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A MICROBIAL CONTINUOUS CULTURE
SYSTEM WITH DIFFUSION AND

DIVERSIFIED GROWTH∗
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Abstract A reaction-diffusion model is presented to describe the microbial
continuous culture with diversified growth. The existence of nonnegative so-
lutions and attractors for the system is obtained, the stability of steady states
and the steady state bifurcation are studied under three growth conditions. In
the case of no growth inhibition or only product inhibition, the system admits
one positive constant steady state which is stable; in the case of growth in-
hibition only by substrate, the system can have two positive constant steady
states, explicit conditions of the stability and the steady state bifurcation are
also determined. In addition, numerical simulations are given to exhibit the
theoretical results.
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1. Introduction

Microbial continuous culture is widely used in many fields of industry, such as bio-
logical phosphorus removal in waste-water treatment [1], production of bioethanol
from lignocellulosic materials [4], and bioconversion of industrial by-product glyc-
erol to 1,3-propanediol [5].

In recent decades, studies on microbial continuous culture fascinate biochem-
ical and mathematical researchers. Up to now, many fruits, including experi-
ment results, numerical simulations and theoretical analyses, were achieved, see
[1–8, 10–12, 14–16, 19–24, 26] and references therein. For example, in [22], Xiu et
al. numerically analyzed the dynamics behavior of a continuous culture subjec-
t to metabolic overflow and growth inhibition by substrate and/or product, and
showed three positive constant equilibriums are possible in a certain range of oper-
ating conditions. Afterwards, Gao et al. [12] discussed the parameters identification
problem in microbial continuous cultures, and Ye et al. [24] studied the existence
and stability of equilibriums for the proposed system in [12]. Very recently, Ren
and Yuan [19] investigated the complex dynamics of a period forced microbial con-
tinuous culture model with bifurcation theory, and obtained various solutions by
numerical simulations.
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Note that above works [2,6, 8,10–12,14–16,19,21–24,26] all considered the cor-
responding ordinary differential system in the absence of diffusion. As a matter
of fact, diffusion is ubiquitous in the liquid medium, including the simple diffusion
which is a movement of molecules from a region of higher concentration to one
of lower concentration, the facilitated diffusion known as a process of passive and
transmembrane transport [7], and so on. As a preliminary study, we explore the
effect of simple diffusion on the substrate consumption and product formation. In
this paper, we give two assumptions

A1. the biochemical reaction takes place in a tubular culture vessel, which is
thin and long enough. Then the vessel is approximate to be one dimensional,
and its capacity is quantified by the length;
A2. feed streams are not from the two ends of the vessel, but flow into it in
the vertical direction. Thus there is no flow along x-axis and nothing crosses
the boundary.

Under above assumptions, the microorganism continuous culture process can be
seen as the following diffusion-reaction system

ut = d1uxx + u(r −D), x ∈ (0, L), t > 0,

vt = d2vxx +D(a0 − v)− u(ns + r
Ys

), x ∈ (0, L), t > 0,

wt = d3wxx + u(np + Ypr)−Dw, x ∈ (0, L), t > 0,

ux(x, t) = vx(x, t) = wx(x, t) = 0, x = 0, L, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ (0, L).

(1.1)

Here u(x, t), v(x, t), w(x, t) are the concentrations of biomass, substrate and product
at location x and time t; the initial functions u0(x), v0(x), w0(x) ∈ Φ with

Φ = {φ(x) : φ(x) ∈ C2+α((0, L)), φ(x) ≥, 6≡ 0, 0 < α < 1}.

For i = 1, 2, 3, di denotes the diffusion rate of biomass, substrate and product,
respectively; a0 means substrate concentration in medium; D is the dilution rate;
ns, np account for the maintenance requirement of substrate consumption and prod-
uct formation; Ys, Yp are biomass and product yield coefficients. And di, a0, D, ns,
np, Ys and Yp are given constants.

In (1.1), the specific growth rate r is a function of v and/or w. There are several
growth functions reported in [2,8,16,22,26] for different types of continuous culture.
In this paper, we aim at the following three popular growth functions to compare
the effects of growth limiting and/or different inhibiting factors on the continuous
fermentation process.

