Strong Convergence by the Shrinking Projection Method for a Generalized Equilibrium Problems and Hemi-Relatively Nonexpansive Mappings

Ruo Feng RAO, Jia Lin HUANG
Department of Mathematics, Yibin University, Sichuan 644007, P. R. China

Abstract

Motivated by the recent result obtained by Takahashi and Zembayashi in 2008, we prove a strong convergence theorem for finding a common element of the set of solutions of a generalized equilibrium problem and the set of fixed points of a hemi-relatively nonexpansive mapping in a Banach space by using the shrinking projection method. The main results obtained in this paper extend some recent results.

Keywords hemi-relatively nonexpansive mapping; generalized equilibrium problem; α-inversestrongly monotone mapping.
Document code A
MR(2000) Subject Classification 47H09
Chinese Library Classification O177.91

1. Introduction

Let C be a nonempty closed convex subset of a real Banach space E, and T a mapping from C into itself. We denote by $F(T)$ the set of fixed points of T. Let f be an equilibrium bifunction from $C \times C$ into R, and $A: C \rightarrow E^{*}$ a nonlinear mapping. Now we consider the following generalized equilibrium problem: find $z \in C$ such that

$$
\begin{equation*}
f(z, y)+\langle A z, y-z\rangle \geqslant 0, \quad \forall y \in C \tag{1.1}
\end{equation*}
$$

The set of solutions of (1.1) is denoted by $E P$, i.e.,

$$
E P=\{z \in C: f(z, y)+\langle A z, y-z\rangle \geqslant 0, \quad \forall y \in C\}
$$

In the case of $f \equiv 0, E P$ is denoted by $V I(C, A)$. In the case of $A \equiv 0, E P$ is denoted by $E P(f)$, Takahashi-Zembayashi [1] in 2008 proved a strong convergence theorem for finding a common element of $E P(f)$ and the set of fixed points of a relatively nonexpansive mapping in the framework of uniformly smooth and uniformly convex Banach spaces by using the shrinking projection method. Now, in this paper, we imitatively prove a strong convergence theorem for finding a common element of the set of solutions of an equilibrium problem (1.1) and the set

[^0]of fixed points of a hemi-relatively nonexpansive mapping in the same framework by using the similar shrinking projection method.

2. Preliminaries

Let E be a real Banach space with dual E^{*}. We denote by J the normalized duality mapping from E to $2^{E^{*}}$ defined by

$$
J x=\left\{f \in E^{*}:\langle x, f\rangle=\|x\|^{2}=\|f\|^{2}\right\}
$$

where $\langle\cdot, \cdot\rangle$ denotes the generalized duality pairing. It is well known that if E^{*} is uniformly convex, then J is uniformly continuous on bounded subsets of E. In this case, J is singe valued and also one to one.

Now in the framework of smooth Banach spaces, we consider the function defined by

$$
\phi(x, y)=\|x\|^{2}-2\langle x, J y\rangle+\|y\|^{2} \text { for } x, y \in E
$$

Following Alber [2], the generalized projection Π_{C} from E onto C is defined by

$$
\Pi_{C}(x)=\arg \min _{y \in C} \phi(y, x), \quad \forall x \in E
$$

The generalized projection $\Pi_{C}: E \rightarrow C$ is a map that assigns to an arbitrary point $x \in E$ the minimum point of the function $\phi(y, x)$, that is, $\Pi_{C} x=\widetilde{x}$, where \widetilde{x} is the solution to the minimization problem

$$
\phi(\widetilde{x}, x)=\min _{y \in C} \phi(y, x)
$$

Existence and uniqueness of the operator Π_{C} follow from the properties of the functional $\phi(y, x)$ and strict monotonicity of the mapping J (see $[2,6,10]$). The generalized projection Π_{C} from E onto C is well defined, single valued and satisfies

$$
\begin{equation*}
(\|x\|-\|y\|)^{2} \leqslant \phi(y, x) \leqslant(\|x\|+\|y\|)^{2}, \quad \forall x, y \in E \tag{2.1}
\end{equation*}
$$

If E is a Hilbert space, then $\phi(y, x)=\|y-x\|^{2}$ and Π_{C} is the metric projection of H onto C.
T is called hemi-relatively nonexpansive if $\phi(p, T x) \leqslant \phi(p, x)$ for all $x \in C$ and $p \in F(T)$. A point $p \in C$ is said to be an asymptotic fixed point of T if there exists $\left\{x_{n}\right\}$ in C which converges weakly to p and $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$. We denote the set of all asymptotic fixed points of T by $\hat{F}(T)$. Following Matsushita-Takahashi [3], a mapping T is said to be relatively nonexpansive if the following conditions are satisfied:
(1) $F(T)$ is nonempty;
(2) $\phi(p, T x) \leqslant \phi(p, x)$, for all $p \in F(T), x \in C$;
(3) $\hat{F}(T)=F(T)$.

