Therefore P/J(P) is also an Artinian S- moudle. On the other hand, P/J(P) is semisimple. So P/J(P) is Noetherian. Thus P/J(P) is an object of mod-S of finite length. Hence $\operatorname{End}_S(P/J(P))$ is semiprimary (see p.37 in [4]). Moreover $\operatorname{End}_S(P/J(P))$ is semilocal. So $\operatorname{End}_SP/J(\operatorname{End}_SP)$ is also Artinian. That is, $R \simeq \operatorname{End}_SP$ is semilocal, as asserted.

Corollary 4 Let R be a Dedekind domain. Then the following statements are equivalent:

- (1) R is semilocal.
- (2) There exists some non-zero ideal whose top is Artinian.

Proof Since R is a Dedekind domain, every non-zero ideal must be invertible. By virtue of Theorem 3, the result follows.

References

- [1] N.Jacobson, The Structure of Rings, Colloquium Pobl. AMS., 1956.
- [2] B.R.McDonald, Linear Algebra over Commutative Rings, Marcel Dekker, Inc., New York and Basel, 1984.
- [3] P.Menal, Cancellation modules over regular rings, Lecture Notes in Math., 1328, Ring Theory, Springer-Verlag, 1988.
- [4] C.Faith, Algebra II, Springer-Verlag, Berlin, Heidelberg, New York, 1976.

半局部环的一个特征

陈 焕 艮 (湖南师范大学数学系, 长沙 410006)

摘 要

给出了可换半局部环的一个外部特征,证明了 R 为半局部环当且仅当存在可逆 R- 模,其 Top 为 Artin 模.

A Characterization of Semilocal Rings *

Chen Huanyin

(Dept. of Math., Hunan Normal University, Changsha 410006)

Abstract In this note, we prove that if R is commutative then R is semilocal if and only if there exists some invertible module whose Top is Artinian.

Keywords semilocal ring, invertible module.

Classification AMS(1991) 13H99/CCL ()153.3

At first, we give a lemma.

Lemma 1 Let $\phi: R \to S$ be a epimorphic ring homomorphism with ker $\phi \subset J(R)$. Then $R/J(R) \simeq S/J(S)$.

Proof Since $\phi: R \to S$ is epimorphic, we have an isomorphism: $R/\ker \phi \stackrel{\phi^*}{\simeq} S$. So $J(R/\ker \phi) \stackrel{\phi^*}{\simeq} J(S)$. By virtue of the homomorphism theorem, we can obtain $\psi: (R/\ker \phi)/J(R/\ker \phi) \stackrel{\psi}{\simeq} S/J(S)$.

$$R/\ker\phi$$
 $\xrightarrow{\phi^*}$ S \downarrow \downarrow \downarrow $(R/\ker\phi)/J(R/\ker\phi)$ $\xrightarrow{\psi}$ $S/J(S)$

On the other hand, $J(R/\ker\phi)\supset J(R)+\ker\phi/\ker\phi=J(R)/\ker\phi$. Since $J(R/\ker\phi)=\cap M\subset (N/\ker\phi)=(\cap N)/\ker\phi=J(R)/\ker\phi$, where M and N are maximal submodules of $R/\ker\phi$ and R respectively, we have $J(R/\ker\phi)=J(R)/\ker\phi$. Thus $S/J(S)\simeq (R/\ker\phi)/(J(R/\ker\phi))\simeq (R/\ker\phi)/(J(R)/\ker\phi)\simeq R/J(R)$, as required.

As an immediate consequence, we have

Corollary 2 The following statements are equivalent:

- (1) R is semilocal.
- (2) $R[[x_1, \dots, x_n]]$ is semilocal.

Now we can derive the following

Theorem 3 Let R be a commutative ring. Then the following statements are equivalent:

^{*}Received Oct.8, 1993.

- (1) R is semilocal.
- (2) There exists some invertible R-module whose Top is Artinian.

Proof (1) \Rightarrow (2) Since R is semilocal, R/J(R) is an Artinian ring. Let M be R-submodule of R/J(R),

$$(N = \{r \in R | r + J(R) \in M\}.$$

It is easy to verify $N \triangleleft R$. As R-modules, we have R-module homomorphism $\phi: N \twoheadrightarrow M, r \mapsto r + J(R)$. So $M \simeq N/\ker \phi = N/J(R)$.

