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1. Introduction

All groups considered in this paper will be finite. For a group G, a subgroup H of G is said to

be conjugate permutable if HHx = HxH for any x ∈ G. This concept was introduced by Foguel

in [10]. The conjugate permutable subgroups have many interesting properties. For example, for

a finite group any conjugate permutable subgroup is subnormal[10,Corollary 1.1].

It is natural to introduce the dual concept of conjugate permutable subgroups, we have:

Definition 1.1 Let G be a group. A subgroup H of G is said to be self-conjugate-permutable

if HHx = HxH implies Hx = H , where x ∈ G.

Obviously, a subgroup H of G is normal if and only if H is conjugate-permutable and self-

conjugate-permutable in G. It is easy to see that for a finite group G, all of whose maximal

subgroups and Hall subgroups are self-conjugate-permutable.

A group is called a PN -group if its minimal subgroups are normal. The PN -groups were

generalized by many authors[1,4,7]. In this paper, the generalization on PN -groups is continued.

For convenience, we give the following definition.

Definition 1.2 Let G be a group. G is called a PSC∗-group if every cyclic subgroup of G of

order 2 or 4 is self-conjugate-permutable.
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We notice that a maximal subgroup A4 of A5 has no subgroups of order 6. Thus there

is a subgroup of order 2 which is not self-conjugate-permutable in A4. So neither A5 nor A4

is a PSC∗-group. But all second maximal subgroups of A5 are PSC∗-groups. It should be

an interesting problem to find out all finite groups all of whose second maximal subgroups are

PSC∗-groups.

The notation and terminology used in this paper are standard, as in [5] and [6].

2. Preliminaries

In this section we give some basic properties of our definition and collect some results that

are needed in this paper.

Lemma 2.1[3] Let G be a group. Suppose that H is self-conjugate-permutable in G, K ≤ G

and N a normal subgroup of G. We have:

(1) If H ≤ K, then H is self-conjugate-permutable in K;

(2) Let N ≤ K. Then K/N is self-conjugate-permutable in G/N if and only if K is self-

conjugate-permutable in G;

(3) If (|K|, |N |) = 1 and K is a p-subgroup of G, then K is self-conjugate-permutable in G

if and only if KN is self-conjugate-permutable in G.

Lemma 2.2[3] (1) A subgroup H of G is normal if and only if H is subnormal and self-conjugate-

permutable in G.

(2) A subgroup H of G is normal if and only if H is conjugate-permutable and self-conjugate-

permutable in G.

Lemma 2.3[3] Let G be a group. Suppose that G = AB, A ≤ G, B ≤ G. If H is self-conjugate-

permutable in B and H is normalized by A, then H is self-conjugate-permutable in G.

Lemma 2.4[6] Let G be a minimal non-nilpotent group (A non-nilpotent group all of whose

proper subgroups are nilpotent). Then:

(1) G = [Gp]Gq and Gq is a cyclic group;

(2) Gp/Φ(Gp) is a minimal normal subgroup of G/Φ(Gp);

(3) Gp has exponent p if p > 2 and exponent at most 4 if p = 2;

(4) Gp is an elementary abelian group if Gp is an abelian group; Z(Gp) = Φ(Gp) = G′

p if

Gp is not an abelian group;

(5) CGp
(Gq) = G′

p.

Lemma 2.5[2,Theorem B] Let G be a nonsolvable group. Suppose that solvable subgroups of G

are either 2-nilpotent or minimal non-nilpotent, then G is one of the following groups:

(1) PSL(2, 2f), where 2f − 1 is a prime;

(2) PSL(2, q), where q is an odd prime with q > 3 and q ≡ 3 or 5 (mod 8);

(3) SL(2, q), where q is an odd prime with q > 3 and q ≡ 3 or 5 (mod 8).
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Proof The Lemma is a special example in [3]. Its proof does not depend on the classification

of finite simple groups. 2

Lemma 2.6 Let G be a group and P ∈ Sylp(G), where p ∈ π(G). If H � P and Hg � P , then

H and Hg are conjugate in NG(P ).

