Finite Groups All of Whose Second Maximal Subgroups Are $P S C^{*}$-Groups

SHEN Zhen Cai ${ }^{1,2}$, LI Shi Rong ${ }^{2}$, LIU Jian Jun ${ }^{2}$, LIU Xiao Chun ${ }^{2}$
(1. School of Mathematics, Suzhou University, Jiangsu 215006, China;
2. Department of Mathematics, Guangxi University, Guangxi 530004, China)
(E-mail: shirong@gxu.edu.cn)

Abstract

This paper discusses the influence of minimal subgroups on the structure of finite groups and gives the structures of finite groups all of whose second maximal subgroups are $P S C^{*}$-groups.

Keywords Self-conjugate-permutable subgroups; $P S C^{*}$-groups; second maximal subgroups; third maximal subgroups; p-nilpotent groups.

Document code A
MR(2000) Subject Classification 20D10
Chinese Library Classification O152.1

1. Introduction

All groups considered in this paper will be finite. For a group G, a subgroup H of G is said to be conjugate permutable if $H H^{x}=H^{x} H$ for any $x \in G$. This concept was introduced by Foguel in [10]. The conjugate permutable subgroups have many interesting properties. For example, for a finite group any conjugate permutable subgroup is subnormal $\left.{ }^{[10, ~ C o r o l l a r y ~} 1.1\right]$.

It is natural to introduce the dual concept of conjugate permutable subgroups, we have:
Definition 1.1 Let G be a group. A subgroup H of G is said to be self-conjugate-permutable if $H H^{x}=H^{x} H$ implies $H^{x}=H$, where $x \in G$.

Obviously, a subgroup H of G is normal if and only if H is conjugate-permutable and self-conjugate-permutable in G. It is easy to see that for a finite group G, all of whose maximal subgroups and Hall subgroups are self-conjugate-permutable.

A group is called a $P N$-group if its minimal subgroups are normal. The $P N$-groups were generalized by many authors ${ }^{[1,4,7]}$. In this paper, the generalization on $P N$-groups is continued. For convenience, we give the following definition.

Definition 1.2 Let G be a group. G is called a $P S C^{*}$-group if every cyclic subgroup of G of order 2 or 4 is self-conjugate-permutable.

Received date: 2007-06-06; Accepted date: 2007-11-22
Foundation item: the National Natural Science Foundation of China (No. 10161001); Guangxi Autonomous Region (No. 0249001); Innovation Project of Guangxi Graduate Education (No. 2007105930701M30).

We notice that a maximal subgroup A_{4} of A_{5} has no subgroups of order 6 . Thus there is a subgroup of order 2 which is not self-conjugate-permutable in A_{4}. So neither A_{5} nor A_{4} is a $P S C^{*}$-group. But all second maximal subgroups of A_{5} are $P S C^{*}$-groups. It should be an interesting problem to find out all finite groups all of whose second maximal subgroups are $P S C^{*}$-groups.

The notation and terminology used in this paper are standard, as in [5] and [6].

2. Preliminaries

In this section we give some basic properties of our definition and collect some results that are needed in this paper.

Lemma 2.1 ${ }^{[3]}$ Let G be a group. Suppose that H is self-conjugate-permutable in $G, K \leq G$ and N a normal subgroup of G. We have:
(1) If $H \leq K$, then H is self-conjugate-permutable in K;
(2) Let $N \leq K$. Then K / N is self-conjugate-permutable in G / N if and only if K is self-conjugate-permutable in G;
(3) If $(|K|,|N|)=1$ and K is a p-subgroup of G, then K is self-conjugate-permutable in G if and only if $K N$ is self-conjugate-permutable in G.

Lemma 2.2 ${ }^{[3]}$ (1) A subgroup H of G is normal if and only if H is subnormal and self-conjugatepermutable in G.
(2) A subgroup H of G is normal if and only if H is conjugate-permutable and self-conjugatepermutable in G.