Case I. r = rm
v

v +K
,

where rm is the maximum specific growth rate, K is the Monod saturation constant.
Case I is the well-known Monod growth function, which implies that substrate is
the growth limiting factor, and the growth of microorganisms is not inhibited by
substrate or product. It is known that the Monod relationship provides a reasonable
fit for continuous culture systems such as those used in biological processes for waste
treatment [2].

Case II. r = rm
v

v +K
(1− v

c
),
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where c is the critical concentration of the substrate above which microorganisms
cease to grow, c ≥ a0. As suggested in [2, 10, 23], inhibition of microbial growth
is observed at high concentration of substrate, and the second term in Case II
describes substrate inhibition.

Case III. r = rm
v

v +K
(1− w

d
),

where d is the critical concentration of product above which microorganisms stop
growing. It means that high product concentration may inhibit the growth of
microorganisms, see [3, 5, 15, 16, 26], and the second term in Case III represents
product inhibition.

This paper is devoted to the reaction-diffusion model under above three cases.
The properties of the nonnegative solution to (1.1) are analyzed in Section 2, and
the attractor is obtained in Section 3. The stability of positive constant steady
states, nonexistence of Hopf bifurcation and existence of steady state bifurcation
are studied in Section 4. Some numerical results are given in Section 5 and the
paper is concluded by some discussion.

2. Preliminaries

In the following text, denote

s = −K +
√
K2 + cK, (2.1)

Θ = (0, 0, 0), M = (
Da0

ns
, a0, d), S = (

Da0

ns
, a0, (np + rmYp)

a0

ns
), (2.2)

M = (0, s, 0), M̃ = (D
a0 − s
ns + rm

Ys

, a0,
a0 − s
ns + rm

Ys

(np + Yprm)), (2.3)

U0(x) = (u0(x), v0(x), w0(x)), U(x, t) = (u(x, t), v(x, t), w(x, t)), (2.4)

and define

〈U, Ū〉 ≡ {u, v, w ∈ C2([0, L]) : u ≤ u ≤ ū, v ≤ v ≤ v̄, w ≤ w ≤ w̄}, (2.5)

where U = (u, v, w), Ū = (ū, v̄, w̄). Particularly,

〈Θ, Ū〉 ≡ {u, v, w ∈ C2([0, L]) : 0 ≤ u ≤ ū, 0 ≤ v ≤ v̄, 0 ≤ w ≤ w̄}. (2.6)

Lemma 2.1. Suppose

rm ≤ D or

{
rm > D,

a0 ≤ DK
rm−D ,

(2.7)

then for any U0(x) ∈ 〈Θ,M〉, problem (1.1) has a unique solution U(x, t) in 〈Θ,M〉
if

(i) Case I;

(ii) Case III with d > (np + rmYp)
a0
ns

.
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Proof. Case I. r = rm
v

v+K , then (1.1) can be rewritten as

ut = d1uxx + rm
uv
v+k −Du, x ∈ (0, L), t > 0,

vt = d2vxx +D(a0 − v)− nsu− rm
Ys

uv
v+K , x ∈ (0, L), t > 0,

wt = d3wxx + npu+ rmYp
uv
v+k −Dw, x ∈ (0, L), t > 0,

ux(x, t) = vx(x, t) = wx(x, t) = 0, x = 0, L; t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0, x ∈ (0, L).

(2.8)

Firstly, we show f = (f1, f2, f3) is mixed quasimonotone in 〈Θ,M〉, where f1, f2

and f3 are expressed as
f1 = rm

uv
v+k −Du, x ∈ (0, L),

f2 = D(a0 − v)− nsu− rm
Ys

uv
v+K , x ∈ (0, L),

f3 = npu+ rmYp
uv
v+k −Dw, x ∈ (0, L).