Proof Since Hg � P , we have H � P g−1

. Also, as H � P , it follows that 〈P, P g−1

〉 ≤ NG(H).

We notice that P and P g−1

are Sylow p-subgroups of NG(H). By Sylow’s theorem, there exists

n ∈ NG(H) such that Pn = P g−1

and hence ng ∈ NG(P ). Moreover, Hng = Hg, so H and Hg

are conjugate in NG(P ). 2

Lemma 2.7 Let G be a non-nilpotent dihedral group of order 2n or 4n, where n is odd. Then

G is a PSC∗-group.

Proof If |G| = 2n, n is odd, then G = [Cn]C2. Assume that C2C
x
2 = Cx

2 C2 for x ∈ G. Since C2

is a Sylow 2-subgroup, we have C2 = Cx
2 and C2 is self-conjugate-permutable in G. Hence G is

a PSC∗-group.

If |G| = 4n, n is odd. Let K be a subgroup of G of order 2. Assume that KKx = KxK for

x ∈ G. Then there exists a Sylow 2-subgroup S of G such that KKx = KxK ≤ S. By Lemma

2.6, K and Kx are conjugate in NG(S). Since G is non-nilpotent, it follows that NG(S) < G and

K = Kx. Thus K is self-conjugate-permutable in G. Moreover, the subgroups of G of order 4 are

Sylow subgroups of G and hence are self-conjugate-permutable. Thus G is also a PSC∗-group.2

3. The main results and proofs

Theorem 3.1 Let G be a PSC∗-group. Then G is 2-nilpotent.

Proof Let x ∈ G and x4 = 1. Then there exists P ∈ Syl2(G) such that 〈x〉 ≤ P ≤ NG(P ). By

Lemma 2.1 (1), 〈x〉 is self-conjugate-permutable in NG(P ). On the other hand, 〈x〉��P�NG(P ),

by Lemma 2.2, 〈x〉�NG(P ). Now applying [5, IX. 6.7] gives that G is 2-nilpotent. This completes

the proof. 2

Corollary 3.2 Let G be a group. Suppose every cyclic subgroup of second maximal subgroups

of G of order 2 or 4 is self-conjugate-permutable in G, then G is 2-nilpotent.

Proof Let x ∈ G and x4 = 1. If 〈x〉 = G2, then G is 2-nilpotent. If 〈x〉 < G2, then 〈x〉

is contained in some second maximal subgroup of G. By hypotheses, 〈x〉 is self-conjugate-

permutable in G. By arbitrariness of 〈x〉, we have that G is a PSC∗-group. Theorem 3.1 implies

that G is 2-nilpotent. 2

Theorem 3.3 For a group G, if every maximal subgroup of G is a PSC∗-group, then one of

the following results holds:

(i) G is 2-nilpotent;

(ii) G = [G2]Gp is a minimal non-nilpotent group, where G2 is an elementary abelian 2-group
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and Gp is a cyclic group;

(iii) G = [Q8]Z3n is a minimal non-nilpotent group, where Q8 is a quaternion of order 8,

Z3n is a cyclic 3-group.

Proof Assume that G is not 2-nilpotent. By Theorem 3.1 and hypotheses, every proper subgroup

of G is 2-nilpotent. Therefore G is a minimal non-nilpotent group and G = [G2]Gp by Lemma

2.4.

(1) If G2 is abelian, then Lemma 2.4 implies that (ii) holds.

(2) If G2 is not abelian, then Lemma 2.4 implies that exp(G2) ≤ 4. Let x ∈ G2. Then

x4 = 1. Since G2 < G, we have G2 is contained in some maximal subgroup of G. By hypotheses

and Lemma 2.1, 〈x〉 is self-conjugate-permutable in G2. Moreover, G2 is a 2-group, so 〈x〉��G2.

