Finite Groups All of Whose Second Maximal Subgroups Are PSC^* -Groups

SHEN Zhen Cai^{1,2}, LI Shi Rong², LIU Jian Jun², LIU Xiao Chun²

(1. School of Mathematics, Suzhou University, Jiangsu 215006, China;

2. Department of Mathematics, Guangxi University, Guangxi 530004, China)

(E-mail: shirong@gxu.edu.cn)

Abstract This paper discusses the influence of minimal subgroups on the structure of finite groups and gives the structures of finite groups all of whose second maximal subgroups are PSC^* -groups.

Keywords Self-conjugate-permutable subgroups; PSC^* -groups; second maximal subgroups; third maximal subgroups; p-nilpotent groups.

Document code A MR(2000) Subject Classification 20D10 Chinese Library Classification 0152.1

1. Introduction

All groups considered in this paper will be finite. For a group G, a subgroup H of G is said to be conjugate permutable if $HH^x = H^xH$ for any $x \in G$. This concept was introduced by Foguel in [10]. The conjugate permutable subgroups have many interesting properties. For example, for a finite group any conjugate permutable subgroup is subnormal^[10, Corollary 1.1].

It is natural to introduce the dual concept of conjugate permutable subgroups, we have:

Definition 1.1 Let G be a group. A subgroup H of G is said to be self-conjugate-permutable if $HH^x = H^xH$ implies $H^x = H$, where $x \in G$.

Obviously, a subgroup H of G is normal if and only if H is conjugate-permutable and selfconjugate-permutable in G. It is easy to see that for a finite group G, all of whose maximal subgroups and Hall subgroups are self-conjugate-permutable.

A group is called a PN-group if its minimal subgroups are normal. The PN-groups were generalized by many authors^[1,4,7]. In this paper, the generalization on PN-groups is continued. For convenience, we give the following definition.

Definition 1.2 Let G be a group. G is called a PSC^* -group if every cyclic subgroup of G of order 2 or 4 is self-conjugate-permutable.

Received date: 2007-06-06; Accepted date: 2007-11-22

Foundation item: the National Natural Science Foundation of China (No. 10161001); Guangxi Autonomous Region (No. 0249001); Innovation Project of Guangxi Graduate Education (No. 2007105930701M30).

 PSC^* -groups.

The notation and terminology used in this paper are standard, as in [5] and [6].

2. Preliminaries

In this section we give some basic properties of our definition and collect some results that are needed in this paper.

Lemma 2.1^[3] Let G be a group. Suppose that H is self-conjugate-permutable in G, $K \leq G$ and N a normal subgroup of G. We have:

(1) If $H \leq K$, then H is self-conjugate-permutable in K;

(2) Let $N \leq K$. Then K/N is self-conjugate-permutable in G/N if and only if K is self-conjugate-permutable in G;

(3) If (|K|, |N|) = 1 and K is a p-subgroup of G, then K is self-conjugate-permutable in G if and only if KN is self-conjugate-permutable in G.

Lemma 2.2^[3] (1) A subgroup H of G is normal if and only if H is subnormal and self-conjugatepermutable in G.

(2) A subgroup H of G is normal if and only if H is conjugate-permutable and self-conjugate-permutable in G.

Lemma 2.3^[3] Let G be a group. Suppose that G = AB, $A \leq G$, $B \leq G$. If H is self-conjugatepermutable in B and H is normalized by A, then H is self-conjugate-permutable in G.

Lemma 2.4^[6] Let G be a minimal non-nilpotent group (A non-nilpotent group all of whose proper subgroups are nilpotent). Then:

- (1) $G = [G_p]G_q$ and G_q is a cyclic group;
- (2) $G_p/\Phi(G_p)$ is a minimal normal subgroup of $G/\Phi(G_p)$;
- (3) G_p has exponent p if p > 2 and exponent at most 4 if p = 2;

(4) G_p is an elementary abelian group if G_p is an abelian group; $Z(G_p) = \Phi(G_p) = G'_p$ if G_p is not an abelian group;

(5) $C_{G_p}(G_q) = G'_p$.