(2.9)

For any (u, v, w) ∈ 〈Θ,M〉, it is easy to see
∂f1
v = rm

uK
(v+K)2 ≥ 0, ∂f1

w = 0;

∂f2
u = −ns − rm

Ys

v
v+K < 0, ∂f2

w = 0;

∂f3
u = np + rmYp

v
v+K > 0, ∂f3v = rmYp

uK
(v+K)2 ≥ 0,

which implies f = (f1, f2, f3) is quasimonotone in 〈Θ,M〉.
Secondly, we show M = (Da0ns

, a0, d) and Θ = (0, 0, 0) are coupled upper and
lower solutions of (1.1).

According to Definition 8.1.2 in [17], if (ū, v̄, w̄) and (u, v, w) satisfy
ūt − d1ūxx ≥ f1(ū, v̄),

v̄t − d2v̄xx ≥ f2(v̄, u),

w̄t − d3w̄xx ≥ f3(w̄, ū, v̄),

(2.10)

and 
ut − d1uxx ≤ f1(u, v),

vt − d2vxx ≤ f2(v, ū),

wt − d3wxx ≤ f3(w, u, v),

(2.11)

then (ū, v̄, w̄) and (u, v, w) are coupled upper and lower solutions of (1.1).
(u, v, w) = (0, 0, 0) and ū = Da0

ns
directly yield

f1(u, v) = 0,

f2(v, ū) = Da0 − nsū = 0,

f3(w, u,w) = 0,

which satisfies (2.11).
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In addition, f1(ū, v̄) = rm
ūv̄

(v̄+K) −Dū.

It is clear that f1(ū, v̄) < 0 for rm ≤ D. For rm > D, a0 ≤ DK
rm−D implies

rma0
(a0+K) ≤ D, which deduces

f1(ū, v̄) = rm
ūv̄

(v̄ +K)
−Dū = ū[

rma0

(a0 +K)
−D] ≤ 0. (2.12)

By v̄ = a0, it is easy to get

f2(v̄, u) = D(a0 − v̄) = 0. (2.13)

It follows from ū = Da0
ns

and d ≥ (np + rmYp)
a0
ns

that

f3(w̄, ū, v̄) = npū+ rmYp
ūv̄

(v̄ +K)
−Dw̄ ≤ npū+ rmYpū−Dw̄ ≤ 0. (2.14)

(2.12), (2.13) and (2.14) indicate that (2.10) holds. Hence Θ and M are coupled
lower and upper solutions to (1.1).

Thirdly, we show that, for i = 1, 2, 3, fi satisfies Lipschitz condition

|fi(U1)− fi(U2)| ≤ Ki|U1 −U2|, U1,U2 ∈ 〈Θ,M〉, (2.15)

where U1 = (u1, v1, w1), U2 = (u2, v2, w2), |U1−U2| = |u1−u2|+|v1−v2|+|w1−w2|,
Ki ≡ Ki(t, x) is a bounded function in (0, T ]× (0, L) for each T > 0.

|f1(U1)− f1(U2)|

= | rm
u1v1

v1 +K
− rm

u2v2

v2 +K
+Du2 −Du1 |

≤rm |
u1v1

v1 +K
− u2v2

v2 +K
|+D|u2 − u1 |,

and

| u1v1

v1 +K
− u2v2

v2 +K
|

=
1

(v1 +K)(v2 +K)
| u1v1v2 +Ku1v1 − u2v2v1 −Ku2v2 |

≤ 1

K2
| v1v2(u1 − u2) +Ku1v1 −Ku2v1 +Ku2v1 −Ku2v2 |

=
1

K2
| v1v2(u1 − u2) +Kv1(u1 − u2) +Ku2(v1 − v2) |

≤ (
v̄

K
)2 | u1 − u2 | +

v̄

K
| u1 − u2 | +

ū

K
| v1 − v2 |

= [(
v̄

K
)2 +

v̄

K
] | u1 − u2 | +

ū

K
| v1 − v2 | .

Then

|f1(U1)− f1(U2)| ≤ [rm(
v̄

K
)2 + rm

v̄

K
+D] | u1 − u2 | +rm

ū

K
| v1 − v2 |

= [rm(
a0

K
)2 + rm

a0

K
+D] | u1 − u2 | +rm

Da0

Kns
| v1 − v2 |

≤ K1 | U1 −U2 |,

(2.16)
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where K1 = max{[rm(a0K )2 + rma0
K +D], rmDa0Kns

}.
Similarly, we get (2.15) holds for i = 2, 3.

|fi(U1)− fi(U2)| ≤ Ki|U1 −U2|, i = 2, 3. (2.17)

Therefore, fi satisfies Lipschitz condition (2.15), i = 1, 2, 3. Thanks to Theorem 8.1
of Chapter 8 in [17], we obtain part (i) of Lemma 2.1.