By Lemma 2.2, 〈x〉 � G2. Arbitrariness of 〈x〉 implies that all subgroups of G2 are normal. So

G2 is a Hamiltion group. By [6, III, 7.12], G2 = Q8×A, where Q8 is a quaternion of order 8, A is

an elementary abelian 2-group or 1. By Lemma 2.4, A ≤ Z(G2) = G′

2 ≤ Q8, so A ≤ Q8 ∩A = 1.

Therefore G = [Q8]Zp. We notice Aut(Q8) ∼= S4 and Gp acts on Q8 by conjugate, it follows that

24||G|. Moreover, p is odd, it follows that p = 3n. Thus Gp is a cyclic 3-group. This proves (iii).

2

Theorem 3.4 Let G be a group. If all cyclic subgroups of the third maximal subgroup of G of

order 2 or 4 are self-conjugate-permutable in G, then one of the following results holds:

(i) G is 2-nilpotent;

(ii) G = A4;

(iii) G = [Q8]Z3 is a minimal non-nilpotent group, where Q8 is a quaternion of order 8, Z3

is a cyclic group of order 3.

Proof If all cyclic subgroups of G of order 2 or 4 are self-conjugate-permutable in G, then

Theorem 3.1 implies that G is 2-nilpotent. This proves (i).

Assume that G is non-2-nilpotent. By Corollary 3.2, all maximal subgroups of G are 2-

nilpotent. So G is a minimal non-2-nilpotent group and G = [G2]Gp by Lemma 2.4.

Case 1 If G2 is abelian, then Lemma 2.4 implies that G2 is an elementary abelian 2-group. Let

|G2| = 2n. If n > 2. Let x ∈ G and o(x) = 2. Then 〈x〉 is contained in some third maximal

subgroup of G, by hypotheses, 〈x〉 is self-conjugate-permutable in G. Moreover, 〈x〉 � G2 � G,

by Lemma 2.2, we have 〈x〉� G. Also, as G2 is a minimal normal subgroup of G by Lemma 2.4,

we have G2 = 〈x〉, this is a contradiction. Hence G2 is an elementary abelian group of order 4.

Since |Aut(G2)| = (2 + 1)2(2 − 1)2 = 6, we have p = 3, which implies G ∼= A4. This proves (ii).

Case 2 If G2 is not abelian. We claim: all subgroups of G2 are normal in G2. If not, there

is x ∈ G and x4 = 1 such that 〈x〉 < NG2
(〈x〉) < G2 < G. So 〈x〉 is contained in some

third maximal subgroup of G. By hypotheses, 〈x〉 is self-conjugate-permutable in G, Lemma

2.1 implies that 〈x〉 is self-conjugate-permutable in G2 and 〈x〉 � G2 by Lemma 2.2. This is a

contradiction. So the claim holds. By proof of Theorem 3.3 (iii), we obtain that G = [Q8]Z3n ,
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where Q8 is a quaternion of order 8, Z3n is a cyclic 3-group. If n > 1. Let x ∈ G, x4 = 1.

Then 〈x〉 < Q8 < Q8〈Z3〉 < G. So 〈x〉 is contained in some third maximal subgroup of G. By

hypotheses, 〈x〉 is self-conjugate-permutable in G. On the other hand, 〈x〉� Q8 � G, Lemma 2.2

implies that 〈x〉 � G. So 〈x〉Φ(Q8)/Φ(Q8) = 〈x〉/Φ(Q8) � G/Φ(Q8). By Lemma 2.4, Q8/Φ(Q8)

is minimal normal in G/Φ(Q8), so we have Q8 = 〈x〉. This is a contradiction. Thus n = 1 and

this proves (iii). 2

Theorem 3.5 Let G be a non-abelian simple group and all of whose second maximal subgroups

are PSC∗-groups. Then G is one of the following groups:

(i) PSL(2, 2f), where 2f − 1 is a prime;

(ii) PSL(2, p), where p is a prime with p > 3, p2 − 1 6≡ 0 (mod 5) and p ≡ 3 or 5 (mod 8);

(iii) PSL(2, 3f), where f is an odd prime, 3f ≡ 3 or 5 (mod 8).

