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Abstract

In this paper, we establish the existence result of solution and positive solu-
tion for two-point boundary value problem of a semilinear fractional differential
equation by using the Leray-Schauder fixed-point theorem. The discussion is
based on the system of integral equations on a bounded region.
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1 Introduction

Fractional differential equations have received increasing attention during the

past decades. It has attracted a lot of attention of researchers to promote the

continuous development of methods, theories and applications in the field of small

area estimation (see [1-3]). Fractional derivative is divided into two categories:

standard Riemann-Liouville derivative and Caputo fractional derivative.

The aim of this paper is to study the existence result of solution and positive

solution for the following two-point boundary value problem of the semilinear frac-

tional differential equation{
Dαu(t) + f(t, u(t), Dα−1u(t)) = 0, 0 6 t 6 1,

u(0) = 0, u(1) = B, Dα−1u(0) = C,
(1.1)

where 2 < α 6 3 and A,B,C are real numbers, Dα is the standard Riemann-

Liouville derivative, and f : [0, 1]×R×R → R is continuous on its domain. Such a
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nonlinearity term f(t, u(t), Dα−1u(t)) has been studied widely in [6,7]. In [6], by

means of the Schauder fixed point theorem and the Banach contraction principle

the authors investigated the existence and uniqueness of solutions for a class of

nonlinear multi-point boundary value problems for fractional differential equations
Dαu(t) + f(t, u(t), Dβu(t)) = 0, 0 6 t 6 1,

u(0) = 0, Dβu(1)−
m−2∑
i=1

ξiD
βu(ξi) = u0.

In [7], by means of a fixed point theorem on a cone, the authors investigated the

existence of positive solutions for the following singular fractional boundary value

problem {
Dαu(t) + f(t, u(t), Dµu(t)) = 0, 0 6 t 6 1,

u(0) = u(1) = 0.

The difference between [6] and [7], the system of integral equations is adopted

skillfully in this paper. In the literature of [8], A = 0 is the special case of this paper.

2 Preliminaries

For convenience, we present here the necessary definitions and some lemmas from

fractional calculus theory.

Definition 2.1[4] The Riemann-Liouville fractional integral of order α > 0 of

a function f : (0,∞) → R is given by

Iα0+f(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds

provided the right side is pointwise defined on (0,∞).

Definition 2.2[4] The Riemann-Liouville fractional derivative of order α > 0

of a continuous function f : (0,∞) → R is given by

Dα
0+f(t) =

1

Γ(n− α)

( d

dt

)n
∫ t

0

f(s)

(t− s)α−n+1
ds,

where n = [α] + 1, [α] denotes the integer part of the real number α, provided the

right side integral is pointwise defined on [0, 1).

Lemma 2.1[4] Let α > 0. If we assume u ∈ C(0, 1)∩L(0, 1), then the fractional

differential equation

Dα
0+u(t) = 0

has u(t) = C1t
α−1 + C2t

α−2 + · · · + CN tα−N , Ci ∈ R, i = 1, 2, · · ·, N, which is a

unique solution, where N is the smallest integer greater than or equal to α.

Lemma 2.2[4] Assume that u ∈ C(0, 1)∩L(0, 1) with a fractional derivative of

order α > 0 that belongs to C(0, 1) ∩ L(0, 1). Then
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Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · ·+ CN tα−N ,

for some Ci ∈ R, i = 1, 2, · · ·, N, where N is the smallest integer greater than or

equal to α.

Property 2.1[4] Let α > 0, m ∈ N and D = d
dx . If the fractional derivatives

(Dα
0+y)(x) and (Dα+m

0+
y)(x) exist, then

(DmDα
0+y)(x) = (Dα+m

0+
y)(x).

Lemma 2.3 Let f : [0, 1]×R×R → R be a given function. Then the boundary

value problem {
Dαu(t) + f(t, u(t), Dα−1u(t)) = 0, 0 6 t 6 1,

u(0) = 0, u(1) = B, Dα−1u(0) = C
(2.1)

is equivalent to the system of integral equations
v(t) = C −

∫ t

0
f(s, u(s), v(s))ds,

u(t) = Btβ−1 −
∫ 1

0
G(t, s)v(s)ds,

(2.2)

where

G(t, s) =


[t(1− s)]β−1 − (t− s)β−1

Γ(β)
, s 6 t;

[t(1− s)]β−1

Γ(β)
, t 6 s.

Here G(t, s) is called the Green function of boundary value problem (2.1), β = α−1.

