Strong Convergence by the Shrinking Projection Method for a Generalized Equilibrium Problems and Hemi-Relatively Nonexpansive Mappings

Ruo Feng RAO, Jia Lin HUANG

Department of Mathematics, Yibin University, Sichuan 644007, P. R. China

Abstract Motivated by the recent result obtained by Takahashi and Zembayashi in 2008, we prove a strong convergence theorem for finding a common element of the set of solutions of a generalized equilibrium problem and the set of fixed points of a hemi-relatively nonexpansive mapping in a Banach space by using the shrinking projection method. The main results obtained in this paper extend some recent results.

Keywords hemi-relatively nonexpansive mapping; generalized equilibrium problem; α -inversestrongly monotone mapping.

Document code A MR(2000) Subject Classification 47H09 Chinese Library Classification 0177.91

1. Introduction

Let C be a nonempty closed convex subset of a real Banach space E, and T a mapping from C into itself. We denote by F(T) the set of fixed points of T. Let f be an equilibrium bifunction from $C \times C$ into R, and $A : C \to E^*$ a nonlinear mapping. Now we consider the following generalized equilibrium problem: find $z \in C$ such that

$$f(z,y) + \langle Az, y - z \rangle \ge 0, \quad \forall y \in C.$$
(1.1)

The set of solutions of (1.1) is denoted by EP, i.e.,

$$EP = \{ z \in C : f(z, y) + \langle Az, y - z \rangle \ge 0, \quad \forall y \in C \}.$$

In the case of $f \equiv 0$, EP is denoted by VI(C, A). In the case of $A \equiv 0$, EP is denoted by EP(f), Takahashi-Zembayashi [1] in 2008 proved a strong convergence theorem for finding a common element of EP(f) and the set of fixed points of a relatively nonexpansive mapping in the framework of uniformly smooth and uniformly convex Banach spaces by using the shrinking projection method. Now, in this paper, we imitatively prove a strong convergence theorem for finding a common element of the set of solutions of an equilibrium problem (1.1) and the set

Supported by Sichuan Educational Committee Science Foundation for Youths (Grant No. 08ZB002). * Corresponding author

Received December 30, 2008; Accepted May 18, 2009

E-mail address: ruofengrao@163.com (R. F. RAO)

of fixed points of a hemi-relatively nonexpansive mapping in the same framework by using the similar shrinking projection method.

2. Preliminaries

Let E be a real Banach space with dual E^* . We denote by J the normalized duality mapping from E to 2^{E^*} defined by

$$Jx = \{ f \in E^* : \langle x, f \rangle = \|x\|^2 = \|f\|^2 \},\$$

where $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. It is well known that if E^* is uniformly convex, then J is uniformly continuous on bounded subsets of E. In this case, J is singly valued and also one to one.

Now in the framework of smooth Banach spaces, we consider the function defined by

$$\phi(x,y) = ||x||^2 - 2\langle x, Jy \rangle + ||y||^2 \text{ for } x, y \in E$$

Following Alber [2], the generalized projection Π_C from E onto C is defined by

$$\Pi_C(x) = \arg\min_{y \in C} \phi(y, x), \quad \forall \, x \in E$$

The generalized projection $\Pi_C : E \to C$ is a map that assigns to an arbitrary point $x \in E$ the minimum point of the function $\phi(y, x)$, that is, $\Pi_C x = \tilde{x}$, where \tilde{x} is the solution to the minimization problem

$$\phi(\widetilde{x}, x) = \min_{y \in C} \phi(y, x).$$

Existence and uniqueness of the operator Π_C follow from the properties of the functional $\phi(y, x)$ and strict monotonicity of the mapping J (see [2, 6, 10]). The generalized projection Π_C from Eonto C is well defined, single valued and satisfies

$$(\|x\| - \|y\|)^2 \leqslant \phi(y, x) \leqslant (\|x\| + \|y\|)^2, \quad \forall x, y \in E.$$
(2.1)

If E is a Hilbert space, then $\phi(y, x) = ||y - x||^2$ and Π_C is the metric projection of H onto C.