Lemma 2.5^[2, Theorem B] Let G be a nonsolvable group. Suppose that solvable subgroups of G are either 2-nilpotent or minimal non-nilpotent, then G is one of the following groups:

- (1) $PSL(2, 2^f)$, where $2^f 1$ is a prime;
- (2) PSL(2,q), where q is an odd prime with q > 3 and $q \equiv 3$ or 5 (mod 8);
- (3) SL(2,q), where q is an odd prime with q > 3 and $q \equiv 3$ or 5 (mod 8).

Proof The Lemma is a special example in [3]. Its proof does not depend on the classification of finite simple groups. \Box

Lemma 2.6 Let G be a group and $P \in \text{Syl}_p(G)$, where $p \in \pi(G)$. If $H \leq P$ and $H^g \leq P$, then H and H^g are conjugate in $N_G(P)$.

Proof Since $H^g \leq P$, we have $H \leq P^{g^{-1}}$. Also, as $H \leq P$, it follows that $\langle P, P^{g^{-1}} \rangle \leq N_G(H)$. We notice that P and $P^{g^{-1}}$ are Sylow p-subgroups of $N_G(H)$. By Sylow's theorem, there exists $n \in N_G(H)$ such that $P^n = P^{g^{-1}}$ and hence $ng \in N_G(P)$. Moreover, $H^{ng} = H^g$, so H and H^g are conjugate in $N_G(P)$.

Lemma 2.7 Let G be a non-nilpotent dihedral group of order 2n or 4n, where n is odd. Then G is a PSC^* -group.

Proof If |G| = 2n, *n* is odd, then $G = [C_n]C_2$. Assume that $C_2C_2^x = C_2^xC_2$ for $x \in G$. Since C_2 is a Sylow 2-subgroup, we have $C_2 = C_2^x$ and C_2 is self-conjugate-permutable in *G*. Hence *G* is a PSC^* -group.

If |G| = 4n, n is odd. Let K be a subgroup of G of order 2. Assume that $KK^x = K^xK$ for $x \in G$. Then there exists a Sylow 2-subgroup S of G such that $KK^x = K^xK \leq S$. By Lemma 2.6, K and K^x are conjugate in $N_G(S)$. Since G is non-nilpotent, it follows that $N_G(S) < G$ and $K = K^x$. Thus K is self-conjugate-permutable in G. Moreover, the subgroups of G of order 4 are Sylow subgroups of G and hence are self-conjugate-permutable. Thus G is also a PSC^* -group. \Box

3. The main results and proofs

Theorem 3.1 Let G be a PSC^* -group. Then G is 2-nilpotent.

Proof Let $x \in G$ and $x^4 = 1$. Then there exists $P \in Syl_2(G)$ such that $\langle x \rangle \leq P \leq N_G(P)$. By Lemma 2.1 (1), $\langle x \rangle$ is self-conjugate-permutable in $N_G(P)$. On the other hand, $\langle x \rangle \leq P \leq N_G(P)$, by Lemma 2.2, $\langle x \rangle \leq N_G(P)$. Now applying [5, IX. 6.7] gives that G is 2-nilpotent. This completes the proof.

Corollary 3.2 Let G be a group. Suppose every cyclic subgroup of second maximal subgroups of G of order 2 or 4 is self-conjugate-permutable in G, then G is 2-nilpotent.

Proof Let $x \in G$ and $x^4 = 1$. If $\langle x \rangle = G_2$, then G is 2-nilpotent. If $\langle x \rangle < G_2$, then $\langle x \rangle$ is contained in some second maximal subgroup of G. By hypotheses, $\langle x \rangle$ is self-conjugatepermutable in G. By arbitrariness of $\langle x \rangle$, we have that G is a PSC^* -group. Theorem 3.1 implies that G is 2-nilpotent.

Theorem 3.3 For a group G, if every maximal subgroup of G is a PSC^* -group, then one of the following results holds:

- (i) G is 2-nilpotent;
- (ii) $G = [G_2]G_p$ is a minimal non-nilpotent group, where G_2 is an elementary abelian 2-group

and G_p is a cyclic group;

(iii) $G = [Q_8]Z_{3^n}$ is a minimal non-nilpotent group, where Q_8 is a quaternion of order 8, Z_{3^n} is a cyclic 3-group.