Case III. The results can be proved by the similar method, so we omit the details.

For convenience, some hypotheses are listed as follows

(H1) rm ≤ D, a0 ≤ min{c, s},

(H2) rm > D, a0 ≤ min{c, DK

rm −D
, s},

(H3) rm ≤ D, s ≤ a0,

(H4) rm > D, ∆1 ≤ 0, s ≤ a0,

(H5)

{
rm > D, ∆1 > 0,

0 < s ≤ min{a0,
c(1− D

rm
−
√

∆1)

2 } or
c(1− D

rm
+
√

∆1)

2 ≤ s ≤ a0,

where ∆1 = (1− D
rm

)2 − 4DK
crm

.

Lemma 2.2. For Case II, the following statements are valid.

(i) Suppose either (H1) or (H2) holds, then for any U0(x) ∈ 〈Θ,S〉, problem (1.1)
admits a unique solution U(x, t) ∈ 〈Θ,S〉.

(ii) Suppose one of (H3)−(H5) holds, then for any U0(x) ∈ 〈M, M̃〉, problem (1.1)
admits a unique solution U(x, t) ∈ 〈M, M̃〉.

Proof. For any (u, v, w) ∈ 〈Θ,S〉, some direct calculations yield
∂f1
v = u rm

(v+K)2 (−v2 − 2vK + cK) ≥ 0, ∂f1w = 0,

∂f2
u = −ns − rm

Ys

v
v+K (1− v

c ) < 0, ∂f2
w = 0,

∂f3
u = np + rmYp

v
v+K (1− v

c ) > 0, ∂f3
v = Yp

rm
(v+K)2 (−v2 − 2vK + cK) ≥ 0.

For any (u, v, w) ∈ 〈m, M̃〉, it is easy to get
∂f1
v < 0, ∂f1w = 0,

∂f2
u < 0, ∂f2w = 0,

∂f3
u > 0, ∂f3v < 0.

Then f = (f1, f2, f3) is quasimonotone in 〈Θ,M〉 or 〈M, M̃〉.
One must check S and Θ satisfy (2.10) and (2.11) to show they are coupled

upper and lower solutions of (1.1).
Part (i) can be proved by the similar process to Lemma 2.1.
Part (ii). Using some straightforward computations, one can get Ū = M̃ and

U = M satisfy 
ūt − d1ūxx ≥ f1(ū, v),

v̄t − d2v̄xx ≥ f2(v̄, u),

w̄t − d3w̄xx ≥ f3(w̄, ū, v),

(2.18)
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and 
ut − d1uxx ≤ f1(u, v̄),

vt − d2vxx ≤ f2(v, ū),

wt − d3wxx ≤ f3(w, u, v̄),

(2.19)

if one of (H3)–(H5) holds. This means M̃ and M are coupled upper and lower
solutions of (1.1). Then part (ii) can be obtained by similar process to the proof of
Lemma 2.1.

Next we give the estimates of u(x, t), v(x, t) and w(x, t).

Proposition 2.1. For 0 < ε � 1, there exists T � 1 such that, when 0 < x < L
and t > T , the solution (u(x, t), v(x, t), w(x, t)) of system (1.1) with Case I–III
satisfies

v(x, t) ≤ a0 + ε,u(x, t) < ε,

w(x, t) < ε,
for D > brm,

u(x, t) < ū(0),

w(x, t) < G
D + ε,

for D = brm,

where b = a0+ε
a0+ε+K , ū(0) = sup

0<x<L
u0(x), G = (np + rmYpb)ū(0).

