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Global Regularity of the Logarithmically
Supercritical MHD System in Two-dimensional
Space

Min Chenghf

Abstract In this paper, we study the global regularity of logarithmically
supercritical MHD equations in 2 dimensional, in which the dissipation terms
are —uA%%u and —vL%*b. We show that global regular solutions in the cases
0<a<i,B>13a+28>3.
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1. Introduction

We consider the two-dimensional logarithmically supercritical magnetohydrody-
namics (MHD) system:

ug +u - Vu+ Vi 4 pA**u —b- Vb = 0, (1.1)
b+ u-Vb+vL*b—b-Vu=0, (1.2)
(u,b)(x,0) = (ug,by) in R?, (1.3)
dive = divb = 0. (1.4)

where u = u(x,t) € R? is the unknown velocity field, b = b(x, t) € R? is the magnetic
field, and m = m(z,t) € R represents the pressure. «, > 0 are real parameters.

A = (=A)Y/? is defined in terms of the Fourier transform Af(&) = |¢[£(€), and £2°
defined through a Fourier transform,

e
72(€D

with g : Rt — RT a radially symmetric, non-decreasing function such that g > 1.
When

,BERT,

L2F(€) = m(&)(€),m(&)

L2 =A%

For the system (1.1)-(1.4), We identify the case p = v = 0 as the GMHD system
with zero velocity and zero magnetic diffusion respectively (so called ideal MHD
equations). The author in [1] studied the global existence of a weak solution when

a>1+2 a+B>1+2%neR In 2], the author showed that the GMHD
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equations exists a unique global smooth solution when «, 8 > % + 7, There are
some results [3-8] about the existence of the strong solution.

We want to improve the lower bound on the power of the fractional Laplacian
in the dissipative term of the generalized Navier-Stokes equations seems extremely
difficult, the author introduced the notion of "logarithmic supercriticality” in [9,10],
and also proved the global regularity of the solution. the author improved that
the results [2] by using the notion of ”logarithmic supercriticality” in [11], it were
improved that the solution is globally regular in [12,13].

Tran, Yu and Zhai [14] proved that the solutions are globally regular in the
following conditions:

1

Ma>2A>1 (0<a<i2a+f>2 (a>25=0

[N

it were improved that the solution is globally regular of the GMHD equations in
[15-19], and there are some results [20-22] about logarithmic type.

Now we focus on our study. The authors in [16] got a global regular solution
under the assumption that 0 < a < %,B > 1,3a+ 26 > 3. In this paper, the
dissipation term —vA2?°b has been replaced by general negative-definite operator
—vL?Pb by using the definition in [23], and in the proof, we will use the condition
in [24] on g such that there exists an absolute constant ¢ > 0 satisfying

g*(1) < cln(e + 7).

Theorem 1.1. Let 0 < a < %,5 > 1,3a+ 28 > 3, Suppose ug,byg € H® with s > 2
and divug = divby = 0 in R2. Then the problem (1.1)-(1.4) exists the solution (u,b)
satisfying

u,b e L(0,T; H®), u € L*(0,T; HT*), b e L*(0,T; H+%"). (1.5)

foranyT >0 and 8> 5 > 1.
Remark 1.1. When a+ 3 > 2,s > 2, the author in [14] prove the global regularity.

2. Preliminaries

In this section, we will review some known facts and elementary inequalities that
will be used frequently later.

Lemma 2.1. (e-Young inequality) If a and b are nonnegative real numbers and
p and q are real numbers greater than 1 such that Il] + % =1, then

eaP q b

ab< — 4+€ P —,
p q

the equality holds if and only if aP = b9.

Lemma 2.2. ( Gagliardo-Nirenberg inequality [25, 26]) Let u belong to LY
and its derivatives of order m, A™u, belong to L", 1 < q,r < co. For the derivatives
Nu, 0 < j < m, the following inequalities hold

1A ullpe < CIA™ g [lull 2, (2.1)
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1 ] 1 m 1
=’+a(—)+(1—a),
n n

q

where

for all a in the interval

<a<l.

3~

(the constant depending only on n,m,j,q,r, ), with the following exceptional cases

1Ifj=0,rm <n, ¢g= oo then we make the additional assumption that either u
tends to zero at infinity or u € L® for some finite s > 0;

2Ifl<r< 00, and m — j — % is a non negative integer then (2.1) holds only for
a satisfying = < a < 1.

