SOLUTION FOR TWO-POINT BOUNDARY VALUE PROBLEM OF THE SEMILINEAR FRACTIONAL DIFFERENTIAL EQUATION* ${ }^{*}$

Caixia Guo \ddagger Shugui Kang, Yaqiong Cui, Huiqin Chen
(School of Math. and Computer Sciences, Shanxi Datong University, Datong 037009, Shanxi, PR China)

Abstract

In this paper, we establish the existence result of solution and positive solution for two-point boundary value problem of a semilinear fractional differential equation by using the Leray-Schauder fixed-point theorem. The discussion is based on the system of integral equations on a bounded region.

Keywords boundary value problem; Green's function; Leray-Schauder fixed point theorem; system of integral equations

2000 Mathematics Subject Classification 34A08

1 Introduction

Fractional differential equations have received increasing attention during the past decades. It has attracted a lot of attention of researchers to promote the continuous development of methods, theories and applications in the field of small area estimation (see [1-3]). Fractional derivative is divided into two categories: standard Riemann-Liouville derivative and Caputo fractional derivative.

The aim of this paper is to study the existence result of solution and positive solution for the following two-point boundary value problem of the semilinear fractional differential equation

$$
\left\{\begin{array}{l}
D^{\alpha} u(t)+f\left(t, u(t), D^{\alpha-1} u(t)\right)=0, \quad 0 \leqslant t \leqslant 1, \tag{1.1}\\
u(0)=0, \quad u(1)=B, \quad D^{\alpha-1} u(0)=C,
\end{array}\right.
$$

where $2<\alpha \leqslant 3$ and A, B, C are real numbers, D^{α} is the standard RiemannLiouville derivative, and $f:[0,1] \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous on its domain. Such a

[^0]nonlinearity term $f\left(t, u(t), D^{\alpha-1} u(t)\right)$ has been studied widely in [6,7]. In [6], by means of the Schauder fixed point theorem and the Banach contraction principle the authors investigated the existence and uniqueness of solutions for a class of nonlinear multi-point boundary value problems for fractional differential equations
\[

\left\{$$
\begin{array}{l}
D^{\alpha} u(t)+f\left(t, u(t), D^{\beta} u(t)\right)=0, \quad 0 \leqslant t \leqslant 1, \\
u(0)=0, \quad D^{\beta} u(1)-\sum_{i=1}^{m-2} \xi_{i} D^{\beta} u\left(\xi_{i}\right)=u_{0} .
\end{array}
$$\right.
\]

In [7], by means of a fixed point theorem on a cone, the authors investigated the existence of positive solutions for the following singular fractional boundary value problem

$$
\left\{\begin{array}{l}
D^{\alpha} u(t)+f\left(t, u(t), D^{\mu} u(t)\right)=0, \quad 0 \leqslant t \leqslant 1, \\
u(0)=u(1)=0 .
\end{array}\right.
$$

The difference between [6] and [7], the system of integral equations is adopted skillfully in this paper. In the literature of $[8], A=0$ is the special case of this paper.

2 Preliminaries

For convenience, we present here the necessary definitions and some lemmas from fractional calculus theory.

Definition 2.1 ${ }^{[4]}$ The Riemann-Liouville fractional integral of order $\alpha>0$ of a function $f:(0, \infty) \rightarrow \mathbb{R}$ is given by

$$
I_{0^{+}}^{\alpha} f(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} f(s) \mathrm{d} s
$$

provided the right side is pointwise defined on $(0, \infty)$.
Definition 2.2 ${ }^{[4]}$ The Riemann-Liouville fractional derivative of order $\alpha>0$ of a continuous function $f:(0, \infty) \rightarrow \mathbb{R}$ is given by

$$
D_{0^{+}}^{\alpha} f(t)=\frac{1}{\Gamma(n-\alpha)}\left(\frac{\mathrm{d}}{\mathrm{~d} t}\right)^{n} \int_{0}^{t} \frac{f(s)}{(t-s)^{\alpha-n+1}} \mathrm{~d} s
$$

where $n=[\alpha]+1,[\alpha]$ denotes the integer part of the real number α, provided the right side integral is pointwise defined on $[0,1)$.

