首页 | 官方网站   微博 | 高级检索  
     


On the fast Lanczos method for computation of eigenvalues of Hankel matrices using multiprecision arithmetics
Authors:Shaun Bangay  Gleb Beliakov
Affiliation:School of Information Technology, Deakin University, Burwood, Australia
Abstract:The use of the fast Fourier transform (FFT) accelerates Lanczos tridiagonalisation method for Hankel and Toeplitz matrices by reducing the complexity of matrix–vector multiplication. In multiprecision arithmetics, the FFT has overheads that make it less competitive compared with alternative methods when the accuracy is over 10000 decimal places. We studied two alternative Hankel matrix–vector multiplication methods based on multiprecision number decomposition and recursive Karatsuba‐like multiplication, respectively. The first method was uncompetitive because of huge precision losses, while the second turned out to be five to 14 times faster than FFT in the ranges of matrix sizes up to n = 8192 and working precision of b = 32768 bits we were interested in. We successfully applied our approach to eigenvalues calculations to studies of spectra of matrices that arise in research on Riemann zeta function. The recursive matrix–vector multiplication significantly outperformed both the FFT and the traditional multiplication in these studies. Copyright © 2016 John Wiley & Sons, Ltd.
Keywords:eigenvalues  Hankel matrix  Toeplitz matrix  Lanczos method  multiprecision arithmetics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号