Proof Assume that G is not 2-nilpotent. By Theorem 3.1 and hypotheses, every proper subgroup of G is 2-nilpotent. Therefore G is a minimal non-nilpotent group and $G = [G_2]G_p$ by Lemma 2.4.

(1) If G_2 is abelian, then Lemma 2.4 implies that (ii) holds.

(2) If G_2 is not abelian, then Lemma 2.4 implies that $\exp(G_2) \leq 4$. Let $x \in G_2$. Then $x^4 = 1$. Since $G_2 < G$, we have G_2 is contained in some maximal subgroup of G. By hypotheses and Lemma 2.1, $\langle x \rangle$ is self-conjugate-permutable in G_2 . Moreover, G_2 is a 2-group, so $\langle x \rangle \leq \leq G_2$. By Lemma 2.2, $\langle x \rangle \leq G_2$. Arbitrariness of $\langle x \rangle$ implies that all subgroups of G_2 are normal. So G_2 is a Hamiltion group. By [6, III, 7.12], $G_2 = Q_8 \times A$, where Q_8 is a quaternion of order 8, A is an elementary abelian 2-group or 1. By Lemma 2.4, $A \leq Z(G_2) = G'_2 \leq Q_8$, so $A \leq Q_8 \cap A = 1$. Therefore $G = [Q_8]Z_p$. We notice $\operatorname{Aut}(Q_8) \cong S_4$ and G_p acts on Q_8 by conjugate, it follows that 24||G|. Moreover, p is odd, it follows that $p = 3^n$. Thus G_p is a cyclic 3-group. This proves (iii).

Theorem 3.4 Let G be a group. If all cyclic subgroups of the third maximal subgroup of G of order 2 or 4 are self-conjugate-permutable in G, then one of the following results holds:

- (i) G is 2-nilpotent;
- (ii) $G = A_4;$

(iii) $G = [Q_8]Z_3$ is a minimal non-nilpotent group, where Q_8 is a quaternion of order 8, Z_3 is a cyclic group of order 3.

Proof If all cyclic subgroups of G of order 2 or 4 are self-conjugate-permutable in G, then Theorem 3.1 implies that G is 2-nilpotent. This proves (i).

Assume that G is non-2-nilpotent. By Corollary 3.2, all maximal subgroups of G are 2-nilpotent. So G is a minimal non-2-nilpotent group and $G = [G_2]G_p$ by Lemma 2.4.

Case 1 If G_2 is abelian, then Lemma 2.4 implies that G_2 is an elementary abelian 2-group. Let $|G_2| = 2^n$. If n > 2. Let $x \in G$ and o(x) = 2. Then $\langle x \rangle$ is contained in some third maximal subgroup of G, by hypotheses, $\langle x \rangle$ is self-conjugate-permutable in G. Moreover, $\langle x \rangle \leq G_2 \leq G$, by Lemma 2.2, we have $\langle x \rangle \leq G$. Also, as G_2 is a minimal normal subgroup of G by Lemma 2.4, we have $G_2 = \langle x \rangle$, this is a contradiction. Hence G_2 is an elementary abelian group of order 4. Since $|\operatorname{Aut}(G_2)| = (2+1)2(2-1)^2 = 6$, we have p = 3, which implies $G \cong A_4$. This proves (ii).