Lemma 2.3 ${ }^{[3]}$ Let G be a group. Suppose that $G=A B, A \leq G, B \leq G$. If H is self-conjugatepermutable in B and H is normalized by A, then H is self-conjugate-permutable in G.

Lemma 2.4 $\mathbf{4}^{[6]}$ Let G be a minimal non-nilpotent group (A non-nilpotent group all of whose proper subgroups are nilpotent). Then:
(1) $G=\left[G_{p}\right] G_{q}$ and G_{q} is a cyclic group;
(2) $G_{p} / \Phi\left(G_{p}\right)$ is a minimal normal subgroup of $G / \Phi\left(G_{p}\right)$;
(3) G_{p} has exponent p if $p>2$ and exponent at most 4 if $p=2$;
(4) G_{p} is an elementary abelian group if G_{p} is an abelian group; $Z\left(G_{p}\right)=\Phi\left(G_{p}\right)=G_{p}^{\prime}$ if G_{p} is not an abelian group;
(5) $C_{G_{p}}\left(G_{q}\right)=G_{p}^{\prime}$.

Lemma 2.5 ${ }^{[2, \text { Theorem B] }}$ Let G be a nonsolvable group. Suppose that solvable subgroups of G are either 2-nilpotent or minimal non-nilpotent, then G is one of the following groups:
(1) $\operatorname{PSL}\left(2,2^{f}\right)$, where $2^{f}-1$ is a prime;
(2) $\operatorname{PSL}(2, q)$, where q is an odd prime with $q>3$ and $q \equiv 3$ or $5(\bmod 8)$;
(3) $S L(2, q)$, where q is an odd prime with $q>3$ and $q \equiv 3$ or $5(\bmod 8)$.

Proof The Lemma is a special example in [3]. Its proof does not depend on the classification of finite simple groups.

Lemma 2.6 Let G be a group and $P \in \operatorname{Syl}_{p}(G)$, where $p \in \pi(G)$. If $H \unlhd P$ and $H^{g} \unlhd P$, then H and H^{g} are conjugate in $N_{G}(P)$.

Proof Since $H^{g} \unlhd P$, we have $H \unlhd P^{g^{-1}}$. Also, as $H \unlhd P$, it follows that $\left\langle P, P^{g^{-1}}\right\rangle \leq N_{G}(H)$. We notice that P and $P^{g^{-1}}$ are Sylow p-subgroups of $N_{G}(H)$. By Sylow's theorem, there exists $n \in N_{G}(H)$ such that $P^{n}=P^{g^{-1}}$ and hence $n g \in N_{G}(P)$. Moreover, $H^{n g}=H^{g}$, so H and H^{g} are conjugate in $N_{G}(P)$.

Lemma 2.7 Let G be a non-nilpotent dihedral group of order $2 n$ or $4 n$, where n is odd. Then G is a $P S C^{*}$-group.

Proof If $|G|=2 n, n$ is odd, then $G=\left[C_{n}\right] C_{2}$. Assume that $C_{2} C_{2}^{x}=C_{2}^{x} C_{2}$ for $x \in G$. Since C_{2} is a Sylow 2-subgroup, we have $C_{2}=C_{2}^{x}$ and C_{2} is self-conjugate-permutable in G. Hence G is a $P S C^{*}$-group.

If $|G|=4 n, n$ is odd. Let K be a subgroup of G of order 2. Assume that $K K^{x}=K^{x} K$ for $x \in G$. Then there exists a Sylow 2-subgroup S of G such that $K K^{x}=K^{x} K \leq S$. By Lemma 2.6, K and K^{x} are conjugate in $N_{G}(S)$. Since G is non-nilpotent, it follows that $N_{G}(S)<G$ and $K=K^{x}$. Thus K is self-conjugate-permutable in G. Moreover, the subgroups of G of order 4 are Sylow subgroups of G and hence are self-conjugate-permutable. Thus G is also a $P S C^{*}$-group. \square

3. The main results and proofs

Theorem 3.1 Let G be a $P S C^{*}$-group. Then G is 2-nilpotent.
Proof Let $x \in G$ and $x^{4}=1$. Then there exists $P \in \operatorname{Syl}_{2}(G)$ such that $\langle x\rangle \leq P \leq N_{G}(P)$. By Lemma 2.1 (1), $\langle x\rangle$ is self-conjugate-permutable in $N_{G}(P)$. On the other hand, $\langle x\rangle \unlhd \unlhd P \unlhd N_{G}(P)$, by Lemma 2.2, $\langle x\rangle \unlhd N_{G}(P)$. Now applying [5, IX. 6.7] gives that G is 2-nilpotent. This completes the proof.