T is called hemi-relatively nonexpansive if $\phi(p, Tx) \leq \phi(p, x)$ for all $x \in C$ and $p \in F(T)$. A point $p \in C$ is said to be an asymptotic fixed point of T if there exists $\{x_n\}$ in C which converges weakly to p and $\lim_{n\to\infty} ||x_n - Tx_n|| = 0$. We denote the set of all asymptotic fixed points of T by $\hat{F}(T)$. Following Matsushita-Takahashi [3], a mapping T is said to be relatively nonexpansive if the following conditions are satisfied:

- (1) F(T) is nonempty;
- (2) $\phi(p, Tx) \leq \phi(p, x)$, for all $p \in F(T), x \in C$;
- (3) $\hat{F}(T) = F(T)$.

It is obvious that the class of hemi-relatively nonexpansive mappings contains the class of relatively nonexpansive mappings.

For solving the equilibrium problem for bifunction $f: C \times C \to R$, let us assume that f satisfies the following conditions:

(A₁) f(x, x) = 0 for all $x \in C$;

Generalized equilibrium problems and hemi-relatively nonexpansive mappings

- (A₂) f is monotone, i.e., $f(x, y) + f(y, x) \leq 0$ for all $x, y \in C$;
- (A_3) for each $x, y, z \in C$,

$$\lim_{t \to 0+} f(tz + (1-t)x, y) \le f(x, y);$$

(A₄) for each $x \in C$, $y \to f(x, y)$ is a convex and lower semicontinuous.

Lemma 2.1 Let E be a strictly convex and smooth real Banach space, C a closed convex subset of E. Let T be a hemi-relatively nonexpansive mapping from C into itself. Then F(T) is closed and convex..

Proof We firstly prove that F(T) is closed.

Indeed, if $\{x_n\} \subset F(T)$ with $x_n \to x$, then we have $\phi(x_n, Tx) \leq \phi(x_n, x)$. Hence,

$$\phi(x,Tx) = \lim_{n \to \infty} \phi(x_n,Tx) \leqslant \lim_{n \to \infty} \phi(x_n,x) = \phi(x,x) = 0$$

This implies $\phi(x, Tx) = 0$, and hence $x \in F(T)$.

Finally, we show that F(T) is convex.

Indeed, for any $x, y \in F(T)$, taking z = tx + (1 - t)y for $t \in [0, 1]$, we have

$$\begin{split} \phi(z,Tz) &= \|z\|^2 - 2\langle z,J(Tz)\rangle + \|Tz\|^2 \\ &= \|z\|^2 - 2\langle tx + (1-t)y,J(Tz)\rangle + \|Tz\|^2 \\ &= \|z\|^2 - 2t\langle x,J(Tz)\rangle - 2(1-t)\langle y,J(Tz)\rangle + \|Tz\|^2 \\ &= \|z\|^2 + t\phi(x,Tz) + (1-t)\phi(y,Tz) - t\|x\|^2 - (1-t)\|y\|^2 \\ &\leqslant \|z\|^2 + t\phi(x,z) + (1-t)\phi(y,z) - t\|x\|^2 - (1-t)\|y\|^2 \\ &= \|z\|^2 - 2\langle tx + (1-t)y,Jz\rangle + \|z\|^2 = \phi(z,z) = 0. \end{split}$$

This implies $z \in F(T)$.

Lemma 2.2 ([4]) Let C be a closed convex subset of a uniformly smooth, strictly convex and reflexive Banach space E, and let f be a bifunction from $C \times C$ to R satisfying $(A_1)-(A_4)$. Let r > 0 and $x \in E$. Then there exists $z \in C$ such that

$$f(z,y) + \frac{1}{r} \langle y - z, Jz - Jx \rangle \ge 0, \quad \forall y \in C.$$

Lemma 2.3 ([5]) Let C be a closed convex subset of a uniformly smooth, strictly convex and reflexive Banach space E, and let f be a bifunction from $C \times C$ to R satisfying $(A_1)-(A_4)$. For r > 0 and $x \in E$, define a mapping $T_r : E \to 2^C$ as follows:

$$T_r(x) = \{ z \in C : f(z, y) + \frac{1}{r} \langle y - z, Jz - Jx \rangle \ge 0, \quad \forall y \in C \}$$

for all $x \in E$. Then the following holds:

- (1) T_r is single-valued;
- (2) T_r is a firmly nonexpansive-type mapping, that is, for all $x, y \in E$,

$$\langle T_r x - T_r y, JT_r x - JT_r y \rangle \leq \langle T_r x - T_r y, Jx - Jy \rangle;$$

(3) $F(T_r) = \hat{F}(T_r) = EP(f);$

(4) EP(f) is closed and convex.

