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Traveling Epizootic Waves of a Fox Rabies Model
with Small Spatial Diffusion∗

Jie Wang1,†, Jin Dong1 and Jian Wang1

Abstract In this paper, to describe the spread of fox rabies, a degenerate
SEI epidemic model with small spatial diffusion equipped by infectious foxes
due to rabies is investigated. In particular, the existence of traveling waves
is established by the geometric singular perturbation theory for the larger
speeds, while the non-existence of traveling wave is still derived for the smaller
speeds. Moreover, some numerical simulations are implemented to illustrate
the propagation dynamics driven by traveling waves.
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1. Introduction

This paper investigates the propagation dynamics in the following reaction-diffusion
equation modeling the rabies among foxes:
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(1.1)

where
N = S + E + I

is the density of total fox population, while S(x, τ), E(x, τ) and I(x, τ) are the
densities of susceptible foxes, infected but non-infectious, i.e., exposed rabid foxes,
and infectious foxes at location x and time τ respectively; σ is the average rate
at which infected foxes become infectious; β is the transmission coefficient of fox
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rabies; α is the mortality of infectious foxes; a, b are the birth rate and the intrinsic
death rate; K is the environmental carrying capacity. Thus, the term (a− b)N/K
describes the depletion of the food supply by all foxes. In particular, the diffusion
coefficient D0 is introduced on behalf of the additional spatial activity of infectious
foxes due to rabies, which both the susceptible and exposed foxes do not have. Note
that all parameters in the model are positive constants.

As is well-known, rabies is a serious disease threatening human health since it
could be easily transmitted from infectious foxes to domestic animals, and then
to humans. For example, despite of various efforts to stop it by hunting foxes
and vaccinating them, the wave of epizootic in Europe was widely dispersed in
northern France in 1980 [15]. Indeed, evidences suggest that epidemics such as fox
rabies always spread spatially in a way like traveling waves [17]. Thus, there are
natural reasons to comprehend the transmission behavior of rabies, in particular,
the propagation dynamics of epidemics [12].

In fact, Anderson et al. [1] proposed earlier a kinetic model of fox rabies without
the spatial diffusion to describe the dynamics of the spread of rabies. Furthermore,
Murray et al. [17] adopted an asymptotic analysis method to study the first-order
approximation traveling waves. Different from such studies, this paper accurately
analyzes the existence of traveling waves by selecting the small diffusion coefficient
D0 as the perturbation parameter and combining with the geometric singular per-
turbation method, as employed by Szmolyan [20] and Gourley [8]. The readers
are referred to Ruan and Xiao [19], Wang and Wang [21] and Pang and Xiao [18]
for more existence or non-existence results of traveling waves established by such
a way. As a result, we can therefore draw the conclusion of the dynamic propaga-
tion of the system in the space with more practical significance and more abundant
phenomena.

Henceforth, in order to simplify the model, we rescale the previous system (1.1)
to the following model with non-dimensional quantities by setting s = S/K, e =
E/K, i = I/K, n = N/K,D = D0/βK, t = βKτ, ϵ = (a − b)/βK, δ = b/βK, µ =
σ/βK and d = (α+ b)/βK:



∂s

∂t
= ϵ(1− n)s− is,

∂e

∂t
= is− (µ+ δ + ϵn)e,

∂i

∂t
= D

∂2i

∂x2
+ µe− (d+ ϵn)i,

(1.2)

where n = s+ e+ i, and ϵ, µ, δ, d and D are positive.

The rest of this paper is structured as follows: First, Section 2 is devoted to
prove the non-existence of traveling waves for R0 > 1 and 0 < c < c∗, while
obtaining the existence of traveling waves by the geometric singular perturbation
method for R0 > 1 and c ≥ c∗. Finally, in Section 3, some numerical simulations
are implemented to illustrate our main results about the existence of traveling wave
solutions of system (1.2).
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2. The non-existence and existence of traveling wa-
ves

In this section, we will consider traveling waves of system (1.2) on R = (−∞,+∞).
Since the model in a homogenous habit with Neumann boundary condition defines
the same basic reproduction number as its kinetic counterpart by [22, Theorem
3.4], the basic reproduction number R0 = µ

(d+ϵ)(µ+ϵ+δ) can be given. When R0 > 1,

namely, 0 < d < 1
1+ ϵ+δ

µ

− ϵ, there are two non-negative steady-state solutions for

system (1.2), E0 = (1, 0, 0) and E1 = (s∗, e∗, i∗), where s∗ = d + (ϵ + ϵd+δ
µ )d,

e∗ = ϵd(1−d)
µ and i∗ = ϵ(1− d) up to the first order in ϵ and δ.

