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CONTROL AND ADAPTIVE MODIFIED
FUNCTION PROJECTIVE

SYNCHRONIZATION OF LIU CHAOTIC
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Abstract In this work, the feedback control method is proposed to control
the behaviour of Liu chaotic dynamical system. The controlled system is stable
under some conditions on the parameters of the system determined by Routh-
Hurwitz criterion. This paper also presents the adaptive modified function
projective synchronization (AMFPS) between two identical Liu chaotic dy-
namical systems. Based on the Lyapunov stability theorem, adaptive control
laws are designed to achieving the AMFPS. Finally, some numerical simula-
tions are obtained to validate the proposed methods.

Keywords Feedback control method, Liu chaotic dynamical system, Routh-
Hurwitz criterion, Lyapunov stability, projective synchronization.

MSC(2010) 37D06, 37D45, 46N40.

1. Introduction

Control and synchronization have attracted increasing attention due to their ap-
plications in biological networks, chemical reactors, physics and secure communica-
tion [34]. Controlling chaos has become a challenging topic in nonlinear dynamical,
which consists in adding an input control to attempt stabilizing an unstable equi-
librium point. This input control can be set using linear and nonlinear feedback
control, adaptive control and active control [1, 6, 8, 17,19,25,31].

Different kind of chaos synchronization have been studied such that complete
synchronization, anti-phase synchronization, generalized synchronization and pro-
jective synchronization [3, 5, 10–14, 16, 18, 21, 23, 24, 27–29, 33, 35–37]. Projective
synchronization has been an active area of research and improved by many authors.
In recent years, modified projective synchronization is introduced in [20], where the
responses of the synchronized dynamical states synchronize up to a constant scaling
matrix [4, 26, 32]. Later, a new synchronization method called function projective
synchronization is proposed, see [2, 7, 9, 15, 30, 38]. It means that the drive and
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response systems could be synchronized up to a scaling function. More recently, a
new type of synchronization phenomenon is discussed, modified function projective
synchronization, where the drive and response systems could be synchronized up
to desired scaling function matrix [39, 40]. Particularly, MFPS is the more general
definition of MPS and FPS when the scaling function matrix is chosen by a constant
matrix and a scaling function, respectively.

The object of this paper is to guide the chaotic trajectories for Liu chaotic dy-
namical system and to study the modified function project synchronization (MFPS)
of two identical Liu chaotic system with known parameters.

The rest of this paper is organized as follows: In Section 2, we provide a de-
scription of the Liu chaotic systems. In Section 3, the feedback control of Liu
chaotic system is presented. In Section 4, we discuss the modified function projec-
tive synchronization of identical Liu chaotic systems. In Section 5, numerical results
are given to demonstrate the effectiveness of the proposed methods. Conclusion is
obtained in the final section.

2. Liu chaotic system

Liu chaotic system [22] is described by the following system of differential equations:
ẋ = a(y − x),

ẏ = bx− kxz,
ż = −cz + hx2,

(2.1)

where the parameters a, b, c, h and k are positive real constants. For example, a
chaotic attractor for the parameters a = 10, b = 40, c = 2.5, k = 1 and h = 4 is
shown in Figure 1.

2.1. Equilibrium points and stability

The equilibrium point and stability have been addressed in [22], here we a give a
direct analysis of the equilibrium points and stability analysis of the model.

By putting the right side of equation of system (2.1) equal to zero, that is;
a(y − x) = 0,

bx− kxz = 0,

−cz + hx2 = 0.

This system has three equilibrium points:

P1 = (0, 0, 0), P2,3 =
(
±
√
cb/hk,±

√
cb/hk,

b

k

)
.

The eigenvalues at each equilibrium point can be obtained as shown in Table 1.

From Table 1, we show that all the equilibrium points are unstable, since at
least one eigenvalue has positive real part for each equilibrium point.
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Figure 1. Liu chaotic system in (a) 3-dimensional (b) x-z plane and (c) x-y plane where a = 10, b = 40,
c = 2.5, k = 1 and h = 4.