Corollary 3.2 Let G be a group. Suppose every cyclic subgroup of second maximal subgroups of G of order 2 or 4 is self-conjugate-permutable in G, then G is 2-nilpotent.

Proof Let $x \in G$ and $x^{4}=1$. If $\langle x\rangle=G_{2}$, then G is 2-nilpotent. If $\langle x\rangle<G_{2}$, then $\langle x\rangle$ is contained in some second maximal subgroup of G. By hypotheses, $\langle x\rangle$ is self-conjugatepermutable in G. By arbitrariness of $\langle x\rangle$, we have that G is a $P S C^{*}$-group. Theorem 3.1 implies that G is 2-nilpotent.

Theorem 3.3 For a group G, if every maximal subgroup of G is a $P S C^{*}$-group, then one of the following results holds:
(i) G is 2-nilpotent;
(ii) $G=\left[G_{2}\right] G_{p}$ is a minimal non-nilpotent group, where G_{2} is an elementary abelian 2-group
and G_{p} is a cyclic group;
(iii) $G=\left[Q_{8}\right] Z_{3^{n}}$ is a minimal non-nilpotent group, where Q_{8} is a quaternion of order 8 , $Z_{3^{n}}$ is a cyclic 3-group.

Proof Assume that G is not 2-nilpotent. By Theorem 3.1 and hypotheses, every proper subgroup of G is 2-nilpotent. Therefore G is a minimal non-nilpotent group and $G=\left[G_{2}\right] G_{p}$ by Lemma 2.4.
(1) If G_{2} is abelian, then Lemma 2.4 implies that (ii) holds.
(2) If G_{2} is not abelian, then Lemma 2.4 implies that $\exp \left(G_{2}\right) \leq 4$. Let $x \in G_{2}$. Then $x^{4}=1$. Since $G_{2}<G$, we have G_{2} is contained in some maximal subgroup of G. By hypotheses and Lemma 2.1, $\langle x\rangle$ is self-conjugate-permutable in G_{2}. Moreover, G_{2} is a 2-group, so $\langle x\rangle \unlhd \unlhd G_{2}$. By Lemma 2.2, $\langle x\rangle \unlhd G_{2}$. Arbitrariness of $\langle x\rangle$ implies that all subgroups of G_{2} are normal. So G_{2} is a Hamiltion group. By [6, III, 7.12], $G_{2}=Q_{8} \times A$, where Q_{8} is a quaternion of order $8, A$ is an elementary abelian 2-group or 1 . By Lemma 2.4, $A \leq Z\left(G_{2}\right)=G_{2}^{\prime} \leq Q_{8}$, so $A \leq Q_{8} \cap A=1$. Therefore $G=\left[Q_{8}\right] Z_{p}$. We notice $\operatorname{Aut}\left(Q_{8}\right) \cong S_{4}$ and G_{p} acts on Q_{8} by conjugate, it follows that $24\left||G|\right.$. Moreover, p is odd, it follows that $p=3^{n}$. Thus G_{p} is a cyclic 3 -group. This proves (iii).

Theorem 3.4 Let G be a group. If all cyclic subgroups of the third maximal subgroup of G of order 2 or 4 are self-conjugate-permutable in G, then one of the following results holds:
(i) G is 2-nilpotent;
(ii) $G=A_{4}$;
(iii) $G=\left[Q_{8}\right] Z_{3}$ is a minimal non-nilpotent group, where Q_{8} is a quaternion of order $8, Z_{3}$ is a cyclic group of order 3 .