Suppose that $R/J(R) \supset N_1/J(R) \supset \cdots$ is a descending sequence of R-modules, where $N_i \triangleleft R, i \geq 1$. We define $\bar{r} \cdot \bar{n} = \overline{r}\bar{n}$ for any $\bar{r} \in R/J(R), \bar{n} \in N_i/J(R), i \geq 1$. Since $\bar{r}_1 = \bar{r}, \bar{n}_1 = \bar{n}$ implies that there exist some $a, b \in J(R)$ such that

$$r_1=r+a, n_1=n+b,$$

we can prove

$$r_1n_1=rn+na+rb+ab\in rn+J(R).$$

Thus $\overline{r_1n_1} = \overline{rn}$. So the definition is well defined. Since R/J(R) is an artinian R/J(R)-module, we can find some s > 0 such that

$$N_s/J(R) = N_{s+1}/J(R) = \cdots$$

So R/J(R) is also an Artinian R-module. Hence R is an invertible R-module whose Top is Artinian.

 $(2)\Rightarrow (1)$ Assume that P is an invertible R-module whose Top is Artinian. So P is a finitely generated projective module of rank one.

Let $A = \operatorname{Ann} P$. For any $Q \in \operatorname{Spec} R$, we have

$$A_Q = A \otimes R_Q \simeq AR_Q \simeq AP_Q \simeq A(R_Q \otimes P) = 0.$$

So A=0. That is, P is a faithful module. From Theorem III.11 in [2], we know P is a generator. Using Theorem III.12 in [2], we can prove that the ring R is isomorphic as a ring to the ring of S-modules of P under $R \to \operatorname{End}_S P$ by $r \mapsto \sigma_r, \sigma_r(p) = rp$, where $S = \operatorname{End}_R P$. Moreover, we can prove ${}_S P$ is a finitely generated projective S-module.

By virtue of Lemma III.29 and Theorem III.28 in [2], we know $\ker \Phi = J(\operatorname{End}_S P)$, where $\Phi : \operatorname{End}_S P \to \operatorname{End}_S (P/J(P))$. Using Lemma 1, we have

$$\operatorname{End}_{\mathcal{S}}P/J(\operatorname{End}_{\mathcal{S}}P)\simeq\operatorname{End}_{\mathcal{S}}(P/J(P))/J(\operatorname{End}_{\mathcal{S}}(P/J(P))).$$

Since the top of $_RP$ is Artinian, it suffices to show that $_S(P/J(P))$ is also an Artinian S-module.

Suppose that $P/J(P) \supset P_1/J(P) \supset \cdots$ is a descending sequence of S-modules. We define $\sigma_r: P_i \to P_i, p \mapsto rp$. Thus we can define $r \cdot \bar{p} = \sigma_r(p)$ for any $r \in R, \bar{p} \in P_i/J(P)$. Hence $P_i/J(P)$ is also an R-module. Since P/J(P) is an Artinian R-module, we can find some n > 0 such that

$$P_n/J(P) = P_{n+1}/J(P) = \cdots$$

Therefore P/J(P) is also an Artinian S- moudle. On the other hand, P/J(P) is semisimple. So P/J(P) is Noetherian. Thus P/J(P) is an object of mod-S of finite length. Hence $\operatorname{End}_S(P/J(P))$ is semiprimary (see p.37 in [4]). Moreover $\operatorname{End}_S(P/J(P))$ is semilocal. So $\operatorname{End}_SP/J(\operatorname{End}_SP)$ is also Artinian. That is, $R \simeq \operatorname{End}_SP$ is semilocal, as asserted.

Corollary 4 Let R be a Dedekind domain. Then the following statements are equivalent:

- (1) R is semilocal.
- (2) There exists some non-zero ideal whose top is Artinian.

Proof Since R is a Dedekind domain, every non-zero ideal must be invertible. By virtue of Theorem 3, the result follows.

References

- [1] N.Jacobson, The Structure of Rings, Colloquium Pobl. AMS., 1956.
- [2] B.R.McDonald, Linear Algebra over Commutative Rings, Marcel Dekker, Inc., New York and Basel, 1984.
- [3] P.Menal, Cancellation modules over regular rings, Lecture Notes in Math., 1328, Ring Theory, Springer-Verlag, 1988.
- [4] C.Faith, Algebra II, Springer-Verlag, Berlin, Heidelberg, New York, 1976.

半局部环的一个特征

陈 焕 艮 (湖南师范大学数学系, 长沙 410006)

摘 要

给出了可换半局部环的一个外部特征,证明了 R 为半局部环当且仅当存在可逆 R- 模,其 Top 为 Artin 模.