Table 1. Eigenvalues and stability of equilibrium points

Equilibrium points Eigenvalues Stable/Unstable

P1 λ1 = 15.615 , λ2 = −25.615 , λ3 = −2.5 Unstable
P2 λ1 = −17.561 , λ2 = 2.53 + 10.367i , λ3 = 2.53− 10.367i Unstable
P3 λ1 = −17.561 , λ2 = 2.53 + 10.367i , λ3 = 2.53− 10.367i Unstable

3. Controlling Liu System

In order to control the Liu system to the unstable fixed points (xi, yi, zi) for i =
1, 2, 3, we introduce the feedback control to guide the chaotic trajectory (x(t), y(t), z(t))
to the unstable equilibrium points (xi, yi, zi) for i = 1, 2, 3. Let system (2.1) be con-
trolled by the following:


ẋ = a(y − x)− ki1(x− xi),
ẏ = bx− kxz − ki2(y − yi),
ż = −cz + hx2 − ki3(z − zi),

(3.1)

where i = 1, 2, 3.
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3.1. First

For i = 1, the controlled system (3.1) has one equilibrium point (x1, y1, z1) =
(0, 0, 0). Then, control system (3.1) by a linear feedback control of the form:

ẋ = a(y − x)− k11(x− x1),

ẏ = bx− kxz − k12(y − y1),

ż = −cz + hx2 − k13(z − z1).

(3.2)

The controlled system (3.2) has one equilibrium point (x1, y1, z1). We linearize (3.2)
about this equilibrium point. Then, the linearized system is given by:

Ẋ = −(a+ k11)X + aY,

Ẏ = −k12Y + (b− kz1)X − kx1Z,

Ż = −(c+ k13)Z + 2hx1X,

(3.3)

where (x1, y1, z1) = (0, 0, 0), that is;
Ẋ = −(a+ k11)X + aY,

Ẏ = −k12Y + bX,

Ż = −(c+ k13)Z.

(3.4)

Lemma 3.1. The zero solution of the linearized system (3.4) is asymptotically
stable whenever the conditions on the gained matrix are k11 = k13 = 0 and k12 > b.

Proof. The Jacobian matrix of (3.4) is given by:

J =


−a a 0

b −k12 0

0 0 −c

 ,
the eigenvalues of the Jacobian matrix satisfy the equation:

(−c− λ)
[
(−a− λ)(−k12 − λ)− ab

]
= 0,

then

(−c− λ)
(
λ2 + (a+ k12)λ+ ak12 − ab

)
= 0,

we then obtain

λ1 = −c and λ2,3 =
−(a+ k12)±

√
(a+ k12)

2 − 4(ak12 − ab)
2

It holds that λ1 < 0 and λ2,3 < 0. This implies that the eigenvalues have negative
real parts and therefore the zero solution of (3.4) is asymptotically stable.
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3.2. Second

For i = 2, the controlled system (3.1) has one equilibrium point (x2, y2, z2) =(√
cb/hk,

√
cb/hk, b

k

)
. Let system (3.1) be controlled by a linear feedback control

of the form: 
ẋ = a(y − x)− k21(x− x2),

ẏ = bx− kxz − k22(y − y2),

ż = −cz + hx2 − k23(z − z2).

(3.5)

The controlled system (3.5) has one equilibrium point (x2, y2, z2). We linearize (3.5)
about this equilibrium point. Then the linearized system is given by:

Ẋ = −(a+ k21)X + aY,

Ẏ = −k22Y + (b− kz2)X − kx2Z,

Ż = −(c+ k23)Z + 2hx2X,

(3.6)

where (x2, y2, z2) =
(√

cb/hk,
√
cb/hk, b

k

)
, that is;


Ẋ = −(a+ k21)X + aY,

Ẏ = −k22Y − k
√
cb/hkZ,

Ż = −(c+ k23)Z + 2h
√
cb/hkX.