Lemma 2.4 ([5]) Let C be a closed convex subset of a smooth, strictly convex and reflexive Banach space E and let f be a bifunction from $C \times C$ to R satisfying $(A_1)-(A_4)$. Then for r > 0, $x \in E$, and $q \in F(T_r)$,

$$\phi(q, T_r x) + \phi(T_r x, x) \leqslant \phi(q, x).$$

Lemma 2.5 ([2,6]) Let C be nonempty closed convex subset of a smooth, strictly convex and reflexive Banach space E. Then

$$\phi(x, \Pi_C y) + \phi(\Pi_C y, y) \leqslant \phi(x, y), \quad \forall x \in C, y \in E.$$

Lemma 2.6 ([6]) Let *E* be a smooth and uniformly convex Banach space and let $\{x_n\}$ and $\{y_n\}$ be sequences in *E* such that either $\{x_n\}$ or $\{y_n\}$ is bounded. If $\lim_{n\to\infty} \phi(x_n, y_n) = 0$, then $\lim_{n\to\infty} ||x_n - y_n|| = 0$.

Lemma 2.7 ([7–9]) Let *E* be a smooth and uniformly convex Banach space and let r > 0. Then there exists a strictly increasing, continuous and convex function $h : [0, 2r] \to R$ such that h(0) = 0 and

$$h(\|x - y\|) \leqslant \phi(x, y)$$

for all $x, y \in B_r$, where $B_r = \{x \in E : ||x|| \leq r\}$.

Recall that an operator S in a Banach space is called closed. If $x_n \to x$ and $Tx_n \to y$, then Tx = y.

3. The main results

Theorem 3.1 Let E be a uniformly smooth and uniformly convex Banach space, and C a nonempty closed convex subset of E. Let f be a bifunction from $C \times C$ to \mathbb{R} satisfying $(A_1)-(A_4)$, and S a closed hemi-relatively nonexpansive mapping from C into itself such that $F(S) \cap EP \neq \emptyset$. Assume, $A: C \to E^*$ is α -inverse-strongly monotone mapping. $\{x_n\}$ is a sequence generated by $x_0 = x \in C, C_0 = C$ and

$$\begin{cases} y_n = J^{-1}(a_n J x_n + (1 - a_n) J S x_n), \\ u_n \in C \quad \text{such that } f(u_n, y) + \langle A u_n, y - u_n \rangle + \frac{1}{r_n} \langle y - u_n, J u_n - J y_n \rangle \ge 0, \ \forall \ y \in C, \\ C_{n+1} = \{ z \in C_n : \phi(z, u_n) \le \phi(z, x_n) \}, \\ x_{n+1} = \prod_{C_{n+1} x}, \end{cases}$$

$$(3.1)$$

for every $n \in \{0\} \cup \mathbb{N}$, where J is the duality mapping on E, $\{a_n\} \subset [0,1]$ satisfies $\liminf_{n \to \infty} a_n(1-a_n) > 0$ and $\{r_n\} \subset [a, \infty)$ for some a > 0. Then, $\{x_n\}$ converges strongly to $\prod_{F(S) \cap EP} x$, where $\prod_{F(S) \cap EP}$ is the generalized projection of E onto $F(S) \cap EP$.

Proof Firstly, we may define a bifunction $g: C \times C \to R$ by

$$g(x,y) = f(x,y) + \langle Ax, y - x \rangle, \quad \forall x, y \in C.$$

We claim that the bifunction g satisfies conditions $(A_1)-(A_4)$.

Indeed, we can see easily that g(x, x) = 0 for all $x \in C$, i.e., (A₁) holds. Next, we can prove easily that $g(z, y) + g(y, z) \leq 0$ for all $y, z \in C$ by way of the assumption that A is α -inversestrongly monotone. By virtue of the continuity of $x \to \langle Ax, y - x \rangle$, we can conclude g satisfies (A₃). Below, we may prove $y \mapsto g(x, y)$ is convex for any $x \in C$. Indeed,

$$g(x,ty+(1-t)z) = f(x,ty+(1-t)z) + \langle Ax,ty+(1-t)z-x \rangle$$

$$\leqslant tf(x,y) + (1-t)f(x,z) + t\langle Ax,y-x \rangle + (1-t)\langle Ax,z-x \rangle$$

$$= tg(x,y) + (1-t)g(x,z).$$

Next, we prove that $y \mapsto g(x, y)$ is lower semi-continuous.

