Article ID: 1000-341X(2005)01-0031-06

Document code: A

Normal Families and Uniqueness Related to Shared Values

ZHANG Wen-hua

(Dept. of Math., East China University of Science and Technology, Shanghai 200237, China)
(E-mail: zhangwenhua1226@hotmail.com)

Abstract: Let \mathcal{F} be a family of meromorphic functions on the unit disc Δ . Let a be a non-zero finite value and k be a positive integer. If for every $f \in \mathcal{F}$,

(i) f and $f^{(k)}$ share a;

(ii) the zeros of f(z) are of multiplicity $\geq k+1$,

then \mathcal{F} is normal on Δ .

We also proved corresponding results on normal functions and a uniqueness theorem of entire functions .

Key words: meromorphic function; normal family; shared values; uniqueness

MSC(2000): 30D35, 30D45 CLC number: O174.52

0. Introduction

Let D be a domain in C. Define for f meromorphic on D and $a, b \in \mathbb{C}$,

$$\bar{E_f}(a) = f^{-1}(\{a\}) \cap D = \{z \in D : f(z) = a\}.$$

If g(z) = b whenever f(z) = a, we write $f(z) = a \Rightarrow g(z) = b$. If $f(z) = a \Rightarrow g(z) = b$ and $g(z) = b \Rightarrow f(z) = a$, we write $f(z) = a \Leftrightarrow g(z) = b$. If $f(z) = a \Leftrightarrow g(z) = a$, then we say that f and g share a, i.e.

$$ar{E_f}(a) = ar{E_g}(a).$$

If f - a and g - a have the same zeros with the same multiplicities, then we say that f and g share the value a CM (counting multiplicities).

A meromorphic function f on $\mathbf C$ is called a normal function if there exists a positive number M such that

$$f^{\sharp}(z) \leq M.$$

Here, as usual, $f^{\sharp}(z) = \frac{|f'(z)|}{1 + |f(z)|^2}$ denotes the spherical derivative of f(z).

Mues and Steinmetz^[6] proved

Theorem A Let f be a non-constant meromorphic function in D, and a_1, a_2 and a_3 be distinct complex numbers. If f and f' share a_1, a_2 and a_3 , then $f \equiv f'$.

Received date: 2002-12-31

W.Schwick seems to have been the first to draw a connection between normality criteria and shared values. He proved the following theorem^[7]

Theorem B Let \mathcal{F} be a family of meromorphic functions on the unit disc Δ and a_1, a_2 and a_3 be distinct complex numbers. If f and f' share a_1, a_2 and a_3 for every $f \in \mathcal{F}$, then \mathcal{F} is normal on Δ .

In this paper, we prove:

Theorem 1 Let \mathcal{F} be a family of meromorphic functions on the unit disc Δ . Let a be a non-zero finite value and k be a positive integer, $k \geq 1$. If for every $f \in \mathcal{F}$,

- (i) f and $f^{(k)}$ share a:
- (ii) the zeros of f(z) are of multiplicity $\geq k+1$,

then \mathcal{F} is normal on Δ .

Remark 1 The following examples show that the assumption on the zeros of f(z) in Theorem 1 is necessary.

For k = 1, let $\mathcal{F} = \{f_n : f_n = \frac{e^{(n+1)z} - a}{n+1} + a\}$, where a is a non-zero complex number, then f and f' share a, but \mathcal{F} is not normal in Δ .

For $k \geq 2$, let $\mathcal{F} = \{f_n(z) : f_n(z) = n(e^{c_1z} - e^{c_2z})\}$ $n = 1, 2, 3, \dots$, where $c_1 \neq c_2$ and $c_j^k = 1, j = 1, 2$. Obviously, for each $f \in \mathcal{F}$, $f = f^{(k)}$, f and $f^{(k)}$ share every numbers, but \mathcal{F} is not normal in Δ .