Proof Let v(t) = Dα−1u(t). Then problem (2.1) is equivalent to the system of

ordinary differential equations
Dα−1u(t) = v(t), 0 6 t 6 1, 2 < α 6 3,

v′(t) = −f(t, u(t), v(t)),

u(0) = 0, u(1) = B, v(0) = C.

(2.3)

Let β = α−1, 1 < β 6 2. Then problem (2.3) is equivalent to the system of ordinary

differential equations
Dβu(t) = v(t), 0 6 t 6 1, 2 < α 6 3,

v′(t) = −f(t, u(t), v(t)),

u(0) = 0, u(1) = B, v(0) = C.
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We find that

v(t) = C −
∫ t

0
f(s, u(s), v(s))ds,

u(t) = Iβv(t) + C1t
β−1 + C2t

β−2 =
1

Γ(β)

∫ t

0
(t− s)β−1v(s)ds+ C1t

β−1 + C2t
β−2.

On the one hand, the boundary condition u(0) = 0 implies that C2 = 0.

On the other hand, by applying boundary condition u(1) = B, we find that

B =
1

Γ(β)

∫ 1

0
(1− s)β−1v(s)ds+ C1,

so it implies that

C1 = B − 1

Γ(β)

∫ 1

0
(1− s)β−1v(s)ds.

Consequently,

v(t) = C −
∫ t

0
f(s, u(s), v(s))ds,

u(t) = Btβ−1 −
[ ∫ 1

0

(1− s)β−1tβ−1

Γ(β)
v(s)ds−

∫ t

0

(t− s)β−1

Γ(β)
v(s)ds

]
= Btβ−1 −

[ ∫ t

0

[t(1− s)]β−1 − (t− s)β−1

Γ(β)
v(s)ds+

∫ 1

t

[t(1− s)]β−1

Γ(β)
v(s)ds

]
= Btβ−1 −

∫ 1

0
G(t, s)v(s)ds.

Lemma 2.4[5] The function G(t, s) defined by Lemma 2.3 satisfies:

(1) G(t, s) > 0, t, s ∈ (0, 1);

(2) there exists a positive function γ ∈ C(0, 1) such that

min
1
4
6t6 3

4

G(t, s) > γ(s) max
06t61

G(t, s) = γ(s)G(s, s), for 0 < s < 1.

3 Main Results and Proofs

Let C[0, 1] be the Banach space endowed with the max norm ∥u∥ = max
06t61

|u(t)|
and η = max{|B|, |C|},

T1(u, v)(t) = Btβ−1 −
∫ 1

0
G(t, s)v(s)ds,

T2(u, v)(t) = C −
∫ t

0
f(s, u(s), v(s))ds,

(T (u, v)) = (T1(u, v), T2(u, v)).
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Then, problem (2.2) is equivalent to the following equation

T (u, v) = (u, v), (u, v) ∈ C[0, 1]× C[0, 1]. (3.1)

That is, every solution of (2.2) is also a fixed-point of (3.1).

Theorem 3.1 Suppose that f : [0, 1] × R × R → R holds. If there exist d > 0

and 1
2 6 k 6 1

2m , with m =
∫ 1
0 G(s, s)ds such that

max{|f(t, u, v)| : t ∈ [0, 1], |u| 6 2η + d, |v| 6 k(2η + d)} 6 (2k − 1)η + kd. (3.2)

Then, problem (1.1) has at least one solution u∗ ∈ C[0, 1] satisfying ∥u∗∥ 6 2η + d

and ∥Dα−1u∗∥ 6 k(2η + d).

Proof Let C[0, 1]×C[0, 1] be the Banach space endowed with the norm ∥(u, v)∥ =

max{∥u∥, ∥v∥k }, R = 2η + d, VR = {(u, v) ∈ C[0, 1] × C[0, 1] : ∥(u, v)∥ 6 R}. Then

VR is a convex closed set in C[0, 1] × C[0, 1]. If (u, v) ∈ VR, then ∥u∥ 6 R, and

∥v∥ 6 kR. So |u(t)| 6 R, |v(t)| 6 kR, 0 6 t 6 1. By the condition (3.2) of Theorem

3.1, we obtain |f(t, u, v)| 6 (2k − 1)η + kd, 0 6 t 6 1. Thus

∥T1(u, v)∥ 6 max
06t61

|Btβ−1|+ max
06t61

∫ 1

0
G(t, s)|v(s)|ds

6 η + kR

∫ 1

0
G(s, s)ds = (1 + 2km)η + kmd,

∥T2(u, v)∥ 6 max
06t61

|C|+ max
06t61

∫ t

0
|f(s, u(s), v(s))|ds

6 η + (2k − 1)η + kd = 2kη + kd.