It is obvious that the class of hemi-relatively nonexpansive mappings contains the class of relatively nonexpansive mappings.

For solving the equilibrium problem for bifunction $f: C \times C \rightarrow R$, let us assume that f satisfies the following conditions:
$\left(\mathrm{A}_{1}\right) \quad f(x, x)=0$ for all $x \in C ;$
$\left(\mathrm{A}_{2}\right) \quad f$ is monotone, i.e., $f(x, y)+f(y, x) \leqslant 0$ for all $x, y \in C$;
$\left(A_{3}\right)$ for each $x, y, z \in C$,

$$
\lim _{t \rightarrow 0+} f(t z+(1-t) x, y) \leqslant f(x, y)
$$

$\left(\mathrm{A}_{4}\right)$ for each $x \in C, y \rightarrow f(x, y)$ is a convex and lower semicontinuous.
Lemma 2.1 Let E be a strictly convex and smooth real Banach space, C a closed convex subset of E. Let T be a hemi-relatively nonexpansive mapping from C into itself. Then $F(T)$ is closed and convex..

Proof We firstly prove that $F(T)$ is closed.
Indeed, if $\left\{x_{n}\right\} \subset F(T)$ with $x_{n} \rightarrow x$, then we have $\phi\left(x_{n}, T x\right) \leqslant \phi\left(x_{n}, x\right)$. Hence,

$$
\phi(x, T x)=\lim _{n \rightarrow \infty} \phi\left(x_{n}, T x\right) \leqslant \lim _{n \rightarrow \infty} \phi\left(x_{n}, x\right)=\phi(x, x)=0 .
$$

This implies $\phi(x, T x)=0$, and hence $x \in F(T)$.
Finally, we show that $F(T)$ is convex.
Indeed, for any $x, y \in F(T)$, taking $z=t x+(1-t) y$ for $t \in[0,1]$, we have

$$
\begin{aligned}
\phi(z, T z) & =\|z\|^{2}-2\langle z, J(T z)\rangle+\|T z\|^{2} \\
& =\|z\|^{2}-2\langle t x+(1-t) y, J(T z)\rangle+\|T z\|^{2} \\
& =\|z\|^{2}-2 t\langle x, J(T z)\rangle-2(1-t)\langle y, J(T z)\rangle+\|T z\|^{2} \\
& =\|z\|^{2}+t \phi(x, T z)+(1-t) \phi(y, T z)-t\|x\|^{2}-(1-t)\|y\|^{2} \\
& \leqslant\|z\|^{2}+t \phi(x, z)+(1-t) \phi(y, z)-t\|x\|^{2}-(1-t)\|y\|^{2} \\
& =\|z\|^{2}-2\langle t x+(1-t) y, J z\rangle+\|z\|^{2}=\phi(z, z)=0 .
\end{aligned}
$$

This implies $z \in F(T)$.
Lemma 2.2 ([4]) Let C be a closed convex subset of a uniformly smooth, strictly convex and reflexive Banach space E, and let f be a bifunction from $C \times C$ to R satisfying $\left(A_{1}\right)-\left(A_{4}\right)$. Let $r>0$ and $x \in E$. Then there exists $z \in C$ such that

$$
f(z, y)+\frac{1}{r}\langle y-z, J z-J x\rangle \geqslant 0, \quad \forall y \in C
$$

Lemma 2.3 ([5]) Let C be a closed convex subset of a uniformly smooth, strictly convex and reflexive Banach space E, and let f be a bifunction from $C \times C$ to R satisfying $\left(A_{1}\right)-\left(A_{4}\right)$. For $r>0$ and $x \in E$, define a mapping $T_{r}: E \rightarrow 2^{C}$ as follows:

$$
T_{r}(x)=\left\{z \in C: f(z, y)+\frac{1}{r}\langle y-z, J z-J x\rangle \geqslant 0, \quad \forall y \in C\right\}
$$

for all $x \in E$. Then the following holds:
(1) T_{r} is single-valued;
(2) T_{r} is a firmly nonexpansive-type mapping, that is, for all $x, y \in E$,

$$
\left\langle T_{r} x-T_{r} y, J T_{r} x-J T_{r} y\right\rangle \leqslant\left\langle T_{r} x-T_{r} y, J x-J y\right\rangle
$$

(3) $F\left(T_{r}\right)=\hat{F}\left(T_{r}\right)=E P(f)$;
(4) $E P(f)$ is closed and convex.