Lemma 2.1 ${ }^{[4]}$ Let $\alpha>0$. If we assume $u \in C(0,1) \cap L(0,1)$, then the fractional differential equation

$$
D_{0^{+}}^{\alpha} u(t)=0
$$

has $u(t)=C_{1} t^{\alpha-1}+C_{2} t^{\alpha-2}+\cdots+C_{N} t^{\alpha-N}, C_{i} \in \mathbb{R}, i=1,2, \cdots, N$, which is a unique solution, where N is the smallest integer greater than or equal to α.

Lemma 2.2 ${ }^{[4]}$ Assume that $u \in C(0,1) \cap L(0,1)$ with a fractional derivative of order $\alpha>0$ that belongs to $C(0,1) \cap L(0,1)$. Then

$$
I_{0^{+}}^{\alpha} D_{0^{+}}^{\alpha} u(t)=u(t)+C_{1} t^{\alpha-1}+C_{2} t^{\alpha-2}+\cdots+C_{N} t^{\alpha-N}
$$

for some $C_{i} \in \mathbb{R}, i=1,2, \cdots, N$, where N is the smallest integer greater than or equal to α.

Property 2.1 ${ }^{[4]}$ Let $\alpha \geqslant 0, m \in \mathbb{N}$ and $D=\frac{\mathrm{d}}{\mathrm{d} x}$. If the fractional derivatives $\left(D_{0^{+}}^{\alpha} y\right)(x)$ and $\left(D_{0^{+}}^{\alpha+m} y\right)(x)$ exist, then

$$
\left(D^{m} D_{0^{+}}^{\alpha} y\right)(x)=\left(D_{0^{+}}^{\alpha+m} y\right)(x)
$$

Lemma 2.3 Let $f:[0,1] \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be a given function. Then the boundary value problem

$$
\left\{\begin{array}{l}
D^{\alpha} u(t)+f\left(t, u(t), D^{\alpha-1} u(t)\right)=0, \quad 0 \leqslant t \leqslant 1, \tag{2.1}\\
u(0)=0, \quad u(1)=B, \quad D^{\alpha-1} u(0)=C
\end{array}\right.
$$

is equivalent to the system of integral equations

$$
\left\{\begin{array}{l}
v(t)=C-\int_{0}^{t} f(s, u(s), v(s)) \mathrm{d} s \tag{2.2}\\
u(t)=B t^{\beta-1}-\int_{0}^{1} G(t, s) v(s) \mathrm{d} s
\end{array}\right.
$$

where

$$
G(t, s)= \begin{cases}\frac{[t(1-s)]^{\beta-1}-(t-s)^{\beta-1}}{\Gamma(\beta)}, & s \leqslant t \\ \frac{[t(1-s)]^{\beta-1}}{\Gamma(\beta)}, & t \leqslant s .\end{cases}
$$

Here $G(t, s)$ is called the Green function of boundary value problem (2.1), $\beta=\alpha-1$.
Proof Let $v(t)=D^{\alpha-1} u(t)$. Then problem (2.1) is equivalent to the system of ordinary differential equations

$$
\left\{\begin{array}{l}
D^{\alpha-1} u(t)=v(t), \quad 0 \leqslant t \leqslant 1,2<\alpha \leqslant 3, \tag{2.3}\\
v^{\prime}(t)=-f(t, u(t), v(t)), \\
u(0)=0, \quad u(1)=B, \quad v(0)=C .
\end{array}\right.
$$

Let $\beta=\alpha-1,1<\beta \leqslant 2$. Then problem (2.3) is equivalent to the system of ordinary differential equations

$$
\left\{\begin{array}{l}
D^{\beta} u(t)=v(t), \quad 0 \leqslant t \leqslant 1,2<\alpha \leqslant 3, \\
v^{\prime}(t)=-f(t, u(t), v(t)) \\
u(0)=0, \quad u(1)=B, \quad v(0)=C
\end{array}\right.
$$

We find that

$$
\begin{gathered}
v(t)=C-\int_{0}^{t} f(s, u(s), v(s)) \mathrm{d} s \\
u(t)=I^{\beta} v(t)+C_{1} t^{\beta-1}+C_{2} t^{\beta-2}=\frac{1}{\Gamma(\beta)} \int_{0}^{t}(t-s)^{\beta-1} v(s) \mathrm{d} s+C_{1} t^{\beta-1}+C_{2} t^{\beta-2} .
\end{gathered}
$$

On the one hand, the boundary condition $u(0)=0$ implies that $C_{2}=0$.
On the other hand, by applying boundary condition $u(1)=B$, we find that

$$
B=\frac{1}{\Gamma(\beta)} \int_{0}^{1}(1-s)^{\beta-1} v(s) \mathrm{d} s+C_{1},
$$

so it implies that

$$
C_{1}=B-\frac{1}{\Gamma(\beta)} \int_{0}^{1}(1-s)^{\beta-1} v(s) \mathrm{d} s .
$$