From Theorem 1, we can get the result of Fang Mingliang^[8]

Corollary 1.1 Let \mathcal{F} be a family of meromorphic functions on the unit disc Δ . Let a be a non-zero finite value and k is a positive integer. If for every $f \in \mathcal{F}$, f and $f^{(k)}$ share a and $f \neq 0$, then \mathcal{F} is normal on Δ .

Theorem 2 Let f be a meromorphic function on \mathbb{C} and a be a non-zero finite value. If for every $f \in \mathcal{F}$,

- (i) f and $f^{(k)}$ share a;
- (ii) the zeros of f(z) are of multiplicity $\geq k+1$,

then f is a normal function on \mathbb{C} .

Theorem 3 Let f be a non-constant entire function and k be a positive integer. If f and $f^{(k)}$ share $a \neq 0$ CM, and the zeros of f(z) are of multiplicity $\geq k+1$, then $f \equiv f^{(k)}$.

1. Some lemmas

Lemma 1^[3] Let \mathcal{F} be a family of meromorphic functions on the unit disc Δ , of which all the zeros have multiplicity at least k. Suppose there exists $A \geq 1$, such that $|f^{(k)}(z)| \leq A$ whenever f(z) = 0, $f \in \mathcal{F}$, then if \mathcal{F} is not normal, there exist, for each $0 \leq \alpha \leq k$,

- (a) a number r, 0 < r < 1;
- (b) points z_n , $|z_n| < r$;

- (c) functions $f_n \in \mathcal{F}$;
- (d) positive numbers $\varrho_n \to 0$,

such that

$$\frac{f_n(z_n+\varrho_n\xi)}{\varrho_n^\alpha}\to g(\xi)$$

locally uniformly with respect to the spherical metric, where g is a meromorphic function on \mathbf{C} such that $g^{\sharp}(\xi) \leq g^{\sharp}(0) = kA + 1$.

Lemma 2^[4] Let R(z) be a non-constant rational function, let k be a positive integer and let b be a non-zero complex number. If the zeros of R(z) are of multiplicity at least k+1, and $R^{(k)}(z) \neq b$, then

$$R(z) = \frac{(\gamma z + \delta)^{k+1}}{\alpha z + \beta},$$

where $\alpha, \beta, \gamma, \delta$ are constants such that $\alpha \gamma \neq 0$, $|\beta| + |\delta| \neq 0$.

Lemma 3^[1] Let f(z) be a transcendental meromorphic function of finite order, and k be a positive integer, let a be a non-zero finite complex number. If all zeros of f(z) are of multiplicity at least k+1, then $f^{(k)}(z)$ assumes a infinitely often.

Lemma $4^{[2]}$ A normal meromorphic function has order at most 2, a normal holomorphic function has order at most 1.

Lemma 5^[5] Let f(z) be a noncontant entire function of finite order, let $a \neq 0$ be a finite constant, and let k be a positive integer. If f(z) and $f^{(k)}(z)$ share the value a CM, then we have $\frac{f^{(k)} - a}{f - a} \equiv c$, for some non-zero constant c.

2. Proofs of the theorems

Proof of Theorem 1 Suppose that \mathcal{F} is not normal on Δ , then by lemma 1, we have $f_n \in \mathcal{F}$, $z_n \in \Delta$ and $\varrho_n \to 0^+$ such that

$$\frac{f_n(z_n+\varrho_n\xi)}{\varrho_n^k}\to g(\xi)$$

locally uniformly with respect to the spherical metric, where g is a non-constant meromorphic function satisfying $g^{\sharp}(\xi) \leq g^{\sharp}(0) = k(|a|+1)+1$. By Lemma 4, we have that g is a meromorphic function of finite order.

We claim that:

- (i) the zeros of g have multiplicity $\geq k+1$;
- (ii) $g^{(k)}(\xi) \neq a$;
- (iii) the poles of $g(\xi)$ are multiple.