Indeed, if $\{y_n\} \subset C$ with $y_n \to y \in C$, then

$$g(x,y) = f(x,y) + \langle Ax, y - x \rangle \leq \liminf_{n \to \infty} f(x,y_n) + \lim_{n \to \infty} \langle Ax, y_n - x \rangle = \liminf_{n \to \infty} g(x,y_n).$$

Thus, (A_4) also holds for g(x, y).

From all the proof above, (3.1) can actually be equivalent to

$$\begin{cases} y_n = J^{-1}(a_n J x_n + (1 - a_n) J S x_n), \\ u_n \in C \text{ such that } g(u_n, y) + \frac{1}{r_n} \langle y - u_n, J u_n - J y_n \rangle \ge 0, \ \forall \ y \in C, \\ C_{n+1} = \{ z \in C_n : \phi(z, u_n) \le \phi(z, x_n) \}, \\ x_{n+1} = \Pi_{C_{n+1}} x, \end{cases}$$
(3.2)

where $S : C \to C$ is a nonexpansive mapping defined by (3.2), and g(x, y) is a bifunction satisfying the conditions (A₁)–(A₄). Now we have EP = EP(g), for

$$EP(g) = \{z \in C : g(z, y) \ge 0, \forall y \in C\} = \{z \in C : f(z, y) + \langle Az, y - z \rangle \ge 0, \forall y \in C\} = EP.$$

Below, we shall prove $\{x_n\}$ generated by (3.2) converges strongly to $\prod_{F(S)\cap EP(q)} x$.

Since the bifunction g satisfies conditions $(A_1)-(A_4)$, we know by Lemma 2.3(4) that EP(g) is closed and convex. In addition, Lemma 2.1 tells us that F(S) is also closed and convex so that $\Pi_{F(S)\cap EP(g)}$ is well defined.

Secondly, since the bifunction g satisfies conditions $(A_1)-(A_4)$, we may still denote $u_n = T_{r_n}y_n$ for all $n \in \mathbb{N}$. Then Lemmas 2.3 and 2.4 yield that each T_{r_n} is relatively nonexpansive. We claim that each C_n is closed and convex.

Indeed, since

$$\phi(z, u_n) \leqslant \phi(z, x_n) \Leftrightarrow ||u_n||^2 - ||x_n||^2 - 2\langle z, Ju_n - Jx_n \rangle \ge 0,$$

 C_n is closed and convex for all $n \in \{0\} \cup \mathbb{N}$. This implies each $\Pi_{C_{n+1}}$ is well defined.

Next, we show by induction that $EP(g) \cap F(S) \subset C_n$ for all $n \in \{0\} \cup \mathbb{N}$.

Indeed, from $C_0 = C$, we have $F(S) \cap EP(g) \subset C_0$.

Suppose that $F(S) \cap EP(g) \subset C_k$ for some $k \in \{0\} \cup \mathbb{N}$. Let $u \in F(S) \cap EP(g) \subset C_k$. Since T_{r_k} is relatively nonexpansive, and S is hemi-relatively nonexpansive, we get by Lemmas 2.3 and

1104 2.4

$$\begin{split} \phi(u, u_k) = & \phi(u, T_{r_k} y_k) \leqslant \phi(u, y_k) \\ = & \phi(u, J^{-1}(a_k J x_k + (1 - a_k) J S x_k)) \\ = & \|u\|^2 - 2\langle u, a_k J x_k + (1 - a_k) J S x_k \rangle + \|a_k J x_k + (1 - a_k) J S x_k\|^2 \\ \leqslant & \|u\|^2 - 2a_k \langle u, J x_k \rangle - 2(1 - a_k) \langle u, J S x_k \rangle + a_k \|x_k\|^2 + (1 - a_k) \|S x_k\|^2 \\ = & a_k \phi(u, x_k) + (1 - a_k) \phi(u, S x_k) \leqslant \phi(u, x_k). \end{split}$$

Hence, we have $u \in C_{k+1}$. This implies

$$EP(g) \cap F(S) \subset C_n, \quad \forall n \in \{0\} \cup \mathbb{N}.$$

So, $\{x_n\}$ is well defined.