Lemma 2.4 ([5]) Let C be a closed convex subset of a smooth, strictly convex and reflexive Banach space E and let f be a bifunction from $C \times C$ to R satisfying $\left(A_{1}\right)-\left(A_{4}\right)$. Then for $r>0$, $x \in E$, and $q \in F\left(T_{r}\right)$,

$$
\phi\left(q, T_{r} x\right)+\phi\left(T_{r} x, x\right) \leqslant \phi(q, x)
$$

Lemma 2.5 ([2,6]) Let C be nonempty closed convex subset of a smooth, strictly convex and reflexive Banach space E. Then

$$
\phi\left(x, \Pi_{C} y\right)+\phi\left(\Pi_{C} y, y\right) \leqslant \phi(x, y), \quad \forall x \in C, y \in E
$$

Lemma 2.6 ([6]) Let E be a smooth and uniformly convex Banach space and let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences in E such that either $\left\{x_{n}\right\}$ or $\left\{y_{n}\right\}$ is bounded. If $\lim _{n \rightarrow \infty} \phi\left(x_{n}, y_{n}\right)=0$, then $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$.

Lemma 2.7 ([7-9]) Let E be a smooth and uniformly convex Banach space and let $r>0$. Then there exists a strictly increasing, continuous and convex function $h:[0,2 r] \rightarrow R$ such that $h(0)=0$ and

$$
h(\|x-y\|) \leqslant \phi(x, y)
$$

for all $x, y \in B_{r}$, where $B_{r}=\{x \in E:\|x\| \leqslant r\}$.
Recall that an operator S in a Banach space is called closed. If $x_{n} \rightarrow x$ and $T x_{n} \rightarrow y$, then $T x=y$.

3. The main results

Theorem 3.1 Let E be a uniformly smooth and uniformly convex Banach space, and C a nonempty closed convex subset of E. Let f be a bifunction from $C \times C$ to \mathbb{R} satisfying $\left(A_{1}\right)-\left(A_{4}\right)$, and S a closed hemi-relatively nonexpansive mapping from C into itself such that $F(S) \cap E P \neq \emptyset$. Assume, $A: C \rightarrow E^{*}$ is α-inverse-strongly monotone mapping. $\left\{x_{n}\right\}$ is a sequence generated by $x_{0}=x \in C, C_{0}=C$ and

$$
\left\{\begin{array}{l}
y_{n}=J^{-1}\left(a_{n} J x_{n}+\left(1-a_{n}\right) J S x_{n}\right) \tag{3.1}\\
u_{n} \in C \quad \text { such that } f\left(u_{n}, y\right)+\left\langle A u_{n}, y-u_{n}\right\rangle+\frac{1}{r_{n}}\left\langle y-u_{n}, J u_{n}-J y_{n}\right\rangle \geqslant 0, \forall y \in C, \\
C_{n+1}=\left\{z \in C_{n}: \phi\left(z, u_{n}\right) \leqslant \phi\left(z, x_{n}\right)\right\} \\
x_{n+1}=\Pi_{C_{n+1}} x
\end{array}\right.
$$

for every $n \in\{0\} \cup \mathbb{N}$, where J is the duality mapping on $E,\left\{a_{n}\right\} \subset[0,1]$ satisfies $\liminf _{n \rightarrow \infty} a_{n}(1-$ $\left.a_{n}\right)>0$ and $\left\{r_{n}\right\} \subset[a, \infty)$ for some $a>0$. Then, $\left\{x_{n}\right\}$ converges strongly to $\Pi_{F(S) \cap E P} x$, where $\Pi_{F(S) \cap E P}$ is the generalized projection of E onto $F(S) \cap E P$.