We introduce the solutions in this form s(x, t) = u(x + ct), e(x, t) = v(x + ct)
and i(x, t) = w(x+ ct), where u, v and w are functions of ξ = x+ ct, and the wave
speed c is positive. Then, system (1.2) can be rewritten as

cu′ = ϵ(1− n)u− wu,

cv′ = wu− (µ+ δ + ϵn)v,

cw′ = Dw′′ + µv − (d+ ϵn)w,

(2.1)

where the prime is the derivative with respect to the variable ξ. Considering the
epidemic implication, the traveling waves u, v and w need to be non-negative and
have the following conditions{

(u(−∞), v(−∞), w(−∞)) = (1, 0, 0),

(u(+∞), v(+∞), w(+∞)) = (u∗, v∗, w∗).
(2.2)

Here, u∗ = s∗, v∗ = e∗, w∗ = i∗.

Denote w′ = g. Then, system (2.1) becomes
cu′ = ϵ(1− n)u− wu,

cv′ = wu− (µ+ δ + ϵn)v,

w′ = g,

Dg′ = cg − µv + (d+ ϵn)w.

(2.3)

For system (2.3), there are two equilibria Ê0 = (1, 0, 0, 0) and Ê1 = (u∗, v∗, w∗, 0)
when R0 > 1. Since the half-space R4

+ ≜ {(u, v, w, g)|u, v, w ≥ 0} is invariant, we
note that the original system (1.2) possesses the traveling wave solutions satisfying

(2.2), if and only if there is a heteroclinic orbit of system (2.3) connecting Ê0 and

Ê1, and the readers are referred to Szmolyan [20] for more details about this point.

Linearizing system (2.3) at Ê0, we get the characteristic equation(
λ+

ϵ

c

)
(λ3 +A1λ

2 −A2λ+A3) = 0, (2.4)

where A1 = Dϵ+Dδ+Dµ−c2

Dc , A2 = 2ϵ+δ+d+µ
D , A3 = µ−ϵδ−ϵd−δd−ϵµ−µd−ϵ2

Dc .

Denote

P (λ) = λ3 +A1λ
2 −A2λ+A3 = 0. (2.5)
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It is obvious that (2.5) has a negative root when R0 > 1, or equivalently, when
A3 > 0. According to the Routh-Hurwitz formula, two roots of (2.5) have positive
real parts, and given the conditions which they are positive, we investigate

P1(λ) =
P ′(λ)

3
= λ2 +

2A1

3
λ− A2

3
. (2.6)

It is clear that P ′(λ) = 0 has a unique positive root

λ∗ =
1

3Dc

(
c2 −Dϵ−Dδ −Dµ

+
√
(c2 −Dϵ−Dδ −Dµ)2 + 3Dc(2ϵc+ δc+ dc+ µc)

)
.

Since P (0) > 0, in order to satisfy (2.5) with two different positive real roots, we
only need P (λ∗) < 0. In addition, the equation (2.5) has two complex roots with
positive real parts, if P (λ∗) > 0.

Next, we express the above condition P (λ∗) < 0 by the parameter c. For such
an aim, we need to find conditions that P (λ∗) = 0 and P ′(λ∗) = 0. Set

P (λ) = P1(λ)Q1(λ) +R1(λ),

P1(λ) = R1(λ)Q2(λ) +R2(c).

Here, the quotient and remainder of P (λ) divided by P1(λ) are Q1(λ) and R1(λ),
and the quotient and remainder of P1(λ) divided by R1(λ) are Q2(λ) and R2. By
a series of calculations, it is easy to get

R2(c) =
3

4

1(
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D

)2
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4
(
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−
(
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)2
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c2D4

