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Abstract A subgroup H of a finite group G is said to be CAP -embedded subgroup of G if, for

each prime p dividing the order of H , there exists a CAP -subgroup K of G such that a Sylow

p-subgroup of H is also a Sylow p-subgroup of K. In this paper some new results are obtained

based on the assumption that some subgroups of prime power order have the CAP -embedded

property in the group.
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1. Introduction

All groups considered in this paper are finite. Our notation is standard and taken mainly from

[1]. Let L be a subgroup of a group G and M/N a chief factor of G. We say that L covers M/N

if LM = LN , while we say that L avoids M/N if L ∩ M = L ∩ N . L is said to have the cover-

avoidance property in G (in short, L is a CAP -subgroup of G), if L either covers or avoids every

chief factor of G. In 1962, Gaschütz[2] introduced a kind of important subgroup in studying

formations which is called pre-Frattini subgroups. These subgroups have the cover-avoidance

property justly. Thereafter, many authors studied this property. A natural question is: What

is the influence of some CAP -subgroups on the structure of the group G? In 1993, Ezquerro[3]

gave some characterization for a group G to be p-supersolvable and supersolvable based on the

assumption that all maximal subgroups of some Sylow subgroups of G have the cover-avoidance

property firstly. Later on, the research on the cover-avoidance property is much more developed in

[4]. As a generalization of CAP -subgroups, Fan, Guo and Shum in [5] introduced the semi cover-

avoidance property (i.e., semi CAP -subgroups) which generalized not only the cover-avoidance

property but also c-normality and obtained some new results. The further results can be found in

[6], [7]. In this paper, we generalize CAP -subgroups in another way and call it CAP -embedded

subgroups (see Def. 2.1). Obviously, CAP -subgroups must be CAP -embedded subgroups, but
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the converse does not hold in general. Moreover, CAP -embedded subgroups are not necessarily

semi CAP -subgroups. For example, all Sylow subgroups of the alternative group A5 of degree 5

are CAP -embedded subgroups of A5, but every Sylow subgroup is neither a CAP -subgroup nor

a semi CAP -subgroup of A5. We will give some necessary and sufficient conditions and some

sufficient conditions for a group G to be p-nilpotent, p-supersolvable and supersolvable by means

of some subgroups that have the CAP -embedded property in G.

2. Definitions and Preliminaries

For the sake of convenience, we begin by listing some definitions and lemmas which will be

needed in the sequel.

Definition 2.1 A subgroup H of a group G is said to have the CAP -embedded property in G

or is called a CAP -embedded subgroup of G if, for each prime p dividing the order of H , there

exists a CAP -subgroup K of G such that a Sylow p-subgroup of H is also a Sylow p-subgroup

of K.

Lemma 2.1 Let H be a CAP -embedded subgroup of a group G and N a normal subgroup of

G. Then HN/N is CAP -embedded in G/N .

Proof Let P ∈ Sylp(H). Then PN/N ∈ Sylp(HN/N). By hypothesis, there exists a CAP -

subgroup M of G such that P ∈ Sylp(M). By [4, Lemma 2.3], MN is a CAP -subgroup of

G. Clearly MN/N is a CAP -subgroup of G/N and PN/N ∈ Sylp(MN/N). Hence HN/N is

CAP -embedded in G/N . 2

Lemma 2.2 Let H be a subgroup of a group G, P ∈ Sylp(H) and N � G.

(1) If the maximal subgroups of P are CAP -embedded in G, then the maximal subgroups

of PN/N are CAP -embedded in G/N .

(2) If the 2-maximal subgroups of P are CAP -embedded in G, then the 2-maximal subgroups

of PN/N are CAP -embedded in G/N .

Proof (1) Let M/N ⋖ PN/N . Then M = M ∩ PN = N(P ∩ M). So we can pick a maximal

subgroup P1 of P such that P ∩ M ≤ P1. Consequently M = N(P ∩ M) ≤ NP1. Since

P ∩ N ≤ P ∩ M ≤ P1, it follows that P ∩ N = P1 ∩ N . By |PN |/|P1N | = p, M = P1N ⋖ PN .