Case 2 If G_2 is not abelian. We claim: all subgroups of G_2 are normal in G_2 . If not, there is $x \in G$ and $x^4 = 1$ such that $\langle x \rangle \langle N_{G_2}(\langle x \rangle) \rangle \langle G_2 \langle G.$ So $\langle x \rangle$ is contained in some third maximal subgroup of G. By hypotheses, $\langle x \rangle$ is self-conjugate-permutable in G, Lemma 2.1 implies that $\langle x \rangle$ is self-conjugate-permutable in G_2 and $\langle x \rangle \leq G_2$ by Lemma 2.2. This is a contradiction. So the claim holds. By proof of Theorem 3.3 (iii), we obtain that $G = [Q_8]Z_{3^n}$, where Q_8 is a quaternion of order 8, Z_{3^n} is a cyclic 3-group. If n > 1. Let $x \in G$, $x^4 = 1$. Then $\langle x \rangle < Q_8 < Q_8 \langle Z_3 \rangle < G$. So $\langle x \rangle$ is contained in some third maximal subgroup of G. By hypotheses, $\langle x \rangle$ is self-conjugate-permutable in G. On the other hand, $\langle x \rangle \leq Q_8 \leq G$, Lemma 2.2 implies that $\langle x \rangle \leq G$. So $\langle x \rangle \Phi(Q_8) / \Phi(Q_8) = \langle x \rangle / \Phi(Q_8) \leq G / \Phi(Q_8)$. By Lemma 2.4, $Q_8 / \Phi(Q_8)$ is minimal normal in $G/\Phi(Q_8)$, so we have $Q_8 = \langle x \rangle$. This is a contradiction. Thus n = 1 and this proves (iii).

Theorem 3.5 Let G be a non-abelian simple group and all of whose second maximal subgroups are PSC^* -groups. Then G is one of the following groups:

- (i) $PSL(2, 2^f)$, where $2^f 1$ is a prime;
- (ii) PSL(2, p), where p is a prime with p > 3, $p^2 1 \neq 0 \pmod{5}$ and $p \equiv 3 \text{ or } 5 \pmod{8}$;
- (iii) $PSL(2,3^f)$, where f is an odd prime, $3^f \equiv 3 \text{ or } 5 \pmod{8}$.

Proof Let M be a maximal subgroup of G. Then all maximal subgroups of M are PSC^* -groups by hypotheses. It follows from Theorem 3.3 that M is solvable. Hence all proper subgroups of G are solvable. Applying Thompson's theorem, it follows that G is isomorphic to one of the following five kinds of simple groups:

- (1) PSL(3,3);
- (2) $PSL(2, 2^f)$, where f is a prime;
- (3) PSL(2, p), where p is a prime with p > 3 and $p^2 1 \not\equiv 0 \pmod{5}$;
- (4) $PSL(2, 3^{f})$, where f is an odd prime;
- (5) The Suzuki group $Sz(2^f)$, where f is an odd prime.
- We claim:
- (a) $G \not\cong PSL(3,3);$

If $G \cong PSL(3,3)$. Let $x \in Z(G_2)$ and o(x) = 2. By [9, Lemma 5.1], $C_G(\langle x \rangle) \cong GL(2,3)$. Since SL(2,3) is a proper subgroup of GL(2,3), by hypotheses, SL(2,3) is a PSC^* -group. So a cyclic subgroup $\langle y \rangle$ of SL(2,3) of order 4 is self-conjugate-permutable in SL(2,3). On the other hand, every cyclic subgroup of SL(2,3) of order 4 is subnormal in SL(2,3). Applying Lemma 2.2, $\langle y \rangle \leq SL(2,3)$. But SL(2,3) has no normal subgroups of order 4. This is a contradiction.

(b) (b-1) $G \cong PSL(2, 2^f)$, where $2^f - 1$ is not a prime.

In fact, if $G \cong PSL(2, 2^f)$, where $2^f - 1$ is not a prime, then G possesses a *Frobenius* group N and a normalizer of Sylow 2-subgroup and $N = [G_2]C$ is also a minimal nonabelian group, where G_2 is an elementary abelian group and C is a cyclic group of order $(2^f - 1)$. Since $(2^f - 1)$ is not a prime, it follows that $\langle c \rangle G_2 < N$, where $\langle c \rangle < C$. So $\langle c \rangle G_2$ is contained in some second maximal subgroup, by hypotheses, $\langle c \rangle G_2$ is a PSC^* -group. Let $\langle y \rangle$ be a subgroup of G_2 of order 2. Then $\langle y \rangle$ is self-conjugate-permutable in $\langle c \rangle G_2$. On the other hand, $\langle y \rangle \lhd \langle c \rangle G_2$, by Lemma 2.2, $\langle y \rangle \trianglelefteq \langle c \rangle G_2$. Therefore $\langle y \rangle \langle c \rangle = \langle y \rangle \times \langle c \rangle$ and $\langle c \rangle \le C_N(\langle y \rangle)$. By [8, p38, Theorem 7.6], $C_N(\langle y \rangle) \le G_2$ and $\langle c \rangle \le G_2$. This is a contradiction. Thus $G \ncong PSL(2, 2^f)$, where $2^f - 1$ is not a prime.