Consequently,

$$
\begin{aligned}
v(t) & =C-\int_{0}^{t} f(s, u(s), v(s)) \mathrm{d} s \\
u(t) & =B t^{\beta-1}-\left[\int_{0}^{1} \frac{(1-s)^{\beta-1} t^{\beta-1}}{\Gamma(\beta)} v(s) \mathrm{d} s-\int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} v(s) \mathrm{d} s\right] \\
& =B t^{\beta-1}-\left[\int_{0}^{t} \frac{[t(1-s)]^{\beta-1}-(t-s)^{\beta-1}}{\Gamma(\beta)} v(s) \mathrm{d} s+\int_{t}^{1} \frac{[t(1-s)]^{\beta-1}}{\Gamma(\beta)} v(s) \mathrm{d} s\right] \\
& =B t^{\beta-1}-\int_{0}^{1} G(t, s) v(s) \mathrm{d} s .
\end{aligned}
$$

Lemma 2.4 ${ }^{[5]}$ The function $G(t, s)$ defined by Lemma 2.3 satisfies:
(1) $G(t, s)>0, \quad t, s \in(0,1)$;
(2) there exists a positive function $\gamma \in C(0,1)$ such that

$$
\min _{\frac{1}{4} \leqslant t \leqslant \frac{3}{4}} G(t, s) \geqslant \gamma(s) \max _{0 \leqslant t \leqslant 1} G(t, s)=\gamma(s) G(s, s), \quad \text { for } 0<s<1 \text {. }
$$

3 Main Results and Proofs

Let $C[0,1]$ be the Banach space endowed with the max norm $\|u\|=\max _{0 \leqslant t \leqslant 1}|u(t)|$ and $\eta=\max \{|B|,|C|\}$,

$$
\begin{gathered}
T_{1}(u, v)(t)=B t^{\beta-1}-\int_{0}^{1} G(t, s) v(s) \mathrm{d} s, \\
T_{2}(u, v)(t)=C-\int_{0}^{t} f(s, u(s), v(s)) \mathrm{d} s, \\
(T(u, v))=\left(T_{1}(u, v), T_{2}(u, v)\right) .
\end{gathered}
$$

Then, problem (2.2) is equivalent to the following equation

$$
\begin{equation*}
T(u, v)=(u, v), \quad(u, v) \in C[0,1] \times C[0,1] . \tag{3.1}
\end{equation*}
$$

That is, every solution of (2.2) is also a fixed-point of (3.1).
Theorem 3.1 Suppose that $f:[0,1] \times R \times R \rightarrow R$ holds. If there exist $d>0$ and $\frac{1}{2} \leqslant k \leqslant \frac{1}{2 m}$, with $m=\int_{0}^{1} G(s, s) \mathrm{d} s$ such that

$$
\begin{equation*}
\max \{|f(t, u, v)|: t \in[0,1],|u| \leqslant 2 \eta+d,|v| \leqslant k(2 \eta+d)\} \leqslant(2 k-1) \eta+k d . \tag{3.2}
\end{equation*}
$$

Then, problem (1.1) has at least one solution $u^{*} \in C[0,1]$ satisfying $\left\|u^{*}\right\| \leqslant 2 \eta+d$ and $\left\|D^{\alpha-1} u^{*}\right\| \leqslant k(2 \eta+d)$.

Proof Let $C[0,1] \times C[0,1]$ be the Banach space endowed with the norm $\|(u, v)\|=$ $\max \left\{\|u\|, \frac{\|v\|}{k}\right\}, R=2 \eta+d, V_{R}=\{(u, v) \in C[0,1] \times C[0,1]:\|(u, v)\| \leqslant R\}$. Then V_{R} is a convex closed set in $C[0,1] \times C[0,1]$. If $(u, v) \in V_{R}$, then $\|u\| \leqslant R$, and $\|v\| \leqslant k R$. So $|u(t)| \leqslant R,|v(t)| \leqslant k R, 0 \leqslant t \leqslant 1$. By the condition (3.2) of Theorem 3.1, we obtain $|f(t, u, v)| \leqslant(2 k-1) \eta+k d, 0 \leqslant t \leqslant 1$. Thus