Proof Firstly, we may define a bifunction $g: C \times C \rightarrow R$ by

$$
g(x, y)=f(x, y)+\langle A x, y-x\rangle, \quad \forall x, y \in C
$$

We claim that the bifunction g satisfies conditions $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{4}\right)$.
Indeed, we can see easily that $g(x, x)=0$ for all $x \in C$, i.e., $\left(\mathrm{A}_{1}\right)$ holds. Next, we can prove easily that $g(z, y)+g(y, z) \leqslant 0$ for all $y, z \in C$ by way of the assumption that A is α-inversestrongly monotone. By virtue of the continuity of $x \rightarrow\langle A x, y-x\rangle$, we can conclude g satisfies $\left(\mathrm{A}_{3}\right)$. Below, we may prove $y \mapsto g(x, y)$ is convex for any $x \in C$. Indeed,

$$
\begin{aligned}
g(x, t y+(1-t) z) & =f(x, t y+(1-t) z)+\langle A x, t y+(1-t) z-x\rangle \\
& \leqslant t f(x, y)+(1-t) f(x, z)+t\langle A x, y-x\rangle+(1-t)\langle A x, z-x\rangle \\
& =t g(x, y)+(1-t) g(x, z)
\end{aligned}
$$

Next, we prove that $y \mapsto g(x, y)$ is lower semi-continuous.
Indeed, if $\left\{y_{n}\right\} \subset C$ with $y_{n} \rightarrow y \in C$, then

$$
g(x, y)=f(x, y)+\langle A x, y-x\rangle \leqslant \liminf _{n \rightarrow \infty} f\left(x, y_{n}\right)+\lim _{n \rightarrow \infty}\left\langle A x, y_{n}-x\right\rangle=\liminf _{n \rightarrow \infty} g\left(x, y_{n}\right)
$$

Thus, $\left(A_{4}\right)$ also holds for $g(x, y)$.
From all the proof above, (3.1) can actually be equivalent to

$$
\left\{\begin{array}{l}
y_{n}=J^{-1}\left(a_{n} J x_{n}+\left(1-a_{n}\right) J S x_{n}\right) \tag{3.2}\\
u_{n} \in C \text { such that } g\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, J u_{n}-J y_{n}\right\rangle \geqslant 0, \forall y \in C \\
C_{n+1}=\left\{z \in C_{n}: \phi\left(z, u_{n}\right) \leqslant \phi\left(z, x_{n}\right)\right\} \\
x_{n+1}=\Pi_{C_{n+1}} x
\end{array}\right.
$$

where $S: C \rightarrow C$ is a nonexpansive mapping defined by (3.2), and $g(x, y)$ is a bifunction satisfying the conditions $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{4}\right)$. Now we have $E P=E P(g)$, for

$$
E P(g)=\{z \in C: g(z, y) \geqslant 0, \forall y \in C\}=\{z \in C: f(z, y)+\langle A z, y-z\rangle \geqslant 0, \forall y \in C\}=E P
$$

Below, we shall prove $\left\{x_{n}\right\}$ generated by (3.2) converges strongly to $\Pi_{F(S) \cap E P(g)} x$.
Since the bifunction g satisfies conditions $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{4}\right)$, we know by Lemma 2.3(4) that $E P(g)$ is closed and convex. In addition, Lemma 2.1 tells us that $F(S)$ is also closed and convex so that $\Pi_{F(S) \cap E P(g)}$ is well defined.

Secondly, since the bifunction g satisfies conditions $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{4}\right)$, we may still denote $u_{n}=T_{r_{n}} y_{n}$ for all $n \in \mathbb{N}$. Then Lemmas 2.3 and 2.4 yield that each $T_{r_{n}}$ is relatively nonexpansive. We claim that each C_{n} is closed and convex.

Indeed, since

$$
\phi\left(z, u_{n}\right) \leqslant \phi\left(z, x_{n}\right) \Leftrightarrow\left\|u_{n}\right\|^{2}-\left\|x_{n}\right\|^{2}-2\left\langle z, J u_{n}-J x_{n}\right\rangle \geqslant 0
$$