Proof If all cyclic subgroups of G of order 2 or 4 are self-conjugate-permutable in G, then Theorem 3.1 implies that G is 2-nilpotent. This proves (i).

Assume that G is non-2-nilpotent. By Corollary 3.2, all maximal subgroups of G are 2nilpotent. So G is a minimal non-2-nilpotent group and $G=\left[G_{2}\right] G_{p}$ by Lemma 2.4.

Case 1 If G_{2} is abelian, then Lemma 2.4 implies that G_{2} is an elementary abelian 2-group. Let $\left|G_{2}\right|=2^{n}$. If $n>2$. Let $x \in G$ and $o(x)=2$. Then $\langle x\rangle$ is contained in some third maximal subgroup of G, by hypotheses, $\langle x\rangle$ is self-conjugate-permutable in G. Moreover, $\langle x\rangle \unlhd G_{2} \unlhd G$, by Lemma 2.2, we have $\langle x\rangle \unlhd G$. Also, as G_{2} is a minimal normal subgroup of G by Lemma 2.4, we have $G_{2}=\langle x\rangle$, this is a contradiction. Hence G_{2} is an elementary abelian group of order 4. Since $\left|\operatorname{Aut}\left(G_{2}\right)\right|=(2+1) 2(2-1)^{2}=6$, we have $p=3$, which implies $G \cong A_{4}$. This proves (ii).

Case 2 If G_{2} is not abelian. We claim: all subgroups of G_{2} are normal in G_{2}. If not, there is $x \in G$ and $x^{4}=1$ such that $\langle x\rangle<N_{G_{2}}(\langle x\rangle)<G_{2}<G$. So $\langle x\rangle$ is contained in some third maximal subgroup of G. By hypotheses, $\langle x\rangle$ is self-conjugate-permutable in G, Lemma 2.1 implies that $\langle x\rangle$ is self-conjugate-permutable in G_{2} and $\langle x\rangle \unlhd G_{2}$ by Lemma 2.2. This is a contradiction. So the claim holds. By proof of Theorem 3.3 (iii), we obtain that $G=\left[Q_{8}\right] Z_{3^{n}}$,
where Q_{8} is a quaternion of order $8, Z_{3^{n}}$ is a cyclic 3-group. If $n>1$. Let $x \in G, x^{4}=1$. Then $\langle x\rangle<Q_{8}<Q_{8}\left\langle Z_{3}\right\rangle<G$. So $\langle x\rangle$ is contained in some third maximal subgroup of G. By hypotheses, $\langle x\rangle$ is self-conjugate-permutable in G. On the other hand, $\langle x\rangle \unlhd Q_{8} \unlhd G$, Lemma 2.2 implies that $\langle x\rangle \unlhd G$. So $\langle x\rangle \Phi\left(Q_{8}\right) / \Phi\left(Q_{8}\right)=\langle x\rangle / \Phi\left(Q_{8}\right) \unlhd G / \Phi\left(Q_{8}\right)$. By Lemma 2.4, $Q_{8} / \Phi\left(Q_{8}\right)$ is minimal normal in $G / \Phi\left(Q_{8}\right)$, so we have $Q_{8}=\langle x\rangle$. This is a contradiction. Thus $n=1$ and this proves (iii).

Theorem 3.5 Let G be a non-abelian simple group and all of whose second maximal subgroups are $P S C^{*}$-groups. Then G is one of the following groups:
(i) $\operatorname{PSL}\left(2,2^{f}\right)$, where $2^{f}-1$ is a prime;
(ii) $P S L(2, p)$, where p is a prime with $p>3, p^{2}-1 \not \equiv 0(\bmod 5)$ and $p \equiv 3$ or $5(\bmod 8)$;
(iii) $\operatorname{PSL}\left(2,3^{f}\right)$, where f is an odd prime, $3^{f} \equiv 3$ or $5(\bmod 8)$.