By hypothesis, P1 is a CAP -embedded subgroup of G. Hence M/N is CAP -embedded in G/N

by Lemma 2.1.

(2) Let M1/N be a 2-maximal subgroup of PN/N . Now, arguing as in the proof of (1), we

can choose a 2-maximal subgroup P2 of P such that M1 = P2N . Hence M1/N is CAP -embedded

in G/N by Lemma 2.1. 2

Lemma 2.3[8,Lemma 2.6] Let N (N 6= 1) be a solvable normal subgroup of a group G. If every

minimal normal subgroup of G which is contained in N is not contained in Φ(G), then the Fitting

subgroup F (N) of N is the direct product of minimal normal subgroups of G contained in N .
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3. CAP -embedded subgroups and the p-nilpotency

We first characterize the p-nilpotency of G by its CAP -embedded subgroups. We have the

following theorems.

Theorem 3.1 Let p be a prime dividing the order of the group G with (|G|, p− 1) = 1 and let

H be a normal subgroup of G such that G/H is p-nilpotent. If there exists a Sylow p-subgroup

P of H such that P is cyclic or every maximal subgroup of P is CAP -embedded in G, then G

is p-nilpotent.

Proof Assume that the result is false and take G a counterexample of minimal order. Then the

following statements about G are true.

(1) P is not cyclic.

Let P be a cyclic group and P = H . By hypothesis, G/P is p-nilpotent. Let K/P be a normal

p-complement of G/P . Clearly, K � G and P ∈ Sylp(K). Since NK(P )/CK(P ) . Aut(P ) and

(|G|, p−1) = 1, it follows that NK(P ) = CK(P ). Applying Burnside’s Theorem[1, II, Theorem 5.4],

K is p-nilpotent. It is obvious that a normal p-complement of K is a normal p-complement of G.

Thus G is p-nilpotent, a contradiction. So we can suppose that P is a cyclic group and P < H .

By NH(P )/CH(P ) . Aut(P ) and (|G|, p − 1) = 1, we have that NH(P ) = CH(P ). Applying

Burnside’s Theorem [1, II, Theorem 5.4] again, H is p-nilpotent. Let T be a normal p-complement

of H . We can consider quotient groups G = G/T and H = H/T . It is clear that G/H ∼= G/H is

p-nilpotent, P = PT/T ∈ Sylp(H) and P is cyclic. So G satisfies the hypotheses of the theorem.

By the minimality of G, G/T is p-nilpotent. Therefore G is p-nilpotent, which is a contradiction.

(2) G has a unique minimal normal subgroup N contained in H , G/N is p-nilpotent and

N � Φ(G).

Let N be a minimal normal subgroup of G and N ≤ H . By Lemma 2.2(1), it is easy to see

that the hypotheses of the theorem hold in G/N . By the minimal choice of G, we have that G/N

is p-nilpotent. Since the class of p-nilpotent groups is a saturated formation, it follows that N is

the unique minimal normal subgroup contained in H and N � Φ(G).

(3) N is either a p′-group or a group of order p.

Assume N is neither a p′-group nor a p-group. If P ≤ N , then P ∈ Sylp(N). By (1),

|P | > p2. For every maximal subgroup P2 of P , P2 is CAP -embedded in G. So there exists

a CAP -subgroup A of G such that P2 ∈ Sylp(A). Clearly AN 6= A and N ∩ A ≥ P2 6= 1,

a contradiction. Therefore P � N . If P ∩ N ≤ Φ(P ), then by [10, IV, Theorem 4.7], N is

p-nilpotent, which is a contradiction. Hence there exists a maximal subgroup P3 of P such

that P = (P ∩ N)P3. Since P3 is a CAP -embedded subgroup of G, it follows that G has a

CAP -subgroup B such that P3 ∈ Sylp(B). If BN = B, then P3 ∩ N ∈ Sylp(N). By P ∩ N ∈

