — f(z ~ t)(z £ t € [0,1]) be the usual symmetric difference of
f. We denote the modulus of smoothness of f by w(f,h) = supgc,<h |Acf]|- The main

results of this paper are as follows.
Theorem 1 For f") € C[0,1],r € N, we have
|MP)(f,2) = f7(z)| < Clw( £, (2(1 = 2)/n + 1/n?) /%) + | f7)(2)]/n},

here and in the following C denotes a constant independent of n and f, but its value may
be different at different occurrence.

Theorem 2 Let f") € C[0,1],7 € N and r < a < r + 1. Then
|M(f,2) = f7(=)] < C(z(1 - z)/n + 1/n?)"7)/2

if and only ifw(f('),h) = O(h*").
To prove above theorems, we first give a lemma.

Lemma For f\") € C[0,1],7 € N, we have

nl(n — 1)! =

1
2)| ZPn rk(z / .f(r)(t)Pn+r——2.k+r—l(t)dt-

MO (f,z) =

(n=r)(n+r—

Proof For convenience we suppose that &, ;(f) = 0,P,x(z) = 0for k < 0O or k > 0.
Since

wk(2) = n(Prc1p-1(2) = Pac1a(2)),

1ltlk( ) n(n - 1)(Pn—2 k(z) - 2Pn——2,k——l(z) + Pn—2,k-2(z))'

We have from the induction that PT(, Z( )= (;’—"—r—)T EJ 0Ci(-1YP,_ rk-r+j(z), which im-
plies

M{(f,z) = (

nl
- kg_%(_lypn_,km (8,
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where 6'(:,3(]') =30 Ci(=1Y @, k+;(f). Now, to finish the proof of Lemma 1, we only
need to prove for ¥ = 0,1,2,---,n that

- 1)|2)|/ FO ) P gr-a(t)dt

(r)
b (f) = (= )(n—+—r—

In fact, for k = 0, we have after integrating by part
6r(zrk )+ Z Ci(-1Y & 5(f)

—ZCJ (n—1>/( (1) = £(0)) Pazz i1 (t)dt

- r(r”T) [0 - )P, oy a0
:(—I)T#—(_ﬁ%/ f )(t ntr—2,r— 1(t)dt

Similarly, the case for k = n can be proved. For 1 < k < n ~ 1, we know

50 = (n—1) / zcv Pz sj-1(t) f(2)dt

= ’(;(%:—_‘1_—/ Pn+r 2,k+r— l(t)
TS Gt LI s
= (VG / FO(E) Ptz (£)dE.

The proof of Lemma 1 is complete.

3. Proof of theorems

Proof of Theorem 1 By direct computation, we can derive

QU 2) = g 2 & Perk(eIn [~ 0 Pt (0

< C(z(1-2z)/n+1/n? )

Thus, from Lemma 1 it follows that

IM{)(f,2) - f(')(z)i
1
<alln-1)(n—-r)i(n+r- Z Prri(z / £ () = £ (2)) Pagrzpsr—a(t)dt+
ni(n - 1)!

") (2)(1 —
190 - )
(n*’,f')("nﬁfr_z.ZPnk ) [ w7, = o) Pasr-apen-a(0dt + LUFOE)
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lnl(n -1 =X 1
(n— r)!(fz Fr z 2)! ,;:%P “'vk(”)/o |t = 2| Pagr—2k4r-1(t)dt}+

<w(fM,6){1+

Z1e)
<w(fN,8){1+C67(Q(n,2))"/?} + = If" (=)l

C
<w(fD,6){1+67'C(2(1 - 2)/n + 1/n2)‘/’} + Z1f0(=).
Putting § = (ﬂl—g—zl + 2)1/2, then Theorem 1 follows.

Proof of Theorem 2 From Theorem 1, it is sufficient to prove the inverse part. Let
he(0,3),0<t<hmneN. Set

§(n,z,t) = max{1/n, ¢(z + t)/v/n,p(z)/Vn}, e(z) = (z(1 - z))"/2.
Then

IfO(z +t) - fO(2)] <IMEV(fo2 +1) = FO(z + t)| + |MO(f,2) - £ (=) |+
|/z+t MUH(f,u)du| < C68* " (n,z,t) + 1

with I = | [+ M,STH)(f, u)du|. Let fi(z) = } f}/jz f*(z + w)du,h > 0, where

fz), 0<z<1;
f(z)=3 f(0), z<0;
@), z>1.

Then by a simple computation, we see
£~ full < w(£, h/2), £l < w(FO),h)/h. (21)
Now, we estimate . Writing

nl(n —1)!

(n—=7)(n+ 2)' E Prr i "’)/ 9(t) Pryr—2 k4r—1(t)dt, (2.2)

Mn,r(g, 2) =

we can obtain
|1Mnrgll < Cligll, 1My, 9]l < Cnllgll, g€ C[0,1], (2.3)

1M,,gll < Cllgll, o € Clo,1]. (2.4)
Since

T+t x4+t
1< [TIML (00 - fuwldus [T ML (R)ldu= 1 + I,
from (2.2) and (2.4) it follows that

I < tw(£), h)/h. (2.5)
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Moreover, we can prove

I < Ct{min{n, (n/¢(z + 1))'/%, (n/¢?(2))*}w(F"), h). (2.6)
In fact, by (2.2) and (2.3), it is not difficult to deduce
I < Cat||f) — ful| < Cntw(f£0), h). (2.7)

On the other hand, for 0 < ¢?(u) < 1/n, we have
J = (WM, (f) ~ fu,u)] < Cop(wnl| ) = fill < Cv/mw (), h).
For %(u) > 1/n, noting that P, (z) = ;%(E — z)P, x(z), we know

n

nl(n - 1)! =, k
(n—r)!(n+r—2)!kz=%ln—r —ulx

1
Pacra®) [ Pareaisra(O1(0) - fult)ldt

J <(n— )7 (u)

n—r k
<C(n—r)If = fulle™ (w) > lﬁ —u| Py i(u)
k=0

<C(n—r)F = falle™ (w)(Bus((t — w)*,w))*/? < Cn'Pw(50), h).
Hence, using (see [6]) [7+* ¢~1(u)du < 4t max(p~'(z),p " (z +t)), we have

I < Ctn'Pw(f7), k) max(p7 (), 97 (2 + 1)) (2.8)

Combining (2.7) and (2.8), we obtain (2.6). So, putting §(n, z,t) = h, it follows from (2.5)
and (2.6) that

1A f)(2)] < C(6*7"(n, z,t) + t67 (0, z, t)w(f7), ).

Note that for n > 2, there holds

§(n,z,t) < §(n — 1,z,y) < 28(n, z,t).
Thus for any § € (0,1/8), we can choose an n such that

§(n,z,t) < § < 8(n-1,z,t) < 28(n,z,t).

Therefore,

8 FO@)] < CE + 2l £0),5).
Hence,

W1, B) < O + (1, 6))

which implies from the Berens-Lorentz lemma (see [7]) that
w(f k) = O(h*").
The proof of Theorem 2 is complete.
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ZIER Bernstein-Durrmeyer B ¥ 1[5 B &T
T & &', K # H?

(1. B FBREFE, BT B/Y¢312000; 2. PEHEH2REEASE2EREER, #IT HM

310034)

i ¥ A0 EMRIEREIEN Bernstein-Durrmeyer 517 B ELT A I8 B, 76K
SEXT, BONBHT —ANAHETR S IFRE .

X @i7): f£1EM Bernstein-Durrmeyer $17; [BHiEHS; EEH; $EH.
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