From the definition of x_n , we get by Lemma 2.5

$$\phi(x_n, x) = \phi(\Pi_{C_n} x, x) \leqslant \phi(u, x) - \phi(u, \Pi_{C_n} x) \leqslant \phi(u, x)$$

for all $u \in F(S) \cap EP(g) \subset C_n$. Then $\phi(x_n, x)$ is bounded. Thereby, both $\{x_n\}$ and $\{Sx_n\}$ are bounded.

From $x_{n+1} \in C_{n+1} \subset C_n$ and $x_n = \prod_{C_n} x$, we have

$$\phi(x_n, x) \leqslant \phi(x_{n+1}, x), \quad \forall n \in \{0\} \cup \mathbb{N}.$$

Thus, the limit of $\{\phi(x_n, x)\}$ exists owing to the boundedness of the monotone real sequence $\{\phi(x_n, x)\}$. Denote

$$\lim_{n \to \infty} \phi(x_n, x) = d. \tag{3.3}$$

From Lemma 2.5, we know that for any positive integer m,

$$\phi(x_{n+m}, x_n) = \phi(x_{n+m}, \Pi_{C_n} x) \leqslant \phi(x_{n+m}, x_0) - \phi(x_n, x_0), \quad \forall n \in \mathbb{N},$$

$$(3.4)$$

and hence

$$\lim_{n \to \infty} \phi(x_{n+m}, x_n) = 0.$$

Next, we claim that $\{x_n\}$ is a Cauchy sequence. If not, there exists a constant $\varepsilon_0 > 0$ and subsequences $\{n_k\}, \{m_k\} \subset \{n\}$ such that

$$\|x_{n_k+m_k}-x_{n_k}\| \geqslant \varepsilon_0,$$

for all $k \ge 1$.

In addition, we get by (3.3) and (3.4)

$$\begin{split} \phi(x_{n_k+m_k}, x_{n_k}) &\leqslant \phi(x_{n_k+m_k}, x) - \phi(x_{n_k}, x) \\ &\leqslant |\phi(x_{n_k+m_k}, x) - d| + |\phi(x_{n_k}, x) - d| \to 0, \quad \text{as } k \to \infty. \end{split}$$

The boundedness of $\{x_n\}$ can be obtained by (2.1) and (3.3). Hence, we get by Lemma 2.6 that

$$||x_{n_k+m_k} - x_{n_k}|| \to 0, \quad \text{as } k \to \infty.$$

The contradiction implies that $\{x_n\}$ is a Cauchy sequence.

Since

$$\phi(x_{n+1}, x_n) = \phi(x_{n+1}, \Pi_{C_n} x) \leqslant \phi(x_{n+1}, x) - \phi(\Pi_{C_n} x, x) = \phi(x_{n+1}, x) - \phi(x_n, x)$$

for all $n \in \{0\} \cup \mathbb{N}$, we have $\lim_{n \to \infty} \phi(x_{n+1}, x_n) = 0$. From $x_{n+1} = \prod_{C_{n+1}} x \in C_{n+1}$, we get by (3.2)

$$\phi(x_{n+1}, u_n) \leqslant \phi(x_{n+1}, x_n), \quad \forall n \in \{0\} \cup \mathbb{N}.$$

Thereby,

$$\lim_{n \to \infty} \phi(x_{n+1}, u_n) = 0.$$

Thus, $\lim_{n\to\infty} \phi(x_{n+1}, x_n) = 0$ and Lemma 2.6 yield

$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0 = \lim_{n \to \infty} \|x_{n+1} - u_n\|,$$

and hence

$$\lim_{n \to \infty} \|x_n - u_n\| = 0.$$

Since J is uniformly norm-to-norm continuous on bounded sets, we have

$$\lim_{n \to \infty} \|J(x_n) - J(u_n)\| = 0$$

Let $r = \sup_{n \in \mathbb{N}} \{ \|x_n\|, \|Sx_n\| \}$. Since *E* is a uniformly smooth Banach space, we know that E^* is a uniformly convex Banach space. Therefore, from Lemma 2.7, there exists a continuous, strictly increasing, and convex function *h* with h(0) = 0 such that

$$\|\alpha x^* + (1-\alpha)y^*\|^2 \le \alpha \|x^*\|^2 + (1-\alpha)\|y^*\|^2 - \alpha(1-\alpha)h(\|x^* - y^*\|)$$