Sylp(N), P3 ∩ N = P ∩ N . Thus P = (P ∩ N)P3 = (P3 ∩ N)P3 = P3, a contradiction. Hence

B ∩ N = 1. Since |P ||N |p′ = |P ||N |/|P ∩ N | = |PN | > |P3N | = |P3||N |p|N |p′ and N is neither

a p′-group nor a p-group, it follows that |N |p = p. Now, by (|G|, p − 1) = 1 and Burnside’s

Theorem[1, II, Theorem 5.4] again, N is p-nilpotent, a contradiction.
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Let N be a p-group. If N ≤ Φ(P ), then N ≤ Φ(G) by [9, Theorem 5.2.13], a contradiction.

Hence there exists a maximal subgroup P4 of P such that P = P4N . Since P4 is CAP -embedded

in G, it follows that G has a CAP -subgroup C such that P4 ∈ Sylp(C). If NC = C, then

P = P4N ≤ C, which is a contradiction. So C ∩ N = 1. Noting that C ∩ N ≥ P4 ∩ N = 1, we

have that |N | = p.

(4) Final contradiction.

Suppose N is a p′-group. Since G/N is p-nilpotent, it follows that G is p-nilpotent, a

contradiction. If N is a group of order p and let K/N be a normal p-complement of G/N ,

then N is a Sylow p-subgroup of K. Thus, applying Burnside’s Theorem[1, II, Theorem 5.4] again,

K is p-nilpotent. Therefore, G is p-nilpotent, final contradiction. 2

Corollary 3.2 Let p be a prime dividing the order of the group G with (|G|, p − 1) = 1. Then

G is p-nilpotent if and only if every Sylow p-subgroup P is cyclic or every maximal subgroup of

P is CAP -embedded in G.

Proof In view of Theorem 3.1, we only need to prove the necessity part. Let G be a p-nilpotent

group. So we may assume G = PK, where P ∈ Sylp(G), K is a normal p-complement of G. If

p > 3, by (|G|, p−1) = 1 and Feit-Thompson’s Theorem[1, II, Theorem 3.8], G is solvable. If p = 2,

by the same theorem as the above again, G is solvable. Suppose that P is not cyclic. For every

maximal subgroup P1 of P , we have that P1K ≤ G and |G : P1K| = p. Obviously P1K ⋖ G. By

[5, Theorem 2.2], P1K is a CAP -subgroup of G. Therefore, P1 is CAP -embedded in G. 2

Theorem 3.3 Let p be a prime dividing the order of the group G with (|G|, p− 1) = 1 and let

H be a normal subgroup of G such that G/H is p-nilpotent. If G is A4-free, and there exists

a Sylow p-subgroup P of H such that every 2-maximal subgroup of P is CAP -embedded in G,

then G is p-nilpotent.

Proof Assume that the theorem is false and let G be a counterexample of minimal order. Then,

by the same arguments used in the proof of Theorem 3.1, the following statements (1) and (2)

about G are true.

(1) G has a unique minimal normal subgroup N contained in H , G/N is p-nilpotent and

N � Φ(G).

(2) Op′(G) = 1.

(3) G is solvable.

If p > 3, by Feit-Thompson’s Theorem[1, II, Theorem 3.8] and (|G|, p − 1) = 1, G is solvable.

So we assume p = 2. If |N |2 6 4, by [4, Lemma 3.12], N is 2-nilpotent. This implies that N is

solvable. Since G/N is 2-nilpotent, it follows that G is solvable. Thus we assume that |N |2 > 8.

Using the same arguments as in the proof of Theorem 3.1(3), we have easily that P � N and

P ∩N � Φ(P ). Let P1 be a maximal subgroup of P containing P ∩N . Clearly, P ∩N � Φ(P1).

Hence there exists a maximal subgroup P2 of P1 such that P1 = (P ∩ N)P2. Since P2 is CAP -

embedded in G, it follows that G has a CAP -subgroup A such that P2 ∈ Syl2(A). Obviously,

AN 6= A, then we have A ∩ N = 1. By |AN |2 = |A|2|N |2 = |P2||N |2, |N |2 6 4, a contradiction.
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Hence N is solvable. Furthermore G is solvable.