Indeed, suppose $g(\xi_0) = 0$, then since g is not a constant, there exists $\xi_n, \xi_n \to \xi_0$, such that

$$g_n(\xi_n) = \frac{f_n(z_n + \varrho_n \xi_n)}{\varrho_n^k} = 0$$
 (n large enough).

Thus

$$f_n(z_n + \varrho_n \xi_n) = 0.$$

Since the zeros of f have multiplicity $\geq k+1$, we have

$$f_n^{(j)}(z_n+\varrho_n\xi_n)=0, \quad j=0,1\cdots,k.$$

$$g_n^{(j)}(\xi_n) = rac{f_n^{(j)}(z_n + \varrho_n \xi_n)}{\varrho_n^{k-j}} = 0, \quad j = 0, 1, \cdots, k.$$

Since

$$g^{(j)}(\xi_0) = \lim_{n \to \infty} g_n^{(j)}(\xi_n), \quad j = 0, 1, \dots, k,$$

it follows that the zeros of $g(\xi)$ have multiplicity at least k+1, so (i) is proved.

Now, suppose there exists ξ_0 such that $g^{(k)}(\xi_0) = a$, then we have $g^{(k)}(\xi) \not\equiv a$, since otherwise g is a polynomial whose degree is exactly k, which contradicts (i).

Since $g^{(k)}(\xi) = a$, but $g^{(k)}(\xi) \not\equiv a$, there exists $\xi_n, \xi_n \to \xi_0$ such that, for n sufficiently large,

$$g_n^{(k)}(\xi_n) = f_n^{(k)}(z_n + \varrho_n \xi_n) = a.$$

It now follows from $\bar{E}_{f_n}(a) = \bar{E}_{f_n(k)}(a)$ that

$$f_n(z_n + \varrho_n \xi_n) = a.$$

Thus

$$g_n(\xi_n) = \frac{f_n(z_n + \varrho_n \xi_n)}{\varrho_n^k} = \frac{a}{\varrho_n^k}.$$

Letting $n \to \infty$, we have $g(\xi_0) = \infty$, which contradicts $g^{(k)}(\xi_0) = a$, thus $g^{(k)}(\xi) \neq a$.

Now we prove (iii).

Let ξ_0 be a pole of $g(\xi)$. If ξ_0 is not a multiple pole of $g(\xi)$, then there exists a disk $K = \{\xi : |\xi - \xi_0| < \delta\}$ (for n sufficiently large) on which there exists and only exists $\xi_n, \xi_n \to \xi_0$ and ξ_n is a simple pole of $g_n(\xi)$. Hence we can deduce that ξ_n is a pole of $g_n^{(k)}(\xi)$ with multiplicity k+1 and ξ_0 is a pole of $g^{(k)}(\xi)$ with multiplicity k+1. And

$$g_n(\xi) \to g(\xi),$$

$$g_n^{(k)}(\xi) \to g^{(k)}(\xi)$$

locally uniformly on K.

Thus

$$\lim_{\xi_n \to \xi_0} g_n^{(k)}(\xi_n) = \infty. \tag{1}$$

Since

$$\frac{1}{g_n^{(k)}(\xi)} - \frac{\varrho_n^k}{a} \to \frac{1}{g^{(k)}(\xi)}$$

uniformly on K and $\frac{1}{g^{(k)}(\xi)}$ is not a constant, there exist $\xi_n, \xi_n \to \xi_0$, such that (for n large enough)

$$\frac{1}{g_n^{(k)}(\xi_n)} - \frac{\varrho_n^k}{a} = 0,$$

i.e.

$$f_n(z_n + \varrho_n \xi_n) = a.$$

Thus

$$g_n^{(k)}(\xi_n) = f_n^{(k)}(z_n + \varrho_n \xi_n) = a.$$

Letting $n \to \infty$, we get a contradiction by (1).

Thus the poles of $g(\xi)$ are multiple.

Since g has finite order, the zeros of g have multiplicity $\geq k+1$ and $g^{(k)}(\xi) \neq a$. Hence by Lemma 3 we can deduce that $g(\xi)$ is a non-constant rational function. Then by Lemma 2 f has a simple pole, which contradicts (iii).