Lemma 2.3. (Gronwall’s Inequality [27])

(i) Let n(-) be a nonnegative, absolutely continuous function on [0,T], which sat-
isfies for a.e. t the differential inequality

n(t) < o(t)n(t) + (1),

where ¢(t) and ¥ (t) are nonnegative, summable function on [0,T], Then

n(t) < e #9s[0) + / (s)ds].
0

forall0 <t <T;

(ii) In particular, if
nt < ¢n on [0,T] and n(0) = 0,

then
n=0on [0,7T].

3. A priori estimates

In the next section, without loss of generality, we assume p = v = 1.

Lemma 3.1. (Basic energy estimates)It holds that for any T > 0,
T
OSUET(HUHQH +[1bllZ2) +2/ (1A% 22 + 1£70]1F2)dr < |luol|F2 + [Ibol72- (3.1)
<r< 0

Proof.

Multiplying both sides of the equations of v and b in (1.1)-(1.2) by w and b,
respectively, after integration by parts and taking the divergence free property into
account, we have the following energy estimate

1d

5 77 (lellZe + [B172) + 1A w72 + [ £7B]I 72 = 0. (3.2)

It implies that the inequality (3.1) holds and consequently completes the proof. [
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Let w=V=* -u=—0u; +01us, j = V- b= —0b1 + O1bs, then we can get the
well-known equations for the vorticity w and the current j:
wi +u-Vw+ A0 =b-Vj, (3.3)
Je+u-Vj+LPj=b-Vw+T(Vu, Vb). (3.4)
with
T(Vu, Vb) = 20:1b; (81UQ + 82u1) + 262’[1,2(81[)2 + agbl).
Now, we will give the H! estimation for (u,b).

Lemma 3.2. Suppose that o > 0,3 > 1. Let ug,by € H*. For any T > 0, we have
t
lwllZ2(t) + 17112 (1) +/0 @lIAwl|72 +[1£75]72)dr < C(T). (3.5)

Proof.

Multiplying (3.3)-(3.4) by w and j, respectively, integrating over R?, and adding
the resulting equations together, we can estimated like [15, p129], For the complete-
ness of the article, it will provided in the appendix of this paper.

1d

3wl + ) = [ 7(Tu Ve)jde — A%l - 125513
R2

(3.6)
. 1 . o .
< ClllZal713: + 5 I3 — IA%w]3e — 1275122,
About this term ||Vj]|2., we obtain
IVl2s = / €27 7de
- / €75 + / €PT5de
[£1<1 [€1>1

< / Tide + / €277de,
[€1<1 [€1>1

where

= 28 = 2
[T = [ et I
[€1>1 \

eo1 9°(€D) GEE

€2 €% =
< d
< S 1ea ('5')/m>1 (e

In(e + ¢) €28 =
< d
AT /5>192<|s|>” <
< M||L5][3..

when 8 > 1, the function is bounded. ¢(|¢|) such that there exists an absolute
constant ¢ > 0 satisfying
g*(€]) < eln(e + [€]).

SO we can get

IVillZe < l7l172 + MIL7]][Z-. (3.7)
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As well as

1£7]I72 =

e e
/'5' Perae ™

|£|2ﬁ ?
bbd
< SUP ST /|€| 3

N \sPﬂl
<sp i /I&Ibbdé

< CHJ||L2~

when 8 > 1, if fg .£Pb||2 ,dr is bounded, fot [|7]12 2d7 is also bounded.

¢ ¢
/ 1£°0]|32dr < C = / I5]172dr < C. (3.8)
0 0
putting (3.7) into (3.6), we obtain

d , ) 1,
7 (llze + 1511Z2) < CllwlZ2 131122 + 151z
M, . :
+ —11£%5172 = 2AIA Il — 2/ L7517

taking e small enough so that ¢ = M, and using Gronwall’inequality and (3.8), we
obtain

t
lwliZ2 () + 151172 (2) +/0 (2l A2 + 1£75]1Z2)dr < C(T).

The proof of the lemma is completed. O

Lemma 3.3. (LemmaZ2.2, [16]) Suppose that 0 < a < %, B> >, r=a+p—
1>0andk>a+p. Let ug, by € H*. Then for any T > 0, we have

t
IA"51172 +/ IL7A7j||Z2d7 < C(uo, bo, T). (3.9)
0

Proof. Applying A" on both sides of (3.4), and multiplying by A"j, integrating
over R?, we obtain

T BAT
2dtIIA illze + ILPAT 512
=— | A(u-VH)Ajde+ | A"(b-Vw)A"jdx
R2 R2 (3.10)

+ [ A(T(Vu,Vb)A"jdz
R2

=A + As+ As.