(4) Final contradiction.

By (3), N is a p-group and N ≤ P . Because G/N is p-nilpotent, we can suppose T/N is a

normal p-complement of G/N . Clearly N is a Sylow p-subgroup of T . If |N | > p3, for every

2-maximal subgroup P3 of P , there exists a CAP -subgroup B of G such that P3 ∈ Sylp(B) by

hypothesis. If B ∩ N = 1, then |NP3| > |P |, which is a contradiction. So we have BN = B.

Thus N ≤ P3. By the random choice of P3, N ≤ Φ(P ). By [9, Theorem 5.2.13], we have that

N ≤ Φ(G), a contradiction. Consequently |N | 6 p2. Then, by [4, Lemma 3.12] again, T is

p-nilpotent. Hence G is p-nilpotent, final contradiction. 2

Corollary 3.4 Let p be a prime dividing the order of the group G with (|G|, p2 −1) = 1 and let

H be a normal subgroup of G such that G/H is p-nilpotent. If there exists a Sylow p-subgroup

P of H such that every 2-maximal subgroup of P is CAP -embedded in G, then G is p-nilpotent.

Proof If p = 2, then 3 ∤ |G| by (|G|, p2 − 1) = 1. If p > 3, 2 ∤ |G| by (|G|, p2 − 1) = 1 again.

Hence G is A4-free. Applying Theorem 3.3, G is p-nilpotent. 2

4. CAP -embedded subgroups and the supersolvability

In this section, we characterize the supersolvability of G by its CAP -embedded subgroups.

We have the following results.

Theorem 4.1 Let p be a prime dividing the order of the group G and let H be a p-solvable

normal subgroup of G such that G/H is p-supersolvable. If there exists a Sylow p-subgroup P

of H such that every maximal subgroup of P is CAP -embedded in G, then G is p-supersolvable.

Proof Assume the result is false and take G a counterexample of minimal order. Now, arguing

as in the proof of Theorem 3.1, the following statements (1) and (2) about G are true.

(1) G has a unique minimal normal subgroup N contained in H , G/N is p-supersolvable

and N � Φ(G).

(2) Op′(G) = 1.

Since G is p-solvable and Op′(G) = 1, N is a p-group and N ≤ P . If N ≤ Φ(P ), by [9,

Theorem 5.2.13], N ≤ Φ(G), a contradiction. Consequently there exists a maximal subgroup P1

of P such that P1N = P . Since P1 is a CAP -embedded subgroup of G, it follows that G has a

CAP -subgroup B such that P1 ∈ Sylp(B). Clearly BN 6= B. Hence B ∩ N = 1. Noting that

P1 ∩ N = 1, N is a group of order p by |P1||N | = |P |. The p-supersolvability of G/N implies

that G is p-supersolvable, final contradiction. 2

Remark 4.1 The hypothesis that H is p-solvable in Theorem 4.1 is essential. For example, if

we let G be the alternating group A5 of degree 5, H = G and p = 3, then it is clear that the

statement of Theorem 4.1 does not hold.

Corollary 4.2 Let G be a group. Then G is supersolvable if and only if there exists a normal
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subgroup H such that G/H is supersolvable and all maximal subgroups of any Sylow subgroup

of H have the CAP -embedded property in G.

Proof The necessity part can be obtained if we let H = G and apply a result due to Ezquerro[3].

So we need to prove the sufficiency part.

Let p be the smallest prime divisor of |G|. The supersolvability of G/H implies that G/H is

p-nilpotent. By Theorem 3.1, G is p-nilpotent. Furthermore G is solvable. Applying Theorem

4.1, it is easy to see that G is supersolvable. 2

Theorem 4.3 Let G be a group. Then G is supersolvable if and only if there exists a solvable

normal subgroup H such that G/H is supersolvable and all maximal subgroups of any Sylow

subgroup of F (H) have the CAP -embedded property in G.