$$
\begin{aligned}
\left\|T_{1}(u, v)\right\| & \leqslant \max _{0 \leqslant t \leqslant 1}\left|B t^{\beta-1}\right|+\max _{0 \leqslant t \leqslant 1} \int_{0}^{1} G(t, s)|v(s)| \mathrm{d} s \\
& \leqslant \eta+k R \int_{0}^{1} G(s, s) \mathrm{d} s=(1+2 k m) \eta+k m d, \\
\left\|T_{2}(u, v)\right\| & \leqslant \max _{0 \leqslant t \leqslant 1}|C|+\max _{0 \leqslant t \leqslant 1} \int_{0}^{t}|f(s, u(s), v(s))| \mathrm{d} s \\
& \leqslant \eta+(2 k-1) \eta+k d=2 k \eta+k d .
\end{aligned}
$$

In view of the above, we see that

$$
\begin{aligned}
\left\|\left(T_{1}(u, v), T_{2}(u, v)\right)\right\| & =\max \left\{\left\|T_{1}(u, v)\right\|, \frac{1}{k}\left\|T_{2}(u, v)\right\|\right\} \\
& \leqslant \max \{(1+2 k m) \eta+k m d, 2 \eta+d\}=2 \eta+d .
\end{aligned}
$$

Therefore, $T: V_{R} \rightarrow V_{R}$. Then, we can easily prove that $T: C[0,1] \times C[0,1] \rightarrow$ $C[0,1] \times C[0,1]$ is completely continuous by Arzela-Ascoli theorem. Therefore, according to Leray-Schauder fixed-point theorem, the operator T has a fixed point $\left(u^{*}, v^{*}\right) \in V_{R}$.

Theorem 3.2 Suppose that $B \geqslant 0, C \leqslant 0$ and $f:[0,1] \times R_{+} \times R_{-} \rightarrow R_{+}$. If there exist $d>0$ and $\frac{1}{2} \leqslant k \leqslant \frac{1}{2 m}$, with $m=\int_{0}^{1} G(s, s) \mathrm{d}$ s such that

$$
\max \{f(t, u, v): t \in[0,1], 0 \leqslant u \leqslant 2 \eta+d,-k(2 \eta+d) \leqslant v \leqslant 0\} \leqslant(2 k-1) \eta+k d .
$$

Then, problem (1.1) has at least one solution $u^{*} \in C[0,1]$ satisfying $\left\|u^{*}\right\| \leqslant 2 \eta+d$ and $\left\|D^{\alpha-1} u^{*}\right\| \leqslant k(2 \eta+d)$.

Proof Set

$$
\begin{aligned}
f_{1}(t, u, v) & = \begin{cases}f(t, u, v), & (t, u, v) \in[0,1] \times R_{+} \times R_{-}, \\
f(t, u, 0), & (t, u, v) \in[0,1] \times R_{+} \times R_{+},\end{cases} \\
f_{2}(t, u, v) & = \begin{cases}f_{1}(t, u, v), & (t, u, v) \in[0,1] \times R_{+} \times R \\
f_{1}(t, 0, v), & (t, u, v) \in[0,1] \times R_{-} \times R\end{cases}
\end{aligned}
$$

Obviously, $f_{2}:[0,1] \times R \times R \rightarrow R_{+}$is continuous and

$$
\begin{aligned}
& \max \left\{\left|f_{2}(t, u, v)\right|: t \in[0,1],|u| \leqslant 2 \eta+d,|v| \leqslant k(2 \eta+d)\right\} \\
= & \max \{f(t, u, v): t \in[0,1], 0 \leqslant u \leqslant 2 \eta+d,-k(2 \eta+d) \leqslant v \leqslant 0\} \\
\leqslant & (2 k-1) \eta+k d .
\end{aligned}
$$

Applying Theorem 3.1, the problem

$$
\left\{\begin{array}{l}
D^{\alpha} u(t)+f_{2}\left(t, u(t), D^{\alpha-1} u(t)\right)=0, \quad 0 \leqslant t \leqslant 1, \\
u(0)=0, \quad u(1)=B, \quad D^{\alpha-1} u(0)=C
\end{array}\right.
$$

has at least one solution $u^{*} \in C[0,1]$ satisfying $\left\|u^{*}\right\| \leqslant 2 \eta+d$ and $\left\|D^{\alpha-1} u^{*}\right\| \leqslant$ $k(2 \eta+d)$.