Proof Let M be a maximal subgroup of G. Then all maximal subgroups of M are $P S C^{*}$-groups by hypotheses. It follows from Theorem 3.3 that M is solvable. Hence all proper subgroups of G are solvable. Applying Thompson's theorem, it follows that G is isomorphic to one of the following five kinds of simple groups:
(1) $\operatorname{PSL}(3,3)$;
(2) $\operatorname{PSL}\left(2,2^{f}\right)$, where f is a prime;
(3) $P S L(2, p)$, where p is a prime with $p>3$ and $p^{2}-1 \not \equiv 0(\bmod 5)$;
(4) $\operatorname{PSL}\left(2,3^{f}\right)$, where f is an odd prime;
(5) The Suzuki group $S z\left(2^{f}\right)$, where f is an odd prime.

We claim:
(a) $G \not \approx \operatorname{PSL}(3,3)$;

If $G \cong P S L(3,3)$. Let $x \in Z\left(G_{2}\right)$ and $o(x)=2$. By [9, Lemma 5.1], $C_{G}(\langle x\rangle) \cong G L(2,3)$. Since $S L(2,3)$ is a proper subgroup of $G L(2,3)$, by hypotheses, $S L(2,3)$ is a $P S C^{*}$-group. So a cyclic subgroup $\langle y\rangle$ of $S L(2,3)$ of order 4 is self-conjugate-permutable in $S L(2,3)$. On the other hand, every cyclic subgroup of $S L(2,3)$ of order 4 is subnormal in $S L(2,3)$. Applying Lemma $2.2,\langle y\rangle \unlhd S L(2,3)$. But $S L(2,3)$ has no normal subgroups of order 4. This is a contradiction.
(b) (b-1) $G \not \approx P S L\left(2,2^{f}\right)$, where $2^{f}-1$ is not a prime.

In fact, if $G \cong P S L\left(2,2^{f}\right)$, where $2^{f}-1$ is not a prime, then G possesses a Frobenius group N and a normalizer of Sylow 2-subgroup and $N=\left[G_{2}\right] C$ is also a minimal nonabelian group, where G_{2} is an elementary abelian group and C is a cyclic group of order $\left(2^{f}-1\right)$. Since $\left(2^{f}-1\right)$ is not a prime, it follows that $\langle c\rangle G_{2}<N$, where $\langle c\rangle<C$. So $\langle c\rangle G_{2}$ is contained in some second maximal subgroup, by hypotheses, $\langle c\rangle G_{2}$ is a $P S C^{*}$-group. Let $\langle y\rangle$ be a subgroup of G_{2} of order 2. Then $\langle y\rangle$ is self-conjugate-permutable in $\langle c\rangle G_{2}$. On the other hand, $\langle y\rangle \triangleleft \triangleleft\langle c\rangle G_{2}$, by Lemma 2.2, $\langle y\rangle \unlhd\langle c\rangle G_{2}$. Therefore $\langle y\rangle\langle c\rangle=\langle y\rangle \times\langle c\rangle$ and $\langle c\rangle \leq C_{N}(\langle y\rangle)$. By [8, p38, Theorem 7.6], $C_{N}(\langle y\rangle) \leq G_{2}$ and $\langle c\rangle \leq G_{2}$. This is a contradiction. Thus $G \not \approx P S L\left(2,2^{f}\right)$, where $2^{f}-1$ is not a prime.
(b-2) $G \cong P S L\left(2,2^{f}\right)$ satisfies the hypotheses, where $2^{f}-1$ is a prime.

By [6, II, 8.27], $P S L\left(2,2^{f}\right)$ has only three kinds of maximal subgroups, where $2^{f}-1$ is a prime:
1^{o} minimal nonabelian groups of order $2^{f}\left(2^{f}-1\right)$;
2^{o} dihedral groups of order $2\left(2^{f}-1\right)$;
3^{o} dihedral groups of order $2\left(2^{f}+1\right)$.
For minimal non-abelian groups of order $2^{f}\left(2^{f}-1\right)$, whose maximal subgroups are abelian groups. So they are $P S C^{*}$-groups.