Proof Assume G is supersolvable. Let p be the largest prime divisor of |G|. The supersolvability

of G implies that there exists a normal subgroup H of G, where the order of H is p. Clearly

H = F (H). Hence G/H is supersolvable and all maximal subgroups of any Sylow subgroup of

F (H) have the CAP -embedded property in G.

Conversely, assume the result is false and let G be a counterexample of minimal order. Then

the following statements about G are true.

(1) Φ(G) = 1.

Assume that Φ(G) 6= 1 and take a prime p dividing |Φ(G)|. Denote P = Op(Φ(G)) 6= 1.

Clearly P � G. Let F (HP/P ) = L/P . By L/P char HP/P � G/P , L/P � G/P . Hence

L � G. Since L/P is a normal nilpotent subgroup of G/P and P ≤ Φ(G), applying a result due

to Gaschütz[10, III, Theorem 3.5], we have that L is a normal nilpotent subgroup of HP . Thus

L ≤ F (HP ). Consequently F (HP/P ) = F (HP )/P = L/P . By [11, Lemma 3.1], F (HP/P ) =

F (H)P/P . It is clear that (G/P )/(HP/P ) ∼= G/HP ∼= (G/H)/(HP/H) is supersolvable. Now,

by Lemma 2.2(1), the hypotheses of the theorem hold in G/P . By the minimality of G, G/P is

supersolvable. Furthermore G is supersolvable, a contradiction.

(2) Let T ∈ Sylp(F (H)). Then T = N1 × N2 × · · · × Nr, where Ni (i = 1, 2, . . . , r) are

minimal normal subgroups of G and |Ni| = p.

Since H is solvable, Φ(H) ≤ Φ(G) = 1 and by Lemma 2.3, T = N1 × N2 × · · · × Nr, where

Ni (i = 1, 2, . . . , r) are both elementary abelian and minimal normal subgroups of G. We will

show that every Ni is a group of order p. If |N1| > p2, for every maximal subgroup R1 of N1,

then it is clear that T1 = R1 × N2 × · · · ×Nr ⋖ T . By hypothesis, there exists a CAP -subgroup

A of G such that T1 ∈ Sylp(A). Since N1 � A, it follows that R1 = N1 ∩A = 1, a contradiction.

Therefore |N1| = p. By the same arguments as the above we have that |N2| = p, . . . , |Nr| = p.

(3) Final contradiction.

By (2), we can assume that F (H) = 〈a1〉 × 〈a2〉 × · · · × 〈an〉, where 〈ai〉 (i = 1, . . . , n) are

normal subgroups of G with prime order. By G/CG(〈ai〉) . Aut(〈ai〉), G/CG(〈ai〉) is cyclic.

So we have that G/CG(〈ai〉) is supersolvable. Since CG(F (H)) =
⋂n

i=1 CG(〈ai〉), it follows that

G/CG(F (H)) is supersolvable. And by the hypotheses, G/CH(F (H)) = G/(H ∩ CG(F (H))) is
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supersolvable. Noting that F (H) is abelian, we have that F (H) ≤ CH(F (H)). On the other

hand, CH(F (H)) ≤ F (H) for H is solvable. Hence CH(F (H)) = F (H). Thus G/F (H) is

supersolvable. Applying Corollary 4.2, G is supersolvable, final contradiction. 2

Remark 4.2 The hypothesis that H is solvable in Theorem 4.3 cannot be removed. For

example, if we let G = SL(2, 5) and H = G, then F (H) is a group of order 2. Thus all maximal

subgroups of any Sylow subgroup of F (H) have the CAP -embedded property in G, but G is not

supersolvable.

Corollary 4.4 Let N be a subgroup of a solvable group G and G′ ≤ N . If all maximal

subgroups of any Sylow subgroup of F (N) have the CAP -embedded property in G, then G is

supersolvable.

Proof By G/N ∼= (G/G′)/(N/G′), we have that G/N is abelian. By Theorem 4.3, G is

supersolvable. 2
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