(3.7)

Lemma 3.2. The zero solution of the linearized system (3.7) is asymptotically
stable whenever the conditions on the gain matrix are k21 = k23 = 0 and k22 > 0.

Proof. The proof of this lemma depends on the condition of Routh-Hurwitz. The
Jacobian matrix of (3.7) is given by:

J =


−a a 0

0 −k22 −k
√
cb/hk

2h
√
cb/hk 0 −c

 ,
the eigenvalues of the Jacobian matrix satisfy the equation:

λ3 + (a+ c+ k22)λ2 + (ac+ ck22 + ak22)λ+ ack22 + 2abc = 0,

where

a1 = a+ c+ k22,

a2 = ac+ ck22 + ak22,

a3 = ack22 + 2abc.

According to the Routh-Hurwitz condition, it holds that a1 > 0, a1a2 > a3 and a3 >
0. This implies that the eigenvalues have negative real parts and therefore the zero
solution of (3.7) is asymptotically stable.



606 M. M. El-Dessoky, E. O. Alzahrani, & N. A. Almohammadi

3.3. Third

For i = 3, the controlled system (3.1) has one equilibrium point (x3, y3, z3) =(
−
√
cb/hk,−

√
cb/hk, b

k

)
. Let system (3.1) be controlled by a linear feedback

control of the form: 
ẋ = a(y − x)− k31(x− x3),

ẏ = bx− kxz − k32(y − y3),

ż = −cz + hx2 − k33(z − z3).

(3.8)

The controlled system (3.8) has one equilibrium point (x3, y3, z3). We linearize (3.8)
about this equilibrium point. Then, the linearized system is given by:

Ẋ = −(a+ k31)X + aY,

Ẏ = −k32Y + (b− kz3)X − kx3Z,

Ż = −(c+ k33)Z + 2hx3X,

(3.9)

where (x3, y3, z3) =
(
−
√
cb/hk,−

√
cb/hk, b

k

)
, that is;


Ẋ = −(a+ k31)X + aY,

Ẏ = −k32Y + k
√
cb/hkZ,

Ż = −(c+ k33)Z − 2h
√
cb/hkX.

(3.10)

Lemma 3.3. The zero solution of the linearized system (3.10) is asymptotically
stable whenever the conditions on the gain matrix are k31 = k33 = 0 and k32 > 0

Proof. The proof of this lemma depends on the condition of Routh-Hurwitz. The
Jacobian matrix of (3.7) is given by:

J =


−a a 0

0 −k32 +k
√
cb/hk

−2h
√
cb/hk 0 −c

 ,
the eigenvalues of the Jacobian matrix satisfy the equation:

λ3 + (a+ c+ k32)λ2 + (ac+ ck32 + ak32)λ+ ack22 − 2abc = 0,

where

a1 = a+ c+ k32,

a2 = ac+ ck32 + ak32,

a3 = ack32 + 2abc.

According to the Routh-Hurwitz condition, it holds that a1 > 0, a1a2 > a3 and a3 >
0. This implies that the eigenvalues have negative real parts and therefore the zero
solution of (3.7) is asymptotically stable.
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4. The adaptive modified function projective syn-
chronization of chaotic systems

The drive system and the response system are defined as:{
ẋ = f(x),

ẏ = g(y) + U(t, x, y),
(4.1)

where x, y ∈ Rn are the state vectors, f, g : Rn → Rn are differentiable vector
functions, U(t, x, y) is a control function. Let the vector error state be:

e = y − Λ(t)x, (4.2)

where Λ(t) is an nth-order diagonal matrix, i.e. Λ(t) = diag{α1(t), α2(t), . . . , αn(t)}
and αi(t) are continuously differentiable functions, αi(t) 6= 0 for all t.

Definition 4.1. For the drive system (4.1) and the response system (4.2), it is said
that system (4.1) and system (4.2) are modified function projective synchronization
(MFPS), if there exists a scaling function matrix Λ(t), such that

lim
t→+∞

‖e(t)‖ = lim
t→+∞

‖y − Λ(t)x‖ = 0.

