u Hz\{oT,avX H 1N} I ul I v|II <y

ie,
max Il Py, ull
u Ho 1 ull =0
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An Algebraic Approach to the Schwarz A Iternating
M ethods

H uang J ianguo
Dept of Appl M ath , Shanghai Jiao Tong U niversity, 200240)

Abstract In thispaper, the choice of the optimal paraneters for a relaxation additive Schw arz
alternating method in wo subregions case is obtained by an algebraic method, w hich show s that
the arithmetic average is the best A counterexample illustrates that the same result isnot true for
many subregions case In the last, this technique is applied to damonstrate ssmew ell-know n re-
sults* 2B simply and intuitively.

Keywords Schwarz alternating method, space decomposition, convergence rate

Classification AM S(1991) 65F10, 65F30/CCL 0241 6

W e consider the follow ing finite-dimensional problem:

u Vv
1
{a(u.v): (V)0 v, W
w hich arises from the discretization of regular elliptic equations (systens) by finite elenent or fi-
nite differencemethods Here a(- , - ) denotes the inner-product of a finite-dimensional H ilbert
gaceV with induced nom I - Il , (- ,- ) means the dual form onV’%xV, and V' represents

the dual paceof V,f V' A ssume thatV is lit into wo subgacesV:andV:, i e,
V=Vi+ Vs (2)

Then it casts some additive Schw arz alternating methods olving (1) asfollow s

ALG 1 Assumeu’ V isthe initial guess Then u" denotes the approximation at the nth step de-
fined by

2n+i_ 2n+ 1+ Vi1
a@™ "t v)= (f,v),v Vui,i= 0,1,
w hich goes to the accurate lution u as n tends to infinity.

ALG 2 Assumethat w, @ (0,1) are wo relaxation paraneters, w+ w= 1,u° V isthe initial
guess Then u" isformed by
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u-u™t vy,
a(u™',v) = (f,v),v V,i= 1,2,

n+ 1

U™tz @u™t+ wu™?

In the case of = w= _’2L ALG 2 iscalled AL G 2" which isparticularly mportant T he benefit

of the above algorithm s is the parallelization and the scale reduction of the original problem. A s
usual, let £'= u"-u, thus the iterative operatorsforALG 1, 2, 2" are

82n+ 1+ i - Pv 82n+ i, | = 07 l,

i+ 1

n+ 1

€ = (wPv, + wPv,)¢,

8n+1= _:IZ-'(PV1 + Pvz)Sn,

repectively, hereV i denotes the orthogonal complementary subgace of ViinV with repect to
the inner-product a(- , - ) and the relative orthogonal projection operator is denoted by Pv, , i=
1,2 Let P(A) denote the pectral radius of a linear operator A w hich decides the convergence
rate of its relative iteration T he interesting and useful questions are finding the relationship be-
tw een the convergence ratesof AL G1 and AL G2, and the choices of the optimal relaxation pa-
raneters w, wr to ensure the deepest convergence of AL G2

The first questionw as ansv ered by B jorstard'"'w ho gave a beautiful identity betw een P(Pv,

Pv,) and P(‘JZ‘(PV1 + Pv,)), but hisproof is tedious A ftewards, Dr. Zhang Sheng'* introduced

an elegant proof In thispaper, we shall present an algebraic proof for this result, which ismore
intuitive and essential This idea can al0 be utilized to dealw ith the second question and demon-
strate the fundanental lenma of the wo level multi-grid m ethod

In order to derive these results, we first recall somew ell-know n lenmas

L enma 1®' A ssume both o thematricessX R™', Y R"™ ®arecolumns orthogonal with r<s Then
there existQ O (n) (set o nx n orthogonal matrices), U O (r), V 0O (s) such that

| r 0
QXU =1{0.,Qw = |0 1],
z
where T'= diag(6, &, ,6),0s6<6< <=6=< 1, X+ I’=1,X>0, |denotes the identity ma-
trix

mXx n

Lenma 2 AsumeA R Then the orthogonal projection goerator f ran R™ onto the range
gaceR (A) with repect to the conventional Euclidean inner-product is Pra)= AA", hereA” de-
notes theM oore-P enrose inverse

Theoran 1 Asw= w= ';‘ the convergence rate d AL GI isgtimal

— 160 —
© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



Proof W ithout lossof generality, letdmV=n, dmV:=r,dmV2=swithr< s Let{¥}ide
note the orthonomal basesof V. Introduce the follow ing isometric transformation:

T: R" 5V,
; (3
X = (X1,X2, Xn)' - Tx= _;lxiCP

W e shall show that T isan orthogonal transformation That is, let T' denote the trangposeof T.
Then