−
18
(
(µ+ ϵ+ δ)D − c2

)
(2ϵ+ δ + d+ µ)(R0 − 1)(d+ ϵ)(µ+ ϵ+ δ)

c2D3

+
4(2ϵ+ δ + d+ µ)3

D3
+

27 ((R0 − 1)(d+ ϵ)(µ+ ϵ+ δ))
2

c2D2

)
,

and we can see that the sign of −R2(c) is the same as

P2(c) = b0c
6 + b1c

4 + b2c
2 + b3,
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where

b0 =(2ϵ+ δ + d+ µ)2 + 4(R0 − 1)(d+ ϵ)(µ+ ϵ+ δ) > 0,

b1 =2D[2(2ϵ+ δ + d+ µ)3 + (ϵ+ δ + µ)(2ϵ+ δ + d+ µ)2

+9(2ϵ+ δ + d+ µ)(R0 − 1)(d+ ϵ)(µ+ ϵ+ δ)

+6(µ+ ϵ+ δ)(R0 − 1)(d+ ϵ)(µ+ ϵ+ δ)],

b2 =(ϵ+ δ + µ)2D2(2ϵ+ δ + d+ µ)2

+18(µ+ δ + ϵ)D2(2ϵ+ δ + d+ µ)(R0 − 1)(d+ ϵ)(µ+ ϵ+ δ)

+12(µ+ δ + ϵ)2D2(R0 − 1)(d+ ϵ)(µ+ ϵ+ δ)

−27D2[(R0 − 1)(d+ ϵ)(µ+ ϵ+ δ)]2,

b3 =4D3(µ+ δ + ϵ)3(d+ ϵ)(µ+ ϵ+ δ)(1−R0) < 0.

It is obvious that we must get P2(c) = 0. Then, P (λ∗) = 0 and P ′(λ∗) = 0. Since
R0 > 1, we can easily obtain that b0 > 0, b1 > 0 and b3 < 0, then there exists a
unique c∗ > 0 which satisfies P2(c

∗) = 0 by the Descarte’s rule of signs. Moreover,
there is

P2(c)


< 0, 0 < c < c∗,

= 0, c = c∗,

> 0, c > c∗.

(2.7)

If c = c∗, we can get that P (λ∗) = 0 and P ′(λ∗) = 0 by calculation. Since P (λ) is
a decreasing function of c, there exists the following lemma.

Lemma 2.1. (i) If 0 < c < c∗, P (λ) has two complex roots with positive real
parts;

(ii) If c = c∗, P (λ) only has a positive root;

(iii) If c > c∗, P (λ) has two positive roots.

Now, we discuss the non-existence of traveling waves.

Theorem 2.1. Suppose that R0 > 1 and D > 0. Then system (1.2) doesn’t have
any traveling wave solution propagating at the speed c ∈ (0, c∗).

Proof. Since equation (2.4) exists two negative real roots and two complex roots
with positive real parts, when 0 < c < c∗, there has a two-dimensional unstable
manifold which is based on Ê0. In addition, the critical point Ê0 is a spiral point
on the unstable manifold. As a result, for any heteroclinic orbit connecting Ê0 and
Ê1, the trajectory approaching Ê0 must satisfy that at least one of v(ξ) or w(ξ) is
negative for some ξ ∈ R, which is inconsistent with the non-negativity of traveling
waves.

Next, we prove the existence of traveling wave solutions, when c ≥ c∗ and
0 < D ≪ 1. In fact, when R0 > 1, the following system

ds

dt
= ϵ(1− n)s− is,

de

dt
= is− (µ+ δ + ϵn)e,

di

dt
= µe− (d+ ϵn)i

(2.8)
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has two steady-state solutions E0(1, 0, 0) and E1(s
∗, e∗, i∗). The details about the

global properties of (2.8) can be referred to [16, Theorem 4.1], and one can get the
following lemma.

Lemma 2.2. The solution E1 of (2.8) is globally asymptotically stable, when R0 >
1, and the solution E0 of (2.8) is globally asymptotically stable, when R0 ≤ 1.

Letting ξ = Dη in which D > 0 is sufficiently small, we can structure system
(2.3) as the following 

cu̇ = D(ϵ(1− n)u− wu),

cv̇ = D(wu− (µ+ δ + ϵn)v),

ẇ = Dg,

ġ = cg − µv + (d+ ϵn)w.

(2.9)

Here, dots express differentiation with respect to η. It is obvious that systems (2.3)
and (2.9) are equivalent, when D > 0, but the different time-scales lead to different
limiting systems. In fact, if D → 0, then system (2.3) becomes

cu′ = ϵ(1− n)u− wu,

cv′ = wu− (µ+ δ + ϵn)v,

w′ = g,

0 = cg − µv + (d+ ϵn)w.