For AMFPS of Liu chaotic system (2.1), the drive (or master) and response (or
slave) systems are defined below, respectively,

ẋ1 = a(y1 − x1),

ẏ1 = bx1 − kx1z1,

ż1 = −cz1 + hx2
1,

(4.3)

and Liu system as the response system is given by
ẋ2 = a(y2 − x2) + u1,

ẏ2 = bx2 − kx2z2 + u2,

ż2 = −cz2 + hx2
2 + u3,

(4.4)

where u1, u2 and u3 are the nonlinear controllers such that two chaotic systems
can be synchronized in the sense of MFPS, i.e.;

lim
t→+∞

‖x2 − (α11x1 + α12)x1‖ = 0,

lim
t→+∞

‖y2 − (α21y1 + α22)y1‖ = 0,

lim
t→+∞

‖z2 − (α31z1 + α32)z1‖ = 0.

(4.5)

The error dynamical system between (4.3) and (4.4) is
ė1 = −ae1 + ay2 − 2α11ax1y1 + α11ax

2
1 − α12ay1 + u1,

ė2 = bx2 − kx2z2 − 2α21bx1y1 + 2α21kx1y1z1 − α22bx1

+α22kx1z1 + u2,

ė3 = −ce3 + hx2
2 + α31cz

2
1 − 2α31hz1x

2
1 − α32hx

2
1 + u3,

(4.6)
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by defining state errors e1(t) = x2 − (α11x1 + α12)x1, e2(t) = y2 − (α21y1 + α22)y1,
e3(t) = z2 − (α31z1 + α32)z1.

The object is to find a control law ui(i = 1, 2, 3) for stabilizing the error variables
of the system (4.4). For this, we propose the following control law:

u1 = −ay2 + 2aα11x1y1 − aα11x
2
1 + aα12y1,

u2 = −bx2 + kx2z2 + 2α21bx1y1 − 2α21kx1y1z1 + α22bx1 − α22kx1z1

−5y2 + 5α21y
2
1 + 5α22y1,

u3 = −hx2
2 − α31cz

2
1 + 2α31hz1x

2
1 + α32hx

2
1.

(4.7)

Then, we have the following theorem.

Theorem 4.1. For given nonzero scalars αi(i = 1, 2, 3), AMFPS between the two
systems (4.3) and (4.4) will occur by the control input (4.7).

Proof. Define a Lyapunov function:

V =
1

2

(
e2

1 + e2
2 + e2

3

)
. (4.8)

The differential of the Lyapunov function along the trajectory of error system (4.6)
is:

dV

dt
=ė1e1 + ė2e2 + ė3e3

=e1

(
− ae1 + ay2 − 2α11ax1y1 + α11ax

2
1 − α12ay1 + u1

)
+ e2

(
bx2 − kx2z2 − 2α21bx1y1 + 2α21kx1y1z1 − α22bx1 + α22kx1z1 + u2

)
+ e3

(
− ce3 + hx2

2 + α31cz
2
1 − 2α31hz1x

2
1 − α32hx

2
1 + u3

)
. (4.9)

By substituting the the control input(4.7), it gives that:

dV

dt
=e1

(
− ae1 + ay2 − 2α11ax1y1 + α11ax

2
1 − α12ay1 − ay2 + 2aα11x1y1

− aα11x
2
1 + aα12y1

)
+ e2

(
bx2 − kx2z2 − 2α21bx1y1 + 2α21kx1y1z1

− α22bx1 + α22kx1z1 − bx2 + kx2z2 + 2α21bx1y1 − 2α21kx1y1z1

+ α22bx1 − α22kx1z1 − 5e2

)
+ e3

(
− ce3 + hx2

2 + α31cz
2
1 − 2α31hz1x

2
1

− α32hx
2
1 − hx2

2 − α31cz
2
1 + 2α31hz1x

2
1 + α32hx

2
1

)
⇒ dV

dt
=− ae2

1 − 5e2
2 − ce2

3.