for all $x^*, y^* \in B_r^*$ and $\alpha \in [0, 1]$, where $B_r^* = \{x^* \in E^* : x^* = Jx, x \in B_r\}$. Thanks to the assumptions on the Banach space E, the normalized duality mapping is really a single-valued and one-to-one surjection of E onto E^* , which deduces $B_r^* = \{x^* \in E^* : ||x^*|| \leq r\}$. So, for $u \in F(S) \cap EP(g)$, we have

$$\begin{split} \phi(u, u_n) &= \phi(u, T_{r_n} y_n) \leqslant \phi(u, y_n) = \phi(u, J^{-1}(a_n J x_n + (1 - a_n) J S x_n)) \\ &= \|u\|^2 - 2\langle u, a_n J x_n + (1 - a_n) J S x_n \rangle + \|a_n J x_n + (1 - a_n) J S x_n\|^2 \\ &\leqslant \|u\|^2 - 2a_n \langle u, J x_n \rangle - 2(1 - a_n) \langle u, J S x_n \rangle + a_n \|x_n\|^2 + (1 - a_n) \|S x_n\|^2 - \\ &a_n (1 - a_n) h(\|J x_n - J S x_n\|) \\ &= a_n \phi(u, x_n) + (1 - a_n) \phi(u, S x_n) - a_n (1 - a_n) h(\|J x_n - J S x_n\|) \\ &\leqslant \phi(u, x_n) - a_n (1 - a_n) h(\|J x_n - J S x_n\|). \end{split}$$

Therefore, we have

$$a_n(1 - a_n)h(\|Jx_n - JSx_n\|) \leqslant \phi(u, x_n) - \phi(u, u_n).$$
(3.5)

Since

$$\phi(u, x_n) - \phi(u, u_n) = ||x_n||^2 - ||u_n||^2 - 2\langle u, Jx_n - Ju_n \rangle$$

$$\leq ||x_n|| - ||u_n|| |(||x_n|| + ||u_n||) + 2||u|| \cdot ||Jx_n - Ju_n||$$

$$\leq ||x_n - u_n||(||x_n|| + ||u_n||) + 2||u|| \cdot ||Jx_n - Ju_n||,$$

we have

$$\lim_{n \to \infty} (\phi(u, x_n) - \phi(u, u_n)) = 0.$$
(3.6)

From $\liminf_{n\to\infty} a_n(1-a_n) > 0$, we get by (3.5)

 $\lim_{n \to \infty} h(\|Jx_n - JSx_n\|) = 0.$

The property of h yields

$$\lim_{n \to \infty} \|Jx_n - JSx_n\| = 0.$$

Since J^{-1} is uniformly norm-to-norm continuous on bounded sets, we have

$$\lim_{n \to \infty} \|x_n - Sx_n\| = 0. \tag{3.7}$$

Since $\{x_n\}$ is a Cauchy sequence, there exists a point $p \in C$ such that $\{x_n\}$ converges strongly to p, i.e.,

$$\lim_{n \to \infty} \|x_n - p\| = 0.$$
(3.8)

Since S is a closed operator, we know by (3.7) and (3.8) that

$$p \in F(S).$$

Next, we shall show $p \in EP(g)$ so that

$$p \in F(S) \cap EP(g). \tag{3.9}$$

Indeed, since $u_n = T_{r_n} y_n$ and $\phi(u, y_n) \leq \phi(u, x_n)$, we get by Lemma 2.4

$$\phi(u_n, y_n) \leqslant \phi(u, y_n) - \phi(u, T_{r_n} y_n) \leqslant \phi(u, x_n) - \phi(u, T_{r_n} y_n) = \phi(u, x_n) - \phi(u, u_n).$$

Then we get by (3.6)

$$\lim_{n \to \infty} \phi(u_n, y_n) = 0.$$

So we get by the boundedness of $\{u_n\}$ and Lemma 2.6

$$\lim_{n \to \infty} \|u_n - y_n\| = 0.$$
 (3.10)

Thus, all the sequences $\{x_n\}, \{y_n\}$ and $\{u_n\}$ converge strongly to the same element $p \in F(S)$.