C_{n} is closed and convex for all $n \in\{0\} \cup \mathbb{N}$. This implies each $\Pi_{C_{n+1}}$ is well defined.
Next, we show by induction that $E P(g) \cap F(S) \subset C_{n}$ for all $n \in\{0\} \cup \mathbb{N}$.
Indeed, from $C_{0}=C$, we have $F(S) \cap E P(g) \subset C_{0}$.
Suppose that $F(S) \cap E P(g) \subset C_{k}$ for some $k \in\{0\} \cup \mathbb{N}$. Let $u \in F(S) \cap E P(g) \subset C_{k}$. Since $T_{r_{k}}$ is relatively nonexpansive, and S is hemi-relatively nonexpansive, we get by Lemmas 2.3 and
2.4

$$
\begin{aligned}
\phi\left(u, u_{k}\right) & =\phi\left(u, T_{r_{k}} y_{k}\right) \leqslant \phi\left(u, y_{k}\right) \\
& =\phi\left(u, J^{-1}\left(a_{k} J x_{k}+\left(1-a_{k}\right) J S x_{k}\right)\right) \\
& =\|u\|^{2}-2\left\langle u, a_{k} J x_{k}+\left(1-a_{k}\right) J S x_{k}\right\rangle+\left\|a_{k} J x_{k}+\left(1-a_{k}\right) J S x_{k}\right\|^{2} \\
& \leqslant\|u\|^{2}-2 a_{k}\left\langle u, J x_{k}\right\rangle-2\left(1-a_{k}\right)\left\langle u, J S x_{k}\right\rangle+a_{k}\left\|x_{k}\right\|^{2}+\left(1-a_{k}\right)\left\|S x_{k}\right\|^{2} \\
& =a_{k} \phi\left(u, x_{k}\right)+\left(1-a_{k}\right) \phi\left(u, S x_{k}\right) \leqslant \phi\left(u, x_{k}\right) .
\end{aligned}
$$

Hence, we have $u \in C_{k+1}$. This implies

$$
E P(g) \cap F(S) \subset C_{n}, \quad \forall n \in\{0\} \cup \mathbb{N} .
$$

So, $\left\{x_{n}\right\}$ is well defined.
From the definition of x_{n}, we get by Lemma 2.5

$$
\phi\left(x_{n}, x\right)=\phi\left(\Pi_{C_{n}} x, x\right) \leqslant \phi(u, x)-\phi\left(u, \Pi_{C_{n}} x\right) \leqslant \phi(u, x)
$$

for all $u \in F(S) \cap E P(g) \subset C_{n}$. Then $\phi\left(x_{n}, x\right)$ is bounded. Thereby, both $\left\{x_{n}\right\}$ and $\left\{S x_{n}\right\}$ are bounded.

From $x_{n+1} \in C_{n+1} \subset C_{n}$ and $x_{n}=\Pi_{C_{n}} x$, we have

$$
\phi\left(x_{n}, x\right) \leqslant \phi\left(x_{n+1}, x\right), \quad \forall n \in\{0\} \cup \mathbb{N} .
$$

Thus, the limit of $\left\{\phi\left(x_{n}, x\right)\right\}$ exists owing to the boundedness of the monotone real sequence $\left\{\phi\left(x_{n}, x\right)\right\}$. Denote

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(x_{n}, x\right)=d \tag{3.3}
\end{equation*}
$$

From Lemma 2.5, we know that for any positive integer m,

$$
\begin{equation*}
\phi\left(x_{n+m}, x_{n}\right)=\phi\left(x_{n+m}, \Pi_{C_{n}} x\right) \leqslant \phi\left(x_{n+m}, x_{0}\right)-\phi\left(x_{n}, x_{0}\right), \quad \forall n \in \mathbb{N} \tag{3.4}
\end{equation*}
$$

and hence

$$
\lim _{n \rightarrow \infty} \phi\left(x_{n+m}, x_{n}\right)=0
$$

Next, we claim that $\left\{x_{n}\right\}$ is a Cauchy sequence. If not, there exists a constant $\varepsilon_{0}>0$ and subsequences $\left\{n_{k}\right\},\left\{m_{k}\right\} \subset\{n\}$ such that

$$
\left\|x_{n_{k}+m_{k}}-x_{n_{k}}\right\| \geqslant \varepsilon_{0}
$$

for all $k \geqslant 1$.
In addition, we get by (3.3) and (3.4)

$$
\begin{aligned}
\phi\left(x_{n_{k}+m_{k}}, x_{n_{k}}\right) & \leqslant \phi\left(x_{n_{k}+m_{k}}, x\right)-\phi\left(x_{n_{k}}, x\right) \\
& \leqslant\left|\phi\left(x_{n_{k}+m_{k}}, x\right)-d\right|+\left|\phi\left(x_{n_{k}}, x\right)-d\right| \rightarrow 0, \quad \text { as } k \rightarrow \infty
\end{aligned}
$$

The boundedness of $\left\{x_{n}\right\}$ can be obtained by (2.1) and (3.3). Hence, we get by Lemma 2.6 that

$$
\left\|x_{n_{k}+m_{k}}-x_{n_{k}}\right\| \rightarrow 0, \quad \text { as } k \rightarrow \infty
$$

The contradiction implies that $\left\{x_{n}\right\}$ is a Cauchy sequence.