Remark dihedral groups of order $2\left(2^{f}-1\right)$ and $2\left(2^{f}+1\right)$, whose Sylow 2 -subgroups are of order 2. By Lemma 2.7, their maximal subgroups are $P S C^{*}$-groups. This proves (i).
(c) (c-1) $G \not \equiv P S L(2, p)$, where p is a prime with $p>3, p^{2}-1 \not \equiv 0(\bmod 5)$ and $p \not \equiv 3$ and $5(\bmod 8)$.

In fact, suppose that $G \cong P S L(2, p)$, where p is a prime with $p>3, p^{2}-1 \not \equiv 0(\bmod 5)$. By $[6, \mathrm{II}, 8.27], A_{4}<P S L(2, p)$. Since A_{4} has no subgroups of order 6 , we have A_{4} isn't a $P S C^{*}$ group. By hypotheses, A_{4} is a maximal subgroup of $P S L(2, p)$. We claim: Sylow 2-subgroups of $P S L(2, p)$ are subgroups of order 4. If not, since $K_{4} \unlhd A_{4}<P S L(2, p)$, we have $A_{4}<N_{G}\left(K_{4}\right)$. It follows from maximality of A_{4} that $N_{G}\left(K_{4}\right)=G$ and so $K_{4} \unlhd P S L(2, p)$, a contradiction. Thus the claim holds and $p \equiv 3$ or $5(\bmod 8)$.
$(c-2) G \cong P S L(2, p)$ satisfies the hypotheses, where p is a prime with $p>3, p^{2}-1 \not \equiv 0(\bmod 5)$ and $p \equiv 3$ or $5(\bmod 8)$.

By [6, II, 8.27], G has only three kinds of maximal subgroups:
1^{o} dihedral groups of order $p+1$ or $p-1$;
$2^{o} A_{4}$;
3^{o} Frobenius group N and a normalizer of Sylow 2-group and $N=[P] C$ is also a minimal nonabelian group, where P is an elementary abelian group and C is a cyclic group of order $(p-1) / 2$.

By Lemma 2.7, all maximal subgroups of 1^{o} are $P S C^{*}$-groups. Clearly, all maximal subgroups of A_{4} are $P S C^{*}$-groups. All maximal subgroups of 3^{o} are abelian. So they satisfy the hypotheses. This proves (ii).
(d) (d-1) $G \not \approx P S L\left(2,3^{f}\right)$, where f is an odd prime and $3^{f} \not \equiv 3$ and $5(\bmod 8)$.

In fact, it follows from the proof of $(\mathrm{c}-1)$ that $3^{f} \equiv 3 \operatorname{or} 5(\bmod 8)$.
$(\mathrm{d}-2) \quad G \cong \operatorname{PSL}\left(2,3^{f}\right)$ satisfies the hypotheses, where f is an odd prime, $3^{f} \equiv 3$ or $5(\bmod 8)$.
The proof of ($\mathrm{d}-2$) is similar to that of (c-2). This proves (iii).
(e) $G \not \approx S z\left(2^{f}\right)$, where f is an odd prime.

In fact, if $G \cong S z\left(2^{f}\right)$, where f is an odd prime. By [8, p41, Theorem 8.2], G possesses a Frobenius group N and $N=[P] C$, where P is a non-abelian kernel of order 4^{f} and C is a cyclic complement of order $2^{f}-1$. Therefore $Z(P) C<N<G$. By hypotheses, $Z(P) C$ is a $P S C^{*}-$ group. Let $\langle y\rangle$ be a subgroup of $Z(P)$ of order 2 . So $\langle y\rangle$ is self-conjugate-permutable in $Z(P) C$. On the other hand, $\langle y\rangle \unlhd Z(P) \unlhd Z(P) C$. By Lemma 2.2, $\langle y\rangle \unlhd Z(P) C$. So $\langle y\rangle C=\langle y\rangle \times C$ and $C \leq C_{N}(\langle y\rangle)$. By [8, p38, Theorem 7.6], $C_{N}(\langle y\rangle) \leq P$ and $C \leq P$. This is a contradiction.