If $C \leqslant 0$, then

$$
\begin{equation*}
D^{\alpha-1} u^{*}(t)=C-\int_{0}^{t} f_{2}\left(s, u^{*}(s), D^{\alpha-1} u^{*}(s)\right) \mathrm{d} s \leqslant 0, \quad 0 \leqslant t \leqslant 1 . \tag{3.3}
\end{equation*}
$$

Consider that

$$
\begin{equation*}
u^{*}(t)=B t^{\beta-1}-\int_{0}^{1} G(t, s) D^{\alpha-1} u^{*}(s) \mathrm{d} s \geqslant 0, \quad 0 \leqslant t \leqslant 1 . \tag{3.4}
\end{equation*}
$$

From (3.3) and (3.4), we get

$$
f_{2}\left(s, u^{*}(s), D^{\alpha-1} u^{*}(s)\right)=f\left(s, u^{*}(s), D^{\alpha-1} u^{*}(s)\right) .
$$

This proves that u^{*} is a solution of problem (1.1).
If $C<0$, then

$$
u^{*}(t)=B t^{\beta-1}-\int_{0}^{1} G(t, s) D^{\alpha-1} u^{*}(s) \mathrm{d} s>0, \quad 0 \leqslant t \leqslant 1 .
$$

If $B=C=0$ and $f(t, 0,0) \neq 0,0 \leqslant t \leqslant 1$, then the zero function is not a solution of problem (1.1).

4 Example

Consider the following boundary value problem

$$
\left\{\begin{array}{l}
D^{\frac{5}{2}} u(t)+\left(k-\frac{1}{2}\right) t^{2} u+\sin D^{\frac{3}{2}} u(t)=0, \quad 0 \leqslant t \leqslant 1, \tag{4.1}\\
u(0)=0, \quad u(1)=B, \quad D^{\frac{3}{2}} u(0)=C .
\end{array}\right.
$$

Let $D^{\frac{3}{2}} u(t)=v(t), R=2 \eta+d, d>2$. If $(u, v) \in V_{R}$, then $\|u\| \leqslant R$, and $\|v\| \leqslant k R$. We have

$$
|f(t, u, v)|=\left|\left(k-\frac{1}{2}\right) t^{2} u+\sin v(t)\right| \leqslant\left(k-\frac{1}{2}\right)(2 \eta+d)+1 \leqslant(2 k-1) \eta+k d .
$$

Therefore,

$$
\max \{|f(t, u, v)|: t \in[0,1],|u| \leqslant 2 \eta+d,|v| \leqslant k(2 \eta+d)\} \leqslant(2 k-1) \eta+k d
$$

Then by Theorem 3.1, the boundary value problem (4.1) has at least one solution $u^{*} \in C[0,1]$ satisfying $\left\|u^{*}\right\| \leqslant 2 \eta+d$ and $\left\|D^{\frac{3}{2}} u^{*}\right\| \leqslant k(2 \eta+d)$.

Acknowledgements The authors are very grateful to the reviewers for their valuable suggestions and useful comments, which led to an improvement of this paper.

References

[1] J.J. Zhou, The existence and uniqueness of the solution for nonlinear elliptic equations in Hilbert spaces, J. Inequal. Appl., 250(2015), DOI 10.1186/s13660-015-0764-7.
[2] I. Podlubny, Fractional Differential Equations: Mathematics in Science and Engineering, Academic Press, New York, 1999.
[3] G. Adomian, M. Elrod, R. Rach, New approach to boundary value equations and application to a generalization of Airy's equation, J. Math. Anal. Appl., 140(1989),554568.
[4] A.A. Kilbas, M.H. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Ltd, 2006.
[5] Z.B. Bai, H.S. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311(2005),495-505.
[6] U.R. Mujeeb, A.K. Rahmat, Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations, Appl. Math. Lett., 23(2010), 1038-1044.
[7] P.A. Ravi, O. Donal, S. Svatoslav, Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations, J. Math. Anal. Appl., 371(2010),57-68.
[8] Q.L. Yao, Solution and positive solution for a semilinear third-order two-point boundary value problem, Appl. Math. Lett., 17(2004),1171-1175.

[^0]: *This work was supported by the Natural Science Foundation of China (No.11271235) and the Foundation of Datong University (2014Q10).
 ${ }^{\dagger}$ Manuscript received May 20, 2016; Revised November 9, 2016
 ${ }^{\ddagger}$ Corresponding author. E-mail: iris-gcx@163.com