Since

$$
\phi\left(x_{n+1}, x_{n}\right)=\phi\left(x_{n+1}, \Pi_{C_{n}} x\right) \leqslant \phi\left(x_{n+1}, x\right)-\phi\left(\Pi_{C_{n}} x, x\right)=\phi\left(x_{n+1}, x\right)-\phi\left(x_{n}, x\right)
$$

for all $n \in\{0\} \cup \mathbb{N}$, we have $\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, x_{n}\right)=0$. From $x_{n+1}=\Pi_{C_{n+1}} x \in C_{n+1}$, we get by

$$
\begin{equation*}
\phi\left(x_{n+1}, u_{n}\right) \leqslant \phi\left(x_{n+1}, x_{n}\right), \quad \forall n \in\{0\} \cup \mathbb{N} . \tag{3.2}
\end{equation*}
$$

Thereby,

$$
\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, u_{n}\right)=0 .
$$

Thus, $\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, x_{n}\right)=0$ and Lemma 2.6 yield

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0=\lim _{n \rightarrow \infty}\left\|x_{n+1}-u_{n}\right\|,
$$

and hence

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=0 .
$$

Since J is uniformly norm-to-norm continuous on bounded sets, we have

$$
\lim _{n \rightarrow \infty}\left\|J\left(x_{n}\right)-J\left(u_{n}\right)\right\|=0 .
$$

Let $r=\sup _{n \in \mathbb{N}}\left\{\left\|x_{n}\right\|,\left\|S x_{n}\right\|\right\}$. Since E is a uniformly smooth Banach space, we know that E^{*} is a uniformly convex Banach space. Therefore, from Lemma 2.7, there exists a continuous, strictly increasing, and convex function h with $h(0)=0$ such that

$$
\left\|\alpha x^{*}+(1-\alpha) y^{*}\right\|^{2} \leqslant \alpha\left\|x^{*}\right\|^{2}+(1-\alpha)\left\|y^{*}\right\|^{2}-\alpha(1-\alpha) h\left(\left\|x^{*}-y^{*}\right\|\right)
$$

for all $x^{*}, y^{*} \in B_{r}^{*}$ and $\alpha \in[0,1]$, where $B_{r}^{*}=\left\{x^{*} \in E^{*}: x^{*}=J x, x \in B_{r}\right\}$. Thanks to the assumptions on the Banach space E, the normalized duality mapping is really a single-valued and one-to-one surjection of E onto E^{*}, which deduces $B_{r}^{*}=\left\{x^{*} \in E^{*}:\left\|x^{*}\right\| \leqslant r\right\}$. So, for $u \in F(S) \cap E P(g)$, we have

$$
\begin{aligned}
\phi\left(u, u_{n}\right)= & \phi\left(u, T_{r_{n}} y_{n}\right) \leqslant \phi\left(u, y_{n}\right)=\phi\left(u, J^{-1}\left(a_{n} J x_{n}+\left(1-a_{n}\right) J S x_{n}\right)\right) \\
= & \|u\|^{2}-2\left\langle u, a_{n} J x_{n}+\left(1-a_{n}\right) J S x_{n}\right\rangle+\left\|a_{n} J x_{n}+\left(1-a_{n}\right) J S x_{n}\right\|^{2} \\
\leqslant & \|u\|^{2}-2 a_{n}\left\langle u, J x_{n}\right\rangle-2\left(1-a_{n}\right)\left\langle u, J S x_{n}\right\rangle+a_{n}\left\|x_{n}\right\|^{2}+\left(1-a_{n}\right)\left\|S x_{n}\right\|^{2}- \\
& a_{n}\left(1-a_{n}\right) h\left(\left\|J x_{n}-J S x_{n}\right\|\right) \\
= & a_{n} \phi\left(u, x_{n}\right)+\left(1-a_{n}\right) \phi\left(u, S x_{n}\right)-a_{n}\left(1-a_{n}\right) h\left(\left\|J x_{n}-J S x_{n}\right\|\right) \\
\leqslant & \phi\left(u, x_{n}\right)-a_{n}\left(1-a_{n}\right) h\left(\left\|J x_{n}-J S x_{n}\right\|\right) .
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
a_{n}\left(1-a_{n}\right) h\left(\left\|J x_{n}-J S x_{n}\right\|\right) \leqslant \phi\left(u, x_{n}\right)-\phi\left(u, u_{n}\right) . \tag{3.5}
\end{equation*}
$$