Theorem 3.6 Let G be a finite group all of whose second maximal subgroups are PSC-groups.
Then G is either a solvable group or one of the following groups:
(i) $\operatorname{PSL}\left(2,2^{f}\right)$, where $2^{f}-1$ is a prime;
(ii) $\operatorname{PSL}(2, p)$, where p is a prime with $p>3, p^{2}-1 \not \equiv 0(\bmod 5)$ and $p \equiv 3 \operatorname{or} 5(\bmod 8)$;
(iii) $\operatorname{PSL}\left(2,3^{f}\right)$, where f is an odd prime, $3^{f} \equiv 3$ or $5(\bmod 8)$.
(iv) $S L(2, p)$, where p is a prime with $p>3, p^{2}-1 \not \equiv 0(\bmod 5)$ and $p \equiv 3$ or $5(\bmod 8)$;
(v) $S L\left(2,3^{f}\right)$, where f is an odd prime, $3^{f} \equiv 3$ or $5(\bmod 8)$.

Proof Suppose that G is a nonsolvable group. Let M be a maximal subgroup of G. Then all maximal subgroups of M are $P S C^{*}$-groups by hypotheses. It follows from Theorem 3.3 that M is either 2-nilpotent or minimal non-2-nilpotent. Hence all proper subgroups of G are either 2-nilpotent or minimal non-2-nilpotent. Applying Lemma 2.5, G is isomorphic to one of the following three kinds of groups:
(1) $\operatorname{PSL}\left(2,2^{f}\right)$, where $2^{f}-1$ is a prime;
(2) $\operatorname{PSL}(2, q)$, where q is an odd prime with $q>3$ and $q \equiv 3$ or $5(\bmod 8)$;
(3) $S L(2, q)$, where q is an odd prime with $q>3$ and $q \equiv 3$ or $5(\bmod 8)$.

We claim:
(i) $G \cong P S L\left(2,2^{f}\right)$ satisfies the hypotheses, where $2^{f}-1$ is a prime.

In fact, the proof of (i) is similar to that of (b-2) of Theorem 3.5. We can obtain all second maximal subgroups of $P S L\left(2,2^{f}\right)$ are $P S C^{*}$-groups. This proves (i).
(ii) (ii-1) $G \not \approx P S L(2, p)$, where p is a prime with $p>3, p^{2}-1 \equiv 0(\bmod 5)$ and $p \equiv 3$ or $5(\bmod 8)$.

In fact, suppose that $G \cong P S L(2, q)$, where $q>3$ and $q \equiv 3$ or $5(\bmod 8)$. Let $q=p^{f}$, where p is a prime.

Let $p>3$. If $f>1$, then $P S L\left(2, p^{f}\right)$ contains a nonsolvable proper subgroup $P S L(2, p)$. Moreover, all proper subgroups of G are solvable, this is a contradiction. Thus $f=1$.

If $p^{2}-1 \equiv 0(\bmod 5)$. By $[6, \mathrm{II}, 8.27], P S L(2, p)$ contains a nonsolvable subgroup A_{5}. This is also a contradiction. So $p^{2}-1 \not \equiv 0(\bmod 5)$.
(ii-2) $G \cong P S L(2, p)$ satisfies the hypotheses, where p is a prime with $p>3, p^{2}-1 \not \equiv$ $0(\bmod 5)$ and $p \equiv 3$ or $5(\bmod 8)$.

The proof of (ii-2) is similar to that of (c-2) of Theorem 3.5. So all second maximal subgroups of $P S L\left(2,2^{f}\right)$ are $P S C^{*}$-groups. This proves (ii).
(iii) (iii-1) $G \not \neq P S L\left(2,3^{f}\right)$, where f is an even or a composite and $3^{f} \equiv 3$ or $5(\bmod 8)$.

In fact, suppose that $G \cong P S L(2, q)$, where $q>3$ and $q \equiv 3$ or $5(\bmod 8)$. Let $q=p^{f}$, where p is a prime.