T'T= 1, TT' = v, (4)
where T' is defined by
TV - R",
5
{a(Tx,v) = [x,T'v]l,x R"Ww V, )

here [+ ,- ] is the inner-product of the Euclidean spaceR", [x,y]= Zt 1xiy. W eonly prove the

second identity in (4), proof of the first one is smilar For any u,v V,
a(TT'u,v) = [T'u, T'v] (from (5))

= ‘;I{{[T'(u+ V), T'"(u+ v)]- [T'(u- v),T'(u- v}

ST W+ V), TT W+ V) - alT @- v, 7T - v)))
a(TT'u, TT'v)

w hich show s TT' is the identity operatoronV, since TT' is surjective

Let Pi=T'Pv, T,P2= T'Pv, T. It followsfrom (4) that P:and P2 are both orthogonal pro-
jection operatorson R", and

wPv, + wPv, = T (WP1+ wP2)T"

Suppose that {ai}1and {bi}1 are theorthonomal basesof the range paceof P«, regectively,
k= 1,2 Define

X = [a,a, a] R™', Y= [by,b, b] R™S
Then from L anma 2, it iseasy to know that
Pi= XX',P2= YY"

From Lenmal, thereexistQ O (n),Uu 0O(r), andw 0O (s) such that

| I O
X=Q'lou’, Y=0Q'l0 I|w’,
z
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here I'= diag (i, %, @:),0<0i<®< << 1 (the last inequality comesfrom (2)), X+ I'’=
1,2=0Q Hence,

wl + wrl? 0 wlX

wP1+ wP2= Q' 0 wl 0 Q,
wlY 0 wX?
w ith the eigenvalues
A= '12‘(11 (1- 4(1- ADw(l- w))™, orforw,i= 1,2,

It is trivial that
wsé‘(m (1- 4(1- ADw@- w)Y,0< w< 1
T herefore,
PwP:+ wP2) = 1+ (1- 4(1- Aed- w)?.
Observing that wx(1- w) < 1/4, we see
PP+ wP2) = (1+ @)/2,

and the equality is arrived only if wa= w= 1/2 Because of the gectred in invariance of the or-
thogonal transformation Theoran 1 then follow s in the last

Remark If the paceV is lit into three or more subspace, we can design similarly an
additive Schw arz alternating iterative algorithm w ith iterative operator

A= XZwPy ,Xw= 1l,and w> Q

It can be shown that the optimal relaxation paraneters form = 3 are not (a= w@= = w= 1/m.
Example m= 3, letV=Vi1+V2Vs=V2 Thus V=Vi+ V2t Vs, the iterativematrix

3
A= YwPy, = wPv, + (@ + w)Pv,.

So the optimal param eters should be
w= w+ w= 1/2, andnot = w= w= 1/3
Now w e give algebraic proof for the follow ing results

Theorem 2! L et P, o denote the ectral radii o _;-(Pvl + Pv,) and Pv, Pv, regectively. Then
the f ollav ing identity holds

o= (2P- 1)2
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Proof In tem sof the above argument, we need to consider only the operators

I+ T? 0T
_]2"(P2+ Pi1) = JiQ' 0 I 0]Q,
xr 0 X
' oo
P.P.=Q'| 0 0 0Q,
X 0

with I'= diag(oi, &, @),0<a<®< <a@< 1l Thuso= ¢, and the eigenvalues of

r’+1 0T
0 1 0
zr 0 X?
satisfy that
X- 20+ 1- &*= 0,A= 1+ a,i= 1,2,
T herefore,
p= S+ a),
ie,

o= (2- 120

Theoren 3 If H=H 1+ H 2, then

oos(H:1,H2) = ocos(H 1,H 2).
Proof Obviously,

s(H 1,H2) = P(Pu,Pu,),0sH1,H2) = P(Pu,Pn,).

Let dm H = n,dim H 1= r,dim H 2= swith r=< s By the sane argument above, define Pi= T'
Puw,T,i= 1,2 Then

P(Pu,Pu)) = P(PP1) = (7,

and
00 - T
P(Pu,Pu,) = P((1- P2)(I- P))= !0 0 0 ]: 0.
0 0 I- 27

The result then follow s ~
Theoran 3 leads to the follow ing result which isw idely used in multigrid method:
Theorem 4% LetH =H 1+ Hz If thereexistsv n(0, 1) satisying
|(v,w)|SUII vil Iwll ,v Hiw Hoa, (6)

and u isgptimal onH 1+ Hz2, i e, Pu,u=Q Then
lu- Puull = dl u}
Proof Itfollavsfran Theoren 3 and the conditon (6) that
os(Hz2,H1) =y,
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