Since

$$
\begin{aligned}
\phi\left(u, x_{n}\right)-\phi\left(u, u_{n}\right) & =\left\|x_{n}\right\|^{2}-\left\|u_{n}\right\|^{2}-2\left\langle u, J x_{n}-J u_{n}\right\rangle \\
& \leqslant\left|\left\|x_{n}\right\|-\left\|u_{n}\right\|\right|\left(\left\|x_{n}\right\|+\left\|u_{n}\right\|\right)+2\|u\| \cdot\left\|J x_{n}-J u_{n}\right\| \\
& \leqslant\left\|x_{n}-u_{n}\right\|\left(\left\|x_{n}\right\|+\left\|u_{n}\right\|\right)+2\|u\| \cdot\left\|J x_{n}-J u_{n}\right\|,
\end{aligned}
$$

we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\phi\left(u, x_{n}\right)-\phi\left(u, u_{n}\right)\right)=0 \tag{3.6}
\end{equation*}
$$

From $\lim \inf _{n \rightarrow \infty} a_{n}\left(1-a_{n}\right)>0$, we get by (3.5)

$$
\lim _{n \rightarrow \infty} h\left(\left\|J x_{n}-J S x_{n}\right\|\right)=0
$$

The property of h yields

$$
\lim _{n \rightarrow \infty}\left\|J x_{n}-J S x_{n}\right\|=0
$$

Since J^{-1} is uniformly norm-to-norm continuous on bounded sets, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-S x_{n}\right\|=0 \tag{3.7}
\end{equation*}
$$

Since $\left\{x_{n}\right\}$ is a Cauchy sequence, there exists a point $p \in C$ such that $\left\{x_{n}\right\}$ converges strongly to p, i.e.,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|=0 \tag{3.8}
\end{equation*}
$$

Since S is a closed operator, we know by (3.7) and (3.8) that

$$
p \in F(S)
$$

Next, we shall show $p \in E P(g)$ so that

$$
\begin{equation*}
p \in F(S) \cap E P(g) \tag{3.9}
\end{equation*}
$$

Indeed, since $u_{n}=T_{r_{n}} y_{n}$ and $\phi\left(u, y_{n}\right) \leqslant \phi\left(u, x_{n}\right)$, we get by Lemma 2.4

$$
\phi\left(u_{n}, y_{n}\right) \leqslant \phi\left(u, y_{n}\right)-\phi\left(u, T_{r_{n}} y_{n}\right) \leqslant \phi\left(u, x_{n}\right)-\phi\left(u, T_{r_{n}} y_{n}\right)=\phi\left(u, x_{n}\right)-\phi\left(u, u_{n}\right)
$$

Then we get by (3.6)

$$
\lim _{n \rightarrow \infty} \phi\left(u_{n}, y_{n}\right)=0
$$

So we get by the boundedness of $\left\{u_{n}\right\}$ and Lemma 2.6

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-y_{n}\right\|=0 \tag{3.10}
\end{equation*}
$$

Thus, all the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{u_{n}\right\}$ converge strongly to the same element $p \in F(S)$.
Since J is uniformly norm-to-norm continuous on bounded sets, we get by (3.10) and $r_{n} \geqslant a$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left\|J u_{n}-J y_{n}\right\|}{r_{n}}=0 \tag{3.11}
\end{equation*}
$$

From $u_{n}=T_{r_{n}} y_{n}$, we have

$$
\begin{equation*}
g\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, J u_{n}-J y_{n}\right\rangle \geqslant 0, \quad \forall y \in C . \tag{3.12}
\end{equation*}
$$

Since g satisfies the conditions $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{4}\right)$, we can get by (3.11), (3.12) and by letting $n \rightarrow \infty$ that

$$
\begin{equation*}
g(y, p) \leqslant 0, \quad \forall y \in C \tag{3.13}
\end{equation*}
$$