Since J is uniformly norm-to-norm continuous on bounded sets, we get by (3.10) and $r_n \ge a$

$$\lim_{n \to \infty} \frac{\|Ju_n - Jy_n\|}{r_n} = 0.$$
(3.11)

From $u_n = T_{r_n} y_n$, we have

$$g(u_n, y) + \frac{1}{r_n} \langle y - u_n, Ju_n - Jy_n \rangle \ge 0, \quad \forall y \in C.$$
(3.12)

Since g satisfies the conditions (A₁)–(A₄), we can get by (3.11), (3.12) and by letting $n \to \infty$ that

$$g(y,p) \leqslant 0, \quad \forall y \in C.$$
 (3.13)

For t with $0 < t \leq 1$ and $y \in C$, let $y_t = ty + (1-t)p$. Since $y \in C$ and $p \in C$, we have $y_t \in C$, and hence $g(y_t, p) \leq 0$. So, we get by (A₁) and (A₄)

$$0 = g(y_t, y_t) \leqslant tg(y_t, y) + (1 - t)g(y_t, p) \leqslant tg(y_t, y).$$

1106

Thus,

$$g(y_t, y) \ge 0, \quad \forall y \in C.$$

Letting $t \to 0^+$, we get by (A₃)

$$g(p, y) \ge 0, \quad \forall y \in C.$$

Therefore, $p \in EP(g)$, and hence (3.9) holds.

Finally, we show that $p = \prod_{F(S) \cap EP(g)} x$.

Indeed, we can get by Lemma 2.5

$$\phi(p, \Pi_{F(S)\cap EP(g)}x) + \phi(\Pi_{F(S)\cap EP(g)}x, x) \leqslant \phi(p, x).$$
(3.14)

On the other hand, since $x_{n+1} = \prod_{C_{n+1}} x$ and $F(S) \cap EP(g) \subset C_n$ for all n, we get by Lemma 2.5

$$\phi(\Pi_{F(S)\cap EP(g)}x, x_{n+1}) + \phi(x_{n+1}, x) \leqslant \phi(\Pi_{F(S)\cap EP(g)}x, x).$$
(3.15)

Then we can get by (3.14) and (3.15) that both $\phi(p, x) \leq \phi(\Pi_{F(S)\cap EP(g)}x, x)$ and $\phi(p, x) \geq \phi(\Pi_{F(S)\cap EP(g)}x, x)$ hold, and hence $\phi(p, x) = \phi(\Pi_{F(S)\cap EP(g)}x, x)$. It follows by the uniqueness of $\Pi_{F(S)\cap EP(g)}x$ that $p = \Pi_{F(S)\cap EP(g)}x$. This completes the proof. \Box

Remark Letting $A \equiv 0$ in Theorem 3.1, and replacing the closed hemi-relatively nonexpansive mapping with relatively nonexpansive mapping, we see, Theorem 3.1 is reduced to Takahashi-Zembayashi [1, Theorem 3.1].

Acknowledgement The authors would like to express their sincere thanks to Professor Shihsen Chang for helpful discussions on some relative literatures.

References

- TAKAHASHI W, ZEMBAYASHI K. Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings [J]. Fixed Point Theory Appl., 2008, 1–11.
- [2] ALBER Y I. Metric and Generalized Projection Operators in Banach Spaces: Properties and Applications [M]. New York, 1996.
- MATSUSHITA S, TAKAHASHI W. Weak and strong convergence theorems for relatively nonexpansive mappings in Banach spaces [J]. Fixed Point Theory Appl., 2004, 1: 37–47.
- [4] BLUM E, OETTLI W. From optimization and variational inequalities to equilibrium problems [J]. Math. Student, 1994, 63(1-4): 123–145.
- [5] TAKAHASHI W, ZEMBAYASHI K. Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces [J]. Nonlinear Anal., 2009, 70(1): 45–57.
- [6] KAMIMURA S, TAKAHASHI W. Strong convergence of a proximal-type algorithm in a Banach space [J]. SIAM J. Optim., 2002, 13(3): 938–945.
- [7] XU Hongkun. Inequalities in Banach spaces with applications [J]. Nonlinear Anal., 1991, 16(12): 1127–1138.
- [8] ZĂLINESCU C. Convex Analysis in General Vector Space [M]. World Scientific Publishing Co., Inc., River Edge, NJ, 2002.
- [9] ZÅLINESCU C. On uniformly convex functions [J]. J. Math. Anal. Appl., 1983, 95(2): 344–374.
- [10] AL'BER Y I, REICH S. An iterative method for solving a class of nonlinear operator equations in Banach spaces [J]. Panamer. Math. J., 1994, 4(2): 39–54.