(b-2) $G \cong PSL(2, 2^f)$ satisfies the hypotheses, where $2^f - 1$ is a prime.

By [6, II, 8.27], $PSL(2, 2^{f})$ has only three kinds of maximal subgroups, where $2^{f} - 1$ is a prime:

1^o minimal nonabelian groups of order $2^{f}(2^{f}-1)$;

 2^{o} dihedral groups of order $2(2^{f}-1)$;

 3^{o} dihedral groups of order $2(2^{f}+1)$.

For minimal non-abelian groups of order $2^{f}(2^{f}-1)$, whose maximal subgroups are abelian groups. So they are PSC^{*} -groups.

Remark dihedral groups of order $2(2^f - 1)$ and $2(2^f + 1)$, whose Sylow 2-subgroups are of order 2. By Lemma 2.7, their maximal subgroups are PSC^* -groups. This proves (i).

(c) (c-1) $G \not\cong PSL(2,p)$, where p is a prime with p > 3, $p^2 - 1 \not\equiv 0 \pmod{5}$ and $p \not\equiv 3$ and 5 (mod 8).

In fact, suppose that $G \cong PSL(2, p)$, where p is a prime with p > 3, $p^2 - 1 \not\equiv 0 \pmod{5}$. By [6, II, 8.27], $A_4 < PSL(2, p)$. Since A_4 has no subgroups of order 6, we have A_4 isn't a PSC^* group. By hypotheses, A_4 is a maximal subgroup of PSL(2, p). We claim: Sylow 2-subgroups of PSL(2, p) are subgroups of order 4. If not, since $K_4 \leq A_4 < PSL(2, p)$, we have $A_4 < N_G(K_4)$. It follows from maximality of A_4 that $N_G(K_4) = G$ and so $K_4 \leq PSL(2, p)$, a contradiction. Thus the claim holds and $p \equiv 3$ or 5 (mod 8).

(c-2) $G \cong PSL(2, p)$ satisfies the hypotheses, where p is a prime with p > 3, $p^2 - 1 \not\equiv 0 \pmod{5}$ and $p \equiv 3 \text{ or } 5 \pmod{8}$.

By [6, II, 8.27], G has only three kinds of maximal subgroups:

 1^{o} dihedral groups of order p+1 or p-1;

 $2^{o} A_{4};$

 3^{o} Frobenius group N and a normalizer of Sylow 2-group and N = [P]C is also a minimal nonabelian group, where P is an elementary abelian group and C is a cyclic group of order (p-1)/2.

By Lemma 2.7, all maximal subgroups of 1° are PSC^* -groups. Clearly, all maximal subgroups of A_4 are PSC^* -groups. All maximal subgroups of 3° are abelian. So they satisfy the hypotheses. This proves (ii).

(d) (d-1) $G \not\cong PSL(2, 3^f)$, where f is an odd prime and $3^f \not\equiv 3$ and 5 (mod 8).

In fact, it follows from the proof of (c-1) that $3^f \equiv 3 \text{ or } 5 \pmod{8}$.

(d-2) $G \cong PSL(2, 3^f)$ satisfies the hypotheses, where f is an odd prime, $3^f \equiv 3 \text{ or } 5 \pmod{8}$.

The proof of (d-2) is similar to that of (c-2). This proves (iii).

(e) $G \not\cong Sz(2^f)$, where f is an odd prime.