For t with $0<t \leqslant 1$ and $y \in C$, let $y_{t}=t y+(1-t) p$. Since $y \in C$ and $p \in C$, we have $y_{t} \in C$, and hence $g\left(y_{t}, p\right) \leqslant 0$. So, we get by $\left(\mathrm{A}_{1}\right)$ and $\left(\mathrm{A}_{4}\right)$

$$
0=g\left(y_{t}, y_{t}\right) \leqslant t g\left(y_{t}, y\right)+(1-t) g\left(y_{t}, p\right) \leqslant t g\left(y_{t}, y\right)
$$

Thus,

$$
g\left(y_{t}, y\right) \geqslant 0, \quad \forall y \in C
$$

Letting $t \rightarrow 0^{+}$, we get by $\left(\mathrm{A}_{3}\right)$

$$
g(p, y) \geqslant 0, \quad \forall y \in C
$$

Therefore, $p \in E P(g)$, and hence (3.9) holds.
Finally, we show that $p=\Pi_{F(S) \cap E P(g)} x$.
Indeed, we can get by Lemma 2.5

$$
\begin{equation*}
\phi\left(p, \Pi_{F(S) \cap E P(g)} x\right)+\phi\left(\Pi_{F(S) \cap E P(g)} x, x\right) \leqslant \phi(p, x) . \tag{3.14}
\end{equation*}
$$

On the other hand, since $x_{n+1}=\Pi_{C_{n+1}} x$ and $F(S) \cap E P(g) \subset C_{n}$ for all n, we get by Lemma 2.5

$$
\begin{equation*}
\phi\left(\Pi_{F(S) \cap E P(g)} x, x_{n+1}\right)+\phi\left(x_{n+1}, x\right) \leqslant \phi\left(\Pi_{F(S) \cap E P(g)} x, x\right) \tag{3.15}
\end{equation*}
$$

Then we can get by (3.14) and (3.15) that both $\phi(p, x) \leqslant \phi\left(\Pi_{F(S) \cap E P(g)} x, x\right)$ and $\phi(p, x) \geqslant$ $\phi\left(\Pi_{F(S) \cap E P(g)} x, x\right)$ hold, and hence $\phi(p, x)=\phi\left(\Pi_{F(S) \cap E P(g)} x, x\right)$. It follows by the uniqueness of $\Pi_{F(S) \cap E P(g)} x$ that $p=\Pi_{F(S) \cap E P(g)} x$. This completes the proof.

Remark Letting $A \equiv 0$ in Theorem 3.1, and replacing the closed hemi-relatively nonexpansive mapping with relatively nonexpansive mapping, we see, Theorem 3.1 is reduced to TakahashiZembayashi [1, Theorem 3.1].

Acknowledgement The authors would like to express their sincere thanks to Professor Shihsen Chang for helpful discussions on some relative literatures.

References

[1] TAKAHASHI W, ZEMBAYASHI K. Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings [J]. Fixed Point Theory Appl., 2008, 1-11.
[2] ALBER Y I. Metric and Generalized Projection Operators in Banach Spaces: Properties and Applications [M]. New York, 1996.
[3] MATSUSHITA S, TAKAHASHI W. Weak and strong convergence theorems for relatively nonexpansive mappings in Banach spaces [J]. Fixed Point Theory Appl., 2004, 1: 37-47.
[4] BLUM E, OETTLI W. From optimization and variational inequalities to equilibrium problems [J]. Math. Student, 1994, 63(1-4): 123-145.
[5] TAKAHASHI W, ZEMBAYASHI K. Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces [J]. Nonlinear Anal., 2009, 70(1): 45-57.
[6] KAMIMURA S, TAKAHASHI W. Strong convergence of a proximal-type algorithm in a Banach space [J]. SIAM J. Optim., 2002, 13(3): 938-945.
[7] XU Hongkun. Inequalities in Banach spaces with applications [J]. Nonlinear Anal., 1991, 16(12): 1127-1138.
[8] ZĂLINESCU C. Convex Analysis in General Vector Space [M]. World Scientific Publishing Co., Inc., River Edge, NJ, 2002.
[9] ZĂLINESCU C. On uniformly convex functions [J]. J. Math. Anal. Appl., 1983, 95(2): 344-374.
[10] AL'BER Y I, REICH S. An iterative method for solving a class of nonlinear operator equations in Banach spaces [J]. Panamer. Math. J., 1994, 4(2): 39-54.

[^0]: Received December 30, 2008; Accepted May 18, 2009
 Supported by Sichuan Educational Committee Science Foundation for Youths (Grant No. 08ZB002).

 * Corresponding author

 E-mail address: ruofengrao@163.com (R. F. RAO)