Now, we are ready to estimate the three terms.
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For Ay, we can estimate like [16, p480],

. —_ . 27L . i
Ar < e APFTGIRs + Cllull 2wl 2 1112 ™ 1A% 73

28] —2a—1 142a

. (3.11)
+Cllullzzllwllc2 gl . ™ 1A% 2

About this term [[A%1+75(|2,, we have
4% = [ 1€l

:/II |§|2('@1‘”)3/jd§+/ |§|2(/31+r)33\d§
§I<1

[€]>1

< / Tide + / 2B+ T,
[€1<1 [E1>1

where
/5>1 el = o1 5|2Tg|§(|2§|)33- €20 g|2§<|§5|)d§
< sup LU0 [ e BT
< o Ty [, K

< M| LPAT]|2..

when 8 > 1 > 1, the function is bounded. g(|¢|) such that there exists an absolute
constant ¢ > 0 satisfying

g*(I€]) < cln(e + [¢]).
S0 we can get
IAZF7 507 < Nl517e + MILOAT |12 (3.12)
putting (3.12) into (3.11), we have
. . _ . 2L . L
A1 < Me|lL2A7jI[72 + elljlge + Cllull 2> w72 N51 = ™ 1A% 11 3

281 —2a—1 14+2a

+Cllullzzllwlczllill = ™ 1A%

for As — A3, we can estimate like [16, p480], and using (3.12), we get

2(B81—« 2(14a)

)
Az < e ATFTGIRs + Cllofl 2 1A (w2

_2r 2
+ OB NN 1Al

(B1=) 2(1+o)

2(81
< Mel|LA7 5|22 + elllZ2 + Clloll 2™ 1A% ]| 7wl

2r 2
+CIbll 2 AT 7 1A w7,
5 9 22(»5;1+T')
. . 1
Az < | AT + ClljlI e llwll 27

2(81+7)
< Me||LPA7j|[72 + el 72 + ClillZelloll 27
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Finally, putting the above results of A; — A3 into (3.10), we have

2dt||AT]||L2 +ILPATIZs < Cllull k22wl 522 1) g IIAﬂle‘“

281 —2a—1 1+2a

+Ollullzellwllzz 7l = ™ 1A%

2(B81—@) 2(1+a)

+C||bIIL1”“ IIABIJIIL”“ w72

OB AT A
+ellillis + Me| £7A7j[7

2(B1+7)

+Cllalzallwll 2

taking € small enough so that € = ﬁ, and by Gronwall’s inequality and Lemma 3.2,
we obtain

t
IAT]12 + / LA |2 adr < Clup, bo, T).
0

The proof of the lemma is completed. O

4. Proof of Theorem 1.1

In this section, we devoted to prove Theorem 1.1:
Proof. Combining Lemma 3.1 and Lemma 3.2, we can move on to H? estimates.
Differentiating (3.3)-(3.4), we get

(Oiw)¢ + u - V(0w) = —(05u) - Vw + (9;b) - Vj + b -V (9;5) — A>*(diw), (4.1)

+ 0;(T(Vu, Vb)) — L2 (8,7). (4.2)

Multiplying by 9;w and 9;j both sides of (4.1)-(4.2) respectively, integrating over
R? and taking the divergence free property into account, we have

1d
2dt

2 2
_ /}R2 ;[(&u) - Vw]|Ojwdz + /R2 ;[(@b) - Vj]0swda:
— 3 ) - Vild:idx - D) - Vwld; idx (4.3)
/RQZ[(& ) - Vjloijd +/RQ ;[(6‘&) Vwld;jd
/ Z T(Vu, Vb))|8;jdx
R2

< C(h +12+13 + Iy + I5).

= (IVwllZz + [Vil72) + [A*VewlZ2 + 17 V517

Now, we are ready to give the estimate for the right hand of (4.3).
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I can be estimated like [16, p483]. For completeness of the article, it will
provided in the appendix of this paper,

I < Ce|wl|Z " [IVwliz: + Cle) A w]Z.. (4.4)

where we know the fact o > 0 and p > L.
We can estimate ||w]||L» like [16, p483], the detailed process about (4.5) in ap-
pendix, we have

d )
Zlwllze < (bl [Vilie. (4.5)
combining Lemma 3.3 and Sobolev embedding, we get
j e L?(0,T; HH*") = be L*(0,T;L>®),Vj € L*(0,T; LP).
In order to get ||Vj||L» bounded by using the Gagliardo-Nirenberg inequality,
IVillee < 15120 AP 41 .