Let $p=3$. Since $P S L(2,9)$ contains a nonsolvable proper subgroup A_{5}, f cannot be an even. So f is an odd number.

If f is an odd composite, let $f=m n$, where m is a prime with $m<f$. By [6, II, 8.27], we know $P S L\left(2, p^{f}\right)$ contains a nonsolvable proper subgroup $P S L\left(2, p^{m}\right)$, which is a contradiction. Thus f is an odd prime.
(iii-2) $G \cong P S L\left(2,3^{f}\right)$ satisfies the hypotheses, where f is an odd prime, $3^{f} \equiv 3$ or $5(\bmod 8)$. The proof of (iii-2) is similar to that of (d-2) of Theorem 3.5. This proves (iii).
(iv) (iv-1) $G \not \approx S L(2, p)$, where p is a prime with $p>3, p^{2}-1 \equiv 0(\bmod 5)$ and $p \equiv 3$ or $5(\bmod 8)$.

In fact, $S L(2, p)$ has only a subgroup of order 2 , let it be $\langle u\rangle$ and $Z=\langle u\rangle$. If $G \cong S L(2, p)$, then $G / Z \cong P S L(2, p)$. Similarly to the proof of (ii-1) of (ii), we obtain $p^{2}-1 \not \equiv 0(\bmod 5)$.
(iv-2) $G \cong S L(2, p)$ satisfies the hypotheses, where p is an odd prime with $p>3, p^{2}-1 \equiv$ $0(\bmod 5)$ and $p \equiv 3$ or $5(\bmod 8)$.

In fact, if $G \cong S L(2, p)$, then $G / Z \cong P S L(2, p)$. Since the subgroup $\langle u\rangle$ of $S L(2, p)$ of order 2 is unique, $\langle u\rangle \unlhd S L(2, p)$ and $\langle u\rangle$ is self-conjugate-permutable. Moreover, Sylow 2-groups of $S L(2, p)$ are isomorphic to Q_{8}. Let $\langle v\rangle$ be an arbitrary cyclic subgroup of $S L(2, p)$ of order 4. Then $Z<\langle v\rangle$. Let V be a second maximal subgroup of $S L(2, p)$ and contain $\langle v\rangle$. Therefore $\langle v\rangle / Z$ is self-conjugate-permutable in V / Z. Hence $\langle v\rangle$ is self-conjugate-permutable in V by Lemma 2.1(2). It follows that all second maximal subgroups of $S L(2, p)$ are $P S C^{*}$-groups. This proves (iv).
(v) Similarly to the proof of (iii) and (iv), we can obtain (v).

References

[1] LI Shirong. Finite groups in which the cyclic subgroups of orders 2 and 4 of the second maximal subgroups are quasinormal [J]. Acta Math. Sinica, 1994, 37(3): 317-323. (in Chinese)
[2] LI Shirong, ZHAO Yaoqing. Some finite nonsolvable groups characterized by their solvable subgroups [J]. Acta Math. Sinica (N.S.), 1988, 4(1): 5-13.
[3] LI Shirong, SHEN Zhencai, KONG Xianghong. Finite groups with self-conjugate-permutable subgroups [J]. Joural of Pure and Applied Algebra. In Press.
[4] REN Yongcai. Finite simple groups all of whose 2-maximal subgroups are PQN-groups [J]. Acta Math. Sinica, 1990, 33(6): 798-803. (in Chinese)
[5] XU Mingyao. Introduction to the Theory of Finite Groups [M]. Beijing: Science Press, 1999.
[6] HUPPERT B. Endliche Gruppen [M]. Springer-Verlag, Berlin-New York, 1967.
[7] SASTRY N. On minimal non-PN-groups [J]. J. Algebra, 1982, 65: 104-109.
[8] GORENSIEIN D. Finite Groups [M]. NewYork, 1968.
[9] HUPPERT B, BLACKBURN N. Finite Groups II [M]. Springer-Verlag, Berlin-New York, 1982.
[10] FOGUEL T. Conjugate-permutable subgroups [J]. J. Algebra, 1997, 191(1): 235-239.