So the proof of Theorem 1 is completed.

Proof of Theorem 2 Suppose f is not a normal function. Then there exist $z_n \to \infty$ such that $\lim_{n\to\infty} f^{\sharp}(z_n) = \infty$. Write $f_n(z) = f(z+z_n)$ and set $\mathcal{F} = \{f_n\}$. Then by Marty's criterion, \mathcal{F} is not normal on the unit disc. On the other hand, since $\bar{E}_{f_n}(a) = \bar{E}_{f_n(k)}(a)$, the zeros of $f_n(z)$ are of multiplicity $\geq k+1$. Theorem 1 implies that \mathcal{F} is normal. The contradiction proves the theorem.

Proof of Theorem 3 From Theorem 2 and Lemma 4 we deduce that f(z) has finite order. By Lemma 5 we have

$$\frac{f^{(k)} - a}{f - a} \equiv B, \quad B \neq 0. \tag{2}$$

If $N(r, \frac{1}{f}) \not\equiv 0$, clearly from above we have $f \equiv f^{(k)}$.

If
$$N(r, \frac{1}{f}) \equiv 0$$
, then

$$f = e^{\alpha}, \tag{3}$$

where α is a nonconstant entire function.

From (2) we can obtain

$$f(z) = c_1 e^{n_1 z} + \dots + c_k e^{n_k z} + a(1 - \frac{1}{B}), \tag{4}$$

where $n_{j}^{k} = B, j = 1, 2 \cdots, k$.

From (3) and (4) we have $f(z) = Ae^{nz}$, where A and n are nonzero constant. Since f and $f^{(k)}$ share a CM, we have $n^k = 1$, so $f \equiv f^{(k)}$. Theorem 3 is proved.

References:

[1] BERGWEILER W, EREMENKO A. On the singularities of the inverse to a meromorphic function of finite order [J]. Rev. Mat. Iberoamericana, 1995, 11: 355-373.

- [2] CLUNIE J, HAYMAN W. The spherical derivative of integral and meromorphic functions [J]. Comment. Math. Helv., 1966, 40: 117-148.
- [3] PANG Xue-cheng, ZALCMAN L. Normal families and shared values [J]. Bull. London Math. Soc., 2000, 3: 325-331.
- [4] WANG Yue-fei, FANG Ming-liang. Picard values and normal families of meromorphic functions with multiple zeros [J]. Acta Math. Sinica, New Series, 1998, 14(1): 17-26.
- [5] YANG Liang-zhong. Solution of a differential equation and its applications [J]. Kodai Math. J., 1999, 22: 458-464.
- [6] MUES E, STEINMETZ N. Meromorphe funktionen, die mit ihrer ableitung werte teilen [J]. Manuscripta Math., 1969, 29: 195-206.
- [7] SCHWICK W. Sharing values and normality [J]. Arch. Math. (Basel), 1992, 59: 50-54.
- [8] FANG Ming-liang. A note on sharing values and normality [J]. J. Math. Study, 1996, 4: 29-32.
- [9] GU Yong-xing. A criterion for normality of families of meromorphic functions [J]. Sci. Sinica, Mathematical Issue, 1979, 1: 267-274. (in Chinese)

关于分担值的正规族和唯一性定理

章文华

(华东理工大学数学系, 上海 200237)

摘要: 设 \mathcal{F} 是单位圆盘 Δ 上的亚纯函数族, a 是一个非零的有穷复数, k 是正整数,如果 $\forall f \in \mathcal{F}$, 满足

- 1) f 的零点重级 $\geq k+1$;
- 2) f 和 f(k) IM 分担 a,

则 ℱ 在 Δ 上正规.

此外,还证明了相应于正规函数以及整函数的唯一性定理方面的的结果.

关键词: 亚纯函数; 正规族; 分担值; 唯一性.