In fact, if $G \cong Sz(2^f)$, where f is an odd prime. By [8, p41, Theorem 8.2], G possesses a Frobenius group N and N = [P]C, where P is a non-abelian kernel of order 4^f and C is a cyclic complement of order $2^f - 1$. Therefore Z(P)C < N < G. By hypotheses, Z(P)C is a PSC^* -group. Let $\langle y \rangle$ be a subgroup of Z(P) of order 2. So $\langle y \rangle$ is self-conjugate-permutable in Z(P)C. On the other hand, $\langle y \rangle \leq Z(P) \leq Z(P)C$. By Lemma 2.2, $\langle y \rangle \leq Z(P)C$. So $\langle y \rangle C = \langle y \rangle \times C$ and $C \leq C_N(\langle y \rangle)$. By [8, p38, Theorem 7.6], $C_N(\langle y \rangle) \leq P$ and $C \leq P$. This is a contradiction.

Theorem 3.6 Let G be a finite group all of whose second maximal subgroups are PSC-groups. Then G is either a solvable group or one of the following groups:

- (i) $PSL(2, 2^f)$, where $2^f 1$ is a prime;
- (ii) PSL(2, p), where p is a prime with p > 3, $p^2 1 \neq 0 \pmod{5}$ and $p \equiv 3 \text{ or } 5 \pmod{8}$;
- (iii) $PSL(2,3^{f})$, where f is an odd prime, $3^{f} \equiv 3 \text{ or } 5 \pmod{8}$.
- (iv) SL(2,p), where p is a prime with p > 3, $p^2 1 \not\equiv 0 \pmod{5}$ and $p \equiv 3 \text{ or } 5 \pmod{8}$;
- (v) $SL(2, 3^{f})$, where f is an odd prime, $3^{f} \equiv 3 \text{ or } 5 \pmod{8}$.

Proof Suppose that G is a nonsolvable group. Let M be a maximal subgroup of G. Then all maximal subgroups of M are PSC^* -groups by hypotheses. It follows from Theorem 3.3 that M is either 2-nilpotent or minimal non-2-nilpotent. Hence all proper subgroups of G are either 2-nilpotent or minimal non-2-nilpotent. Applying Lemma 2.5, G is isomorphic to one of the following three kinds of groups:

- (1) $PSL(2, 2^{f})$, where $2^{f} 1$ is a prime;
- (2) PSL(2,q), where q is an odd prime with q > 3 and $q \equiv 3$ or 5 (mod 8);
- (3) SL(2,q), where q is an odd prime with q > 3 and $q \equiv 3$ or 5 (mod 8).

We claim:

(i) $G \cong PSL(2, 2^f)$ satisfies the hypotheses, where $2^f - 1$ is a prime.

In fact, the proof of (i) is similar to that of (b-2) of Theorem 3.5. We can obtain all second maximal subgroups of $PSL(2, 2^{f})$ are PSC^{*} -groups. This proves (i).

(ii) (ii-1) $G \not\cong PSL(2, p)$, where p is a prime with p > 3, $p^2 - 1 \equiv 0 \pmod{5}$ and $p \equiv 3$ or 5 (mod 8).

In fact, suppose that $G \cong PSL(2,q)$, where q > 3 and $q \equiv 3$ or 5 (mod 8). Let $q = p^f$, where p is a prime.

Let p > 3. If f > 1, then $PSL(2, p^f)$ contains a nonsolvable proper subgroup PSL(2, p). Moreover, all proper subgroups of G are solvable, this is a contradiction. Thus f = 1.

If $p^2 - 1 \equiv 0 \pmod{5}$. By [6, II, 8.27], PSL(2, p) contains a nonsolvable subgroup A_5 . This is also a contradiction. So $p^2 - 1 \not\equiv 0 \pmod{5}$.

(ii-2) $G \cong PSL(2,p)$ satisfies the hypotheses, where p is a prime with p > 3, $p^2 - 1 \not\equiv 0 \pmod{5}$ and $p \equiv 3 \text{ or } 5 \pmod{8}$.

The proof of (ii-2) is similar to that of (c-2) of Theorem 3.5. So all second maximal subgroups of $PSL(2, 2^{f})$ are PSC^{*} -groups. This proves (ii).

(iii) (iii-1) $G \not\cong PSL(2,3^f)$, where f is an even or a composite and $3^f \equiv 3 \text{ or } 5 \pmod{8}$.