In view of the above, we see that

∥(T1(u, v), T2(u, v))∥ = max
{
∥T1(u, v)∥,

1

k
∥T2(u, v)∥

}
6 max{(1 + 2km)η + kmd, 2η + d} = 2η + d.

Therefore, T : VR → VR. Then, we can easily prove that T : C[0, 1] × C[0, 1] →
C[0, 1] × C[0, 1] is completely continuous by Arzela-Ascoli theorem. Therefore, ac-

cording to Leray-Schauder fixed-point theorem, the operator T has a fixed point

(u∗, v∗) ∈ VR.

Theorem 3.2 Suppose that B > 0, C 6 0 and f : [0, 1] × R+ × R− → R+. If

there exist d > 0 and 1
2 6 k 6 1

2m , with m =
∫ 1
0 G(s, s)ds such that

max{f(t, u, v) : t ∈ [0, 1], 0 6 u 6 2η + d,−k(2η + d) 6 v 6 0} 6 (2k − 1)η + kd.

Then, problem (1.1) has at least one solution u∗ ∈ C[0, 1] satisfying ∥u∗∥ 6 2η + d

and ∥Dα−1u∗∥ 6 k(2η + d).

Proof Set
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f1(t, u, v) =

{
f(t, u, v), (t, u, v) ∈ [0, 1]×R+ ×R−,

f(t, u, 0), (t, u, v) ∈ [0, 1]×R+ ×R+,

f2(t, u, v) =

{
f1(t, u, v), (t, u, v) ∈ [0, 1]×R+ ×R,

f1(t, 0, v), (t, u, v) ∈ [0, 1]×R− ×R.

Obviously, f2 : [0, 1]×R×R → R+ is continuous and

max{|f2(t, u, v)| : t ∈ [0, 1], |u| 6 2η + d, |v| 6 k(2η + d)}
= max{f(t, u, v) : t ∈ [0, 1], 0 6 u 6 2η + d,−k(2η + d) 6 v 6 0}
6 (2k − 1)η + kd.

Applying Theorem 3.1, the problem{
Dαu(t) + f2(t, u(t), D

α−1u(t)) = 0, 0 6 t 6 1,

u(0) = 0, u(1) = B, Dα−1u(0) = C

has at least one solution u∗ ∈ C[0, 1] satisfying ∥u∗∥ 6 2η + d and ∥Dα−1u∗∥ 6
k(2η + d).

If C 6 0, then

Dα−1u∗(t) = C −
∫ t

0
f2(s, u

∗(s), Dα−1u∗(s))ds 6 0, 0 6 t 6 1. (3.3)

Consider that

u∗(t) = Btβ−1 −
∫ 1

0
G(t, s)Dα−1u∗(s)ds > 0, 0 6 t 6 1. (3.4)

From (3.3) and (3.4), we get

f2(s, u
∗(s), Dα−1u∗(s)) = f(s, u∗(s), Dα−1u∗(s)).

This proves that u∗ is a solution of problem (1.1).

If C < 0, then

u∗(t) = Btβ−1 −
∫ 1

0
G(t, s)Dα−1u∗(s)ds > 0, 0 6 t 6 1.

If B = C = 0 and f(t, 0, 0) ̸= 0, 0 6 t 6 1, then the zero function is not a

solution of problem (1.1).

4 Example

Consider the following boundary value problem{
D

5
2u(t) + (k − 1

2)t
2u+ sinD

3
2u(t) = 0, 0 6 t 6 1,

u(0) = 0, u(1) = B, D
3
2u(0) = C.

(4.1)
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Let D
3
2u(t) = v(t), R = 2η + d, d > 2. If (u, v) ∈ VR, then ∥u∥ 6 R, and ∥v∥ 6 kR.

We have

|f(t, u, v)| =
∣∣∣(k − 1

2

)
t2u+ sin v(t)

∣∣∣ 6 (
k − 1

2

)
(2η + d) + 1 6 (2k − 1)η + kd.

Therefore,

max{|f(t, u, v)| : t ∈ [0, 1], |u| 6 2η + d, |v| 6 k(2η + d)} 6 (2k − 1)η + kd.

Then by Theorem 3.1, the boundary value problem (4.1) has at least one solution

u∗ ∈ C[0, 1] satisfying ∥u∗∥ 6 2η + d and ∥D
3
2u∗∥ 6 k(2η + d).
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