(2.10)

Hence, the flow of (2.10) is limited on the submainfold

M0 =

{
(u, v, w, g) ∈ R4 : g =

µv − (d+ ϵn)w

c

}
,

and only the first three equations determine dynamics of (2.10) on M0. On the
other hand, letting D → 0 in (2.9), we have the system

cu̇ = 0,

cv̇ = 0,

ẇ = 0,

ġ = cg − µv + (d+ ϵn)w.

(2.11)

Generally, system (2.3) is regarded as the slow system due to the slow time-scale ξ
and M0 is the slow manifold, while (2.9) is regarded as the fast one due to the fast
variable η.

When M0 is normally hyperbolic, i.e., by linearizing the fast system (2.9),
one can obtain dimM0 eigenvalues with zero real part, there must exist a three-
dimension perturbed invariant mainfold MD for any sufficiently small D asserted by
the geometrical singular perturbation theory [7, 20]. Furthermore, all the dynamic
behavior near the slow mainfold is dominated by the one on the slow mainfold [14].

Indeed, direct calculations show that the eigenvalues of the linearization of the
fast system (2.9) on M0 are 0, 0, 0, c. Thus, M0 is normally hyperbolic. Therefore,
based on Fenichel’s Invariant Manifold Theorem [7], it is clear to get the following
three-dimensional locally invariant manifold

MD =

{
(u, v, w, g) ∈ R4 : g =

µv − (d+ ϵn)w

c
+Dh(u, v, w;D)

}
.
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Here, h is a smooth function and satisfies h(1, 0, 0;D) = 0, when 0 ≤ D < D1, and
D1 > 0 is small. Returning to the slow time scale, we have the projective system
of slow one (2.3) on MD can be written as



u′ =
ϵ(1− n)u− wu

c
,

v′ =
wu− (µ+ δ + ϵn)v

c
,

w′ =
µv − (d+ ϵn)w

c
+Dh(u, v, w;D).

(2.12)

Letting D = 0, the flow on M0 is

u′ =
ϵ(1− n)u− wu

c
,

v′ =
wu− (µ+ δ + ϵn)v

c
,

w′ =
µv − (d+ ϵn)w

c
.

(2.13)

Since (2.13) and (2.8) are substantially equal, E0 is unstable and E1 is globally
asymptotically stable for R0 > 1 by Lemma 2.2. Furthermore, the eigenvalues of
the linearization of (2.13) at E0 are

λ1 = − ϵ

c
,

λ2 = −
2ϵ+ δ + d+ µ+

√
(2ϵ+ δ + d+ µ)2 + 4(µ− (d+ ϵ)(µ+ ϵ+ δ))

2c
,

λ3 = −
2ϵ+ δ + d+ µ−

√
(2ϵ+ δ + d+ µ)2 + 4(µ− (d+ ϵ)(µ+ ϵ+ δ))

2c
.

When c ≥ c∗, λ3 > 0 is the unique eigenvalue with positive real part. According
to [11, Theorem 6.1], there is a one-dimensional unstable manifold on E0. Given
global stability of E1, the positive branch of the one-dimensional unstable manifold
of E0 for system (2.13), N u(E0), connects to E1. Namely, there is a heteroclinic
orbit which connects E0 and E1 for system (2.13). It is obvious that the manifolds
N u(E0) and N s(E1) intersect transversally. Next, we prove that when D > 0 is
small, this intersection persists. Therefore, we consider that the equilibrium E1 of
system (2.12) is locally asymptotically stable for small D > 0.

Lemma 2.3. For system (2.12), suppose that R0 > 1. Then for c ≥ c∗, there is
D0 > 0 such that E1 is locally asymptotically stable, when 0 < D < D0.

Proof. Let h1(D) = ∂h
∂u (E1), h2(D) = ∂h

∂v (E1), h3(D) = ∂h
∂w (E1). Linearizing

(2.12) at E1, there is the following characteristic equation

λ3 +A1(D)λ2 +A2(D)λ+A3(D) = 0, (2.14)
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where

A1(D) =
1

c
[µ− ϵ+ d+ δ + w∗ + 4ϵ(u∗ + v∗ + w∗)− cDh3(D)],

A2(D) =
1

c2
[(µ− ϵ+ δ + w∗ + 4ϵ(u∗ + v∗ + w∗))(d+ ϵ− cDh3(D))

− δu∗(µ+ cDh2(D)) + δu∗cDh1(D)− ϵ2],

A3(D) =
1

c3
[ϵ(µ− ϵ+ δ + w∗ + 4ϵ(u∗ + v∗ + w∗))(d− cDh3(D))

− ϵδu∗(µ+ cDh2(D)) + ϵδu∗cDh1(D)].