(4.10)

Then we have,
dV

dt
= −eTPe, (4.11)

where

e =


e1

e2

e3

 , P =


a 0 0

0 5 0

0 0 c

 =


10 0 0

0 5 0

0 0 2.5

 .
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Since V̇ is negative definite therefore, the response system synchronize the drive
system in the sense of AMFPS by the controller (4.7). This completes the proof.

5. Numerical results

5.1. Control for Liu chaotic system

In this section, some numerical simulation results are presented to verify the pre-
vious analytical results where a = 10, b = 40, c = 2.5, k = 1 and h = 4. Figure
2 shows the convergence of the trajectory of the controlled system to the unstable
equilibrium point (x1, y1, z1) = (0, 0, 0) of the uncontrolled system (2.1). While
Figure 3 shows the convergence of the trajectory of the controlled system to the

unstable equilibrium point (x2, y2, z2) =
(√

cb/hk,
√
cb/hk, b

k

)
of the uncontrolled

system (2.1). Figure 4 shows the convergence of the trajectory of the controlled

system to the unstable equilibrium point (x3, y3, z3) =
(
−
√
cb/hk,−

√
cb/hk, b

k

)
of the uncontrolled system (2.1).

5.2. Synchronization for Liu chaotic system

In this section, some numerical simulation results are presented to verify the pre-
vious analytical results where a = 10, b = 40, c = 2.5, k = 1 and h = 4. The initial
values of the drive system and response system are taken as:(

x1(0), y1(0), z1(0)
)T

= (7,−7, 5)T ,
(
x2(0), y2(0), z2(0)

)T
= (20,−3, 16)T .

We choose the scaling functions as:

α1 = 2x1 + 1, α2 = y1 + 2 and α3 = 2z1 + 3.

Figure 5 shows the AMFPS between two identical Liu systems. When the scaling
functions are simplified as α1 = 2x1 + 2, α2 = 2y1 + 2 and α3 = 2z1 + 2 the MFPS
between two identical Liu systems are shown in Figure 6. Figure 7 shows the
AMPS between two identical Liu systems when the scaling factors are simplified as
α1 = 1, α2 = 2 and α3 = 3. When αi = 2 for (i = 1, 2, 3) the MPS between two
identical Liu systems are shown in Figure 8. Furthermore, when the scaling factors
are simplified as αi = 1 for (i = 1, 2, 3), the complete synchronization between two
identical Liu systems are shown in Figure 9. Finally, when the scaling factors are
simplified as αi = −1 for (i = 1, 2, 3) the anti synchronization between two identical
Liu systems are shown in Figure 10.

Conclusions

In this paper, we have presented the feedback control to the Liu chaotic dynamical
system. The controlling conditions are derived from Routh-Hurwitz criterion. In
addition, we have investigated the AMFPS between two identical Liu chaotic dy-
namical system. The adaptive control laws are attained for stability of the error
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Figure 2. The time responses for the states of the
controlled Liu system to a fixed point (x1, y1, z1).

Figure 3. The time responses for the states of the
controlled Liu system to a fixed point (x2, y2, z2).

Figure 4. The time responses for the states of the controlled Liu system to a fixed point (x3, y3, z3).
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Figure 5. The behaviour of the trajectories
e1, e1 and e1 of the error system tends to zero
for AMFPS.

Figure 6. The behaviour of the trajectories
e1, e1 and e1of the error system tends to zero
for MFPS.

Figure 7. The behaviour of the trajectories
e1, e1 and e1 of the error system tends to zero
for AMPS.

Figure 8. The behaviour of the trajectories
e1, e1 and e1 of the error system tends to zero
for MPS.

Figure 9. The behaviour of the trajectories
e1, e1 and e1 of the error system tends to zero
for complete synchronization.

Figure 10. The behaviour of the trajectories
e1, e1 and e1 of the error system tends to zero
for anti phase synchronization.
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dynamical system by using Lyapunov stability theory. The results are verified by
numerical simulations.
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