Proof Let M be a maximal subgroup of G. Then all maximal subgroups of M are PSC∗-groups

by hypotheses. It follows from Theorem 3.3 that M is solvable. Hence all proper subgroups of

G are solvable. Applying Thompson’s theorem, it follows that G is isomorphic to one of the

following five kinds of simple groups:

(1) PSL(3, 3);

(2) PSL(2, 2f), where f is a prime;

(3) PSL(2, p), where p is a prime with p > 3 and p2 − 1 6≡ 0 (mod 5);

(4) PSL(2, 3f), where f is an odd prime;

(5) The Suzuki group Sz(2f), where f is an odd prime.

We claim:

(a) G 6∼= PSL(3, 3);

If G ∼= PSL(3, 3). Let x ∈ Z(G2) and o(x) = 2. By [9, Lemma 5.1], CG(〈x〉) ∼= GL(2, 3).

Since SL(2, 3) is a proper subgroup of GL(2, 3), by hypotheses, SL(2, 3) is a PSC∗-group. So a

cyclic subgroup 〈y〉 of SL(2, 3) of order 4 is self-conjugate-permutable in SL(2, 3). On the other

hand, every cyclic subgroup of SL(2, 3) of order 4 is subnormal in SL(2, 3). Applying Lemma

2.2, 〈y〉 � SL(2, 3). But SL(2, 3) has no normal subgroups of order 4. This is a contradiction.

(b) (b-1) G 6∼= PSL(2, 2f), where 2f − 1 is not a prime.

In fact, if G ∼= PSL(2, 2f), where 2f − 1 is not a prime, then G possesses a Frobenius group

N and a normalizer of Sylow 2-subgroup and N = [G2]C is also a minimal nonabelian group,

where G2 is an elementary abelian group and C is a cyclic group of order (2f −1). Since (2f −1)

is not a prime, it follows that 〈c〉G2 < N , where 〈c〉 < C. So 〈c〉G2 is contained in some second

maximal subgroup, by hypotheses, 〈c〉G2 is a PSC∗-group. Let 〈y〉 be a subgroup of G2 of order

2. Then 〈y〉 is self-conjugate-permutable in 〈c〉G2. On the other hand, 〈y〉� �〈c〉G2, by Lemma

2.2, 〈y〉 � 〈c〉G2. Therefore 〈y〉〈c〉 = 〈y〉 × 〈c〉 and 〈c〉 ≤ CN (〈y〉). By [8, p38, Theorem 7.6],

CN (〈y〉) ≤ G2 and 〈c〉 ≤ G2. This is a contradiction. Thus G 6∼= PSL(2, 2f), where 2f − 1 is not

a prime.

(b-2) G ∼= PSL(2, 2f) satisfies the hypotheses, where 2f − 1 is a prime.
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By [6, II, 8.27], PSL(2, 2f) has only three kinds of maximal subgroups, where 2f − 1 is a

prime:

1o minimal nonabelian groups of order 2f(2f − 1);

2o dihedral groups of order 2(2f − 1);

3o dihedral groups of order 2(2f + 1).

For minimal non-abelian groups of order 2f(2f − 1), whose maximal subgroups are abelian

groups. So they are PSC∗-groups.

Remark dihedral groups of order 2(2f − 1) and 2(2f + 1), whose Sylow 2-subgroups are of

order 2. By Lemma 2.7, their maximal subgroups are PSC∗-groups. This proves (i).

(c) (c-1) G 6∼= PSL(2, p), where p is a prime with p > 3, p2 − 1 6≡ 0 (mod 5) and p 6≡ 3 and

5 (mod 8).

In fact, suppose that G ∼= PSL(2, p), where p is a prime with p > 3, p2 − 1 6≡ 0 (mod 5). By

[6, II, 8.27], A4 < PSL(2, p). Since A4 has no subgroups of order 6, we have A4 isn’t a PSC∗-

group. By hypotheses, A4 is a maximal subgroup of PSL(2, p). We claim: Sylow 2-subgroups of

PSL(2, p) are subgroups of order 4. If not, since K4 � A4 < PSL(2, p), we have A4 < NG(K4).