In fact, suppose that $G \cong PSL(2,q)$, where q > 3 and $q \equiv 3$ or 5 (mod 8). Let $q = p^f$, where p is a prime.

Let p = 3. Since PSL(2,9) contains a nonsolvable proper subgroup A_5 , f cannot be an even. So f is an odd number.

If f is an odd composite, let f = mn, where m is a prime with m < f. By [6, II, 8.27], we know $PSL(2, p^f)$ contains a nonsolvable proper subgroup $PSL(2, p^m)$, which is a contradiction. Thus f is an odd prime.

(iii-2) $G \cong PSL(2, 3^f)$ satisfies the hypotheses, where f is an odd prime, $3^f \equiv 3 \text{ or } 5 \pmod{8}$. The proof of (iii-2) is similar to that of (d-2) of Theorem 3.5. This proves (iii).

(iv) (iv-1) $G \not\cong SL(2,p)$, where p is a prime with p > 3, $p^2 - 1 \equiv 0 \pmod{5}$ and $p \equiv 3$ or 5 (mod 8).

In fact, SL(2, p) has only a subgroup of order 2, let it be $\langle u \rangle$ and $Z = \langle u \rangle$. If $G \cong SL(2, p)$, then $G/Z \cong PSL(2, p)$. Similarly to the proof of (ii-1) of (ii), we obtain $p^2 - 1 \not\equiv 0 \pmod{5}$.

(iv-2) $G \cong SL(2, p)$ satisfies the hypotheses, where p is an odd prime with p > 3, $p^2 - 1 \equiv 0 \pmod{5}$ and $p \equiv 3 \text{ or } 5 \pmod{8}$.

In fact, if $G \cong SL(2, p)$, then $G/Z \cong PSL(2, p)$. Since the subgroup $\langle u \rangle$ of SL(2, p) of order 2 is unique, $\langle u \rangle \trianglelefteq SL(2, p)$ and $\langle u \rangle$ is self-conjugate-permutable. Moreover, Sylow 2-groups of SL(2, p) are isomorphic to Q_8 . Let $\langle v \rangle$ be an arbitrary cyclic subgroup of SL(2, p) of order 4. Then $Z < \langle v \rangle$. Let V be a second maximal subgroup of SL(2, p) and contain $\langle v \rangle$. Therefore $\langle v \rangle/Z$ is self-conjugate-permutable in V/Z. Hence $\langle v \rangle$ is self-conjugate-permutable in V by Lemma 2.1(2). It follows that all second maximal subgroups of SL(2, p) are PSC^* -groups. This proves (iv).

(v) Similarly to the proof of (iii) and (iv), we can obtain (v).

References

- LI Shirong. Finite groups in which the cyclic subgroups of orders 2 and 4 of the second maximal subgroups are quasinormal [J]. Acta Math. Sinica, 1994, 37(3): 317–323. (in Chinese)
- [2] LI Shirong, ZHAO Yaoqing. Some finite nonsolvable groups characterized by their solvable subgroups [J]. Acta Math. Sinica (N.S.), 1988, 4(1): 5–13.
- [3] LI Shirong, SHEN Zhencai, KONG Xianghong. Finite groups with self-conjugate-permutable subgroups [J]. Joural of Pure and Applied Algebra. In Press.
- [4] REN Yongcai. Finite simple groups all of whose 2-maximal subgroups are PQN-groups [J]. Acta Math. Sinica, 1990, 33(6): 798–803. (in Chinese)
- [5] XU Mingyao. Introduction to the Theory of Finite Groups [M]. Beijing: Science Press, 1999.
- [6] HUPPERT B. Endliche Gruppen [M]. Springer-Verlag, Berlin-New York, 1967.
- [7] SASTRY N. On minimal non-PN-groups [J]. J. Algebra, 1982, 65: 104-109.
- [8] GORENSIEIN D. Finite Groups [M]. NewYork, 1968.
- [9] HUPPERT B, BLACKBURN N. Finite Groups II [M]. Springer-Verlag, Berlin-New York, 1982.
- [10] FOGUEL T. Conjugate-permutable subgroups [J]. J. Algebra, 1997, **191**(1): 235–239.