where

1 2 2

0= (1-- ,0<0<1 = < ——.
= va ERFEICEY

because of r = a+ 51 — 1 and 8 > S,

1
E<p<3f(a+26)'

so if a4+ 28 < 3, we get

1 2

e - 2 .
a<3—(26+a) = 3a+25>3;

on the other hand, o + 25 > 3, thus we can choose any number, such that
1
— <p<oo.
!
therefore, when 3a + 28 > 3, we have
lwllze < llwollze + 110l 220, 7:) Vil L2(0,7:L0) < Clwo, T). (4.6)
For I, and Iy, we can estimate in a straight way (see [14, p4201]),
Iy = Is < C()lljllZe + Vil 22 Vw22 + el AV 2. (4.7)

About this term [|[AVj||2,, we have
1AV = [ 1e1'Tide
= [ lelTiag+ [ lel'Tiae
1€1<1 |€1>1

< / Tide + / €[47de,
[€1<1 [€1>1
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where

4’?X-d _ 2 |f|2ﬂ 29 (| |)
/Wm e = [V g e g e

g*(I€) 2 €77 =
S SUD T n) /|§>1|£ Jjde

le)>1 1€ 2(1€1)
_ o (et e 2 167 =
= o TepED /W & e
< M||LFVj|7-.

when 8 > 1, the function is bounded. ¢(|¢|) such that there exists an absolute
constant ¢ > 0 satisfying

g*(I€]) < eln(e + [¢]).

then, we can get
IAVIIZ2 < llillZe + MLV 7z (4.8)
putting (4.8) into (4.7), we get
I = I < C(e)jllZ + IVl 22 [Vwlz + Mell L7V 72,
thus, Is and I also can be estimated like [14, p4202], and using (4.8), we obtain

I3 < C(E ol Z:[1V72 + el AV ]2

lolZ211V511Z2 + C)il72 + Me| L7V 72,
17122 + IV IVwliZs + Ce)wllZ=lIVill7e + el AVSIZ
131122 + IVill72 1 VwliZz + Ce)wliZ=Vil7z + Me| L7V 7.

Cle
I5 < O(E
C(

g

— — ~— —

Finally, putting the above results of I; — I5 into (4.3), we deduce

d , . ,
5 7 (IVelzz +IVillZ) + 1AV 7z + 1£7%3]172

R ‘ 4.9
< CEwlizs + IVillze + llwll 25 ") IVwllz: + 1Vill72) (49)

C(e)ljllz: + Cell A wlZs + Me| L7Vj]Z..

taking € small enough so that Ce = Me = %, and using the Gronwall’s inequality

and (4.6), we get
¢
(IVellZz +1VilZ2) +/0 (IA*Vwl[f2 + L7V j][72)dr < O(T).

therefore, we have w ,j € L%(0,T; L>).
When 0 < a < 3 1 B> 1,3a+ 28 > 3, this completes the proof of Theoreml.1.
O
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5. Appendix
In this appendix, we will provides the detailed proof in the previous sections.

Proof of (3.6) of Lemma 3.2 :

As the previous reason, we have (see [15, p129])
1d
2dt
= / T(Vu, Vb)jdx

]R2
< Cllwllz2 51174
< Cllwllzzllillz2lVil 22

. 1 ‘
< Cllolzalillz: + 5 IVillz-

(loliZe + 150Z2) + [AwlZ + 1£7511Z

where we have used the Gagliardo-Nirenberg inequality:

1 L
17lle < WIHIE= Vil Z2-

Proof of (4.4) of the proof of Theorem 1.1 :
We are ready to give the estimate I (see [16, p483]),

I :/ |Vu||Vw|dz
R2
<OV 1o || V||* 2
Lr—1

<Clwleel|Vwl? 2
Lr—1
2_;9% 1+« p%
<Cllwllze Vel o ™ AT w]| 13
po
<Cellw| 7 Vw22 + Cle) [AFw|| T2

where we used the Gagliardo-Nirenberg inequality

1

=28 A1t e
VWl 2 < CIVWll g™ AT w2 2>~

Thus we have (4.4).
Proof of (4.5) of the proof of Theorem 1.1 :

We multiply both side of (3.3) by |w|P~2w(p > 2) and integrate with respect to
x in R? to obtain(see [16, p483])

1d
fd—||w||ip+/ (Ao‘w)|w|p_2wdac:/ (b-V)j|w|p_2wdx.
P t R2 R2

where we have used V - v = 0 and the following property [28]:
/ (A*w)|w|P~2wdz > 0.
R2
we have

d
— r < ||b||Loe || e -
Zlelzr < 0l 1Vile

Thus we have proved (4.5).
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