It follows from maximality of A4 that NG(K4) = G and so K4 � PSL(2, p), a contradiction.

Thus the claim holds and p ≡ 3 or 5 (mod 8).

(c-2) G ∼= PSL(2, p) satisfies the hypotheses, where p is a prime with p > 3, p2−1 6≡ 0 (mod 5)

and p ≡ 3 or 5 (mod 8).

By [6, II, 8.27], G has only three kinds of maximal subgroups:

1o dihedral groups of order p + 1 or p − 1;

2o A4;

3o Frobenius group N and a normalizer of Sylow 2-group and N = [P ]C is also a minimal

nonabelian group, where P is an elementary abelian group and C is a cyclic group of order

(p − 1)/2.

By Lemma 2.7, all maximal subgroups of 1o are PSC∗-groups. Clearly, all maximal subgroups

of A4 are PSC∗-groups. All maximal subgroups of 3o are abelian. So they satisfy the hypotheses.

This proves (ii).

(d) (d-1) G 6∼= PSL(2, 3f), where f is an odd prime and 3f 6≡ 3 and 5 (mod 8).

In fact, it follows from the proof of (c-1) that 3f ≡ 3 or 5 (mod 8).

(d-2) G ∼= PSL(2, 3f) satisfies the hypotheses, where f is an odd prime, 3f ≡ 3 or 5 (mod 8).

The proof of (d-2) is similar to that of (c-2). This proves (iii).

(e) G 6∼= Sz(2f), where f is an odd prime.

In fact, if G ∼= Sz(2f), where f is an odd prime. By [8, p41, Theorem 8.2], G possesses a

Frobenius group N and N = [P ]C, where P is a non-abelian kernel of order 4f and C is a cyclic

complement of order 2f − 1. Therefore Z(P )C < N < G. By hypotheses, Z(P )C is a PSC∗-

group. Let 〈y〉 be a subgroup of Z(P ) of order 2. So 〈y〉 is self-conjugate-permutable in Z(P )C.

On the other hand, 〈y〉� Z(P ) � Z(P )C. By Lemma 2.2, 〈y〉� Z(P )C. So 〈y〉C = 〈y〉 × C and

C ≤ CN (〈y〉). By [8, p38, Theorem 7.6], CN (〈y〉) ≤ P and C ≤ P . This is a contradiction. 2
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Theorem 3.6 Let G be a finite group all of whose second maximal subgroups are PSC-groups.

Then G is either a solvable group or one of the following groups:

(i) PSL(2, 2f), where 2f − 1 is a prime;

(ii) PSL(2, p), where p is a prime with p > 3, p2 − 1 6≡ 0 (mod 5) and p ≡ 3 or 5 (mod 8);

(iii) PSL(2, 3f), where f is an odd prime, 3f ≡ 3 or 5 (mod 8).

(iv) SL(2, p), where p is a prime with p > 3, p2 − 1 6≡ 0 (mod 5) and p ≡ 3 or 5 (mod 8);

(v) SL(2, 3f), where f is an odd prime, 3f ≡ 3 or 5 (mod 8).

Proof Suppose that G is a nonsolvable group. Let M be a maximal subgroup of G. Then all

maximal subgroups of M are PSC∗-groups by hypotheses. It follows from Theorem 3.3 that

M is either 2-nilpotent or minimal non-2-nilpotent. Hence all proper subgroups of G are either

2-nilpotent or minimal non-2-nilpotent. Applying Lemma 2.5, G is isomorphic to one of the

following three kinds of groups:

(1) PSL(2, 2f), where 2f − 1 is a prime;

(2) PSL(2, q), where q is an odd prime with q > 3 and q ≡ 3 or 5 (mod 8);

(3) SL(2, q), where q is an odd prime with q > 3 and q ≡ 3 or 5 (mod 8).