For c ≥ c∗, there has c̃ ≥ 0 which satisfies c = c∗ + c̃, and let

H1(D, c̃) = A1(D, c = c∗ + c̃),

H2(D, c̃) = A3(D, c = c∗ + c̃),

H3(D, c̃) = A1(D, c = c∗ + c̃)A2(D, c = c∗ + c̃)−A3(D, c = c∗ + c̃).

(2.15)

Then, we can obtain

H1(0, c̃) =
(ϵ+ δ)(R0 − 1) + d+ µ+ ϵµ

(ϵ+µ+δ)(d+ϵ)

c∗ + c̃
> 0,

H2(0, c̃) =
µϵ(ϵ+ δ)(R0 − 1)

(c∗ + c̃)3
> 0,

H3(0, c̃) =
1

(c∗ + c̃)3

[
(ϵ+ δ)(R0 − 1) + d+ µ+

ϵµ

(ϵ+ µ+ δ)(d+ ϵ)

]
[
(d+ µ)(ϵ+ δ)(R0 − 1) +

δϵµ

(ϵ+ µ+ δ)(d+ ϵ)

]
+

1

(c∗ + c̃)3

dµ

[
d+ µ+

ϵµ

(ϵ+ µ+ δ)(d+ ϵ)

]
> 0.

Since Hi(0, c̃) > 0, i = 1, 2, 3, for any 0 ≤ c̃, there is D̂(c̃) > 0 such that Hi(D, c̃) > 0

for every 0 < D < D̂(c̃). Let D2 = inf
{
D̂(c̃)|0 ≤ c̃

}
and D0 = min {D1, D2}.

Then, A1(D) > 0, A3(D) > 0, A1(D)A2(D) − A3(D) > 0 for 0 < D < D0 and
c∗ ≤ c. According to Hurwitz criterion, all eigenvalues of (2.14) have negative real
parts. Hence, E1 is locally asymptotically stable.

Therefore, by [20, Theorem 3.1], we have the following theorem.

Theorem 2.2. Suppose that R0 > 1. Then for any D such that 0 < D < D0,
system (1.2) has the traveling wave solutions (u(x+ ct), v(x+ ct), w(x+ ct)), given
that c ≥ c∗.

3. Numerical simulation of the traveling waves

In this section, the numerical simulation is exhibited to illustrate the existence of
traveling waves for system (1.2). First, we take the parameter values suggested by
Anderson et al. [1] as follows:
Therefore, ϵ = 0.5/82.4, δ = 0.5/82.4, µ = 365/2307.2, d = 73.5/82.4 and D = 0.04
in system (1.2). In addition, the below functions are taken as initial data, which
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Table 1. Parameter values selected for simulation

parameter symbol value

average birth rate a 1 per year

average intrinsic death rate b 0.5 per year

average duration of clinical disease 1/α 5 days

average incubation time 1/σ 28 days

disease transmission coefficient β 80 km−2 per year

carrying capacity K 1.03 foxese km−2

are shown as

s(0, x) =

{
1, x < 0,

s∗, x ≥ 0,
e(0, x) =

{
0, x < 0,

e∗, x ≥ 0,
i(0, x) =

{
0, x < 0,

i∗, x ≥ 0.
(3.1)

Here, (s∗, e∗, i∗) = (0.9656, 1.139 × 10−3, 2.006 × 10−4), which is an endemic equi-
librium point. Using (2.7), we can get the minimal speed c∗ = 0.0054. When
c = 0.0093, i.e., c > c∗, Figure 1 and Figure 2 show that system (1.2) has a travel-
ing wave connecting E0 and E1, and fox rabies thus spreads to all the space.

Figure 1. The three-dimensional profiles of traveling wave solutions of system (1.2)
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Figure 2. The two-dimensional asymptotic profiles of s, e, i as t = 0, t = 50, t = 200
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