We claim:

(i) G ∼= PSL(2, 2f) satisfies the hypotheses, where 2f − 1 is a prime.

In fact, the proof of (i) is similar to that of (b-2) of Theorem 3.5. We can obtain all second

maximal subgroups of PSL(2, 2f) are PSC∗-groups. This proves (i).

(ii) (ii-1) G 6∼= PSL(2, p), where p is a prime with p > 3, p2 − 1 ≡ 0 (mod 5) and p ≡ 3 or

5 (mod 8).

In fact, suppose that G ∼= PSL(2, q), where q > 3 and q ≡ 3 or 5 (mod 8). Let q = pf , where

p is a prime.

Let p > 3. If f > 1, then PSL(2, pf) contains a nonsolvable proper subgroup PSL(2, p).

Moreover, all proper subgroups of G are solvable, this is a contradiction. Thus f = 1.

If p2 − 1 ≡ 0 (mod 5). By [6, II, 8.27], PSL(2, p) contains a nonsolvable subgroup A5. This

is also a contradiction. So p2 − 1 6≡ 0 (mod 5).

(ii-2) G ∼= PSL(2, p) satisfies the hypotheses, where p is a prime with p > 3, p2 − 1 6≡

0 (mod 5) and p ≡ 3 or 5 (mod 8).

The proof of (ii-2) is similar to that of (c-2) of Theorem 3.5. So all second maximal subgroups

of PSL(2, 2f) are PSC∗-groups. This proves (ii).

(iii) (iii-1) G 6∼= PSL(2, 3f), where f is an even or a composite and 3f ≡ 3 or 5 (mod 8).

In fact, suppose that G ∼= PSL(2, q), where q > 3 and q ≡ 3 or 5 (mod 8). Let q = pf , where

p is a prime.

Let p = 3. Since PSL(2, 9) contains a nonsolvable proper subgroup A5, f cannot be an even.

So f is an odd number.

If f is an odd composite, let f = mn, where m is a prime with m < f . By [6, II, 8.27], we

know PSL(2, pf) contains a nonsolvable proper subgroup PSL(2, pm), which is a contradiction.

Thus f is an odd prime.



622 SHEN Z C, LI S R, LIU J J and et al.

(iii-2) G ∼= PSL(2, 3f) satisfies the hypotheses, where f is an odd prime, 3f ≡ 3 or 5 (mod 8).

The proof of (iii-2) is similar to that of (d-2) of Theorem 3.5. This proves (iii).

(iv) (iv-1) G 6∼= SL(2, p), where p is a prime with p > 3, p2 − 1 ≡ 0 (mod 5) and p ≡ 3 or

5 (mod 8).

In fact, SL(2, p) has only a subgroup of order 2, let it be 〈u〉 and Z = 〈u〉. If G ∼= SL(2, p),

then G/Z ∼= PSL(2, p). Similarly to the proof of (ii-1) of (ii), we obtain p2 − 1 6≡ 0 (mod 5).

(iv-2) G ∼= SL(2, p) satisfies the hypotheses, where p is an odd prime with p > 3, p2 − 1 ≡

0 (mod 5) and p ≡ 3 or 5 (mod 8).

In fact, if G ∼= SL(2, p), then G/Z ∼= PSL(2, p). Since the subgroup 〈u〉 of SL(2, p) of order

2 is unique, 〈u〉 � SL(2, p) and 〈u〉 is self-conjugate-permutable. Moreover, Sylow 2-groups of

SL(2, p) are isomorphic to Q8. Let 〈v〉 be an arbitrary cyclic subgroup of SL(2, p) of order 4.

Then Z < 〈v〉. Let V be a second maximal subgroup of SL(2, p) and contain 〈v〉. Therefore

〈v〉/Z is self-conjugate-permutable in V/Z. Hence 〈v〉 is self-conjugate-permutable in V by

Lemma 2.1(2). It follows that all second maximal subgroups of SL(2, p) are PSC∗-groups. This

proves (iv).

(v) Similarly to the proof of (iii) and (iv), we can obtain (v). 2
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