Proof. Case I. The second function of (2.8) yields vt ≤ d2vxx +D(a0 − v).
Let 

v̄t = d2v̄xx +D(a0 − v̄),

v̄(0) = sup
0<x<L

v0(x),
(2.20)

hence v̄ = a0 − (a0 − v̄(0))e−Dt is one solution to (2.20), and lim
t→∞

v = a0.

By comparison principles, for 0 < ε� 1, there exists T1 � 1 such that

v(x, t) ≤ a0 + ε, (2.21)

for 0 < x < L and t > T1.
It follows from (2.21) and the first function of (2.8)

ut ≤ d1uxx + rm
u(a0 + ε)

a0 + ε+K
−Du.

Let

b =
a0 + ε

a0 + ε+K
< 1,

and 
ūt = d1ūxx + rm

ū(a0+ε)
a0+ε+K −Dū,

ū(0) = sup
0<x<L

u0(x).
(2.22)

One can see that ū = ū(0)e(brm−D)t is one solution to (2.22), then

lim
t→∞

ū =


0, D > brm,

ū(0), D = brm,

∞, D < brm.
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In fact, for any t > 0, ū = ū(0) if D = brm.
As a result, for 0 < ε� 1, there exists T2 � 1 such thatu(x, t) < ε, D > brm,

u(x, t) ≤ ū(0), D = brm,
(2.23)

with 0 < x < L and t > T2.
For D > brm, it is clear that wt ≤ d3wxx + ε(np + rmYpb)−Dw from u(x, t) < ε

and the third equation of (2.8).
Denote G1 = np + rmYpb, and

w̄t = d1w̄xx + ε(np + rmYpb)−Dw̄ = d1w̄xx + εG1 −Dw̄,

w̄(0) = sup
0<x<L

w0(x),
(2.24)

then w̄ = G1

D ε − (G1

D ε − w̄(0))e−Dt is one solution to (2.22). For simplicity, we
rewrite w̄ = ε1 − (ε1 − w̄(0))e−Dt. Thus lim

t→∞
w̄ = 0, which means there exists

T3 � 1 such that
w(x, t) < ε, if D > brm, (2.25)

for 0 < x < L and t > T3.
For D = brm, from u(x, t) < ū(0), v(x, t) ≤ a0 + ε and the third equation of

(2.8), there holds

wt ≤ d3wxx + npū(0) + rmYpbū(0)−Dw = d3wxx + ū(0)(np + rmYpb)−Dw.

Let
G = (np + rmYpb)ū(0),

and 
w̆t = d1w̆xx + ū(0)(np + rmYpb)−Dw̆,

w̆(0) = sup
0<x<L

w0(x).
(2.26)

It is obvious that w̆ = G
D − (GD − w̆(0))e−Dt is one solution to (2.22), which implies

lim
t→∞

w̆ = G
D . Then for 0 < ε� 1, there exists T4 � 1 such that

w(x, t) <
G

D
+ ε, if D = brm, (2.27)

with 0 < x < L and t > T3.
Let T = max{T1, T2, T3, T4}, according to (2.21), (2.23), (2.25), (2.27), then we

get Proposition 2.1 for Case I.
For Case II and Case III, the desired statements can be checked by the similar

process.

Proposition 2.2. For 0 < ε � 1, there exists T � 1 such that, when 0 < x < L
and t > T , the solution (u(x, t), v(x, t), w(x, t)) of system (1.1) with Case I– III
satisfies  v(x, t) > a0 − ε, for D > brm,

v(x, t) > a0 − K̆
D − ε, for D = brm,

where K̆ = (ns + rm
Ys
b)ū(0).
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Proof. We take Case I as an example to verify Proposition 2.2 since proofs for
the other two cases are similar.

For D > brm, it is easy to see

vt > d2vxx +Da0 − (ns +
rm
Ys
b)ε−Dv,

from u(x, t) < ε and the second equation of (2.8).
Let Ḱ = ns + rm

Ys
b, and vt = d2vxx +Da0 − (ns + rm

Ys
b)ε−Dv,

v(0) = inf
0<x<L

v0(x).
(2.28)

Then v = a0− Ḱ
D ε− (a0− Ḱ

D ε− v(0))e−Dt solves (2.28), which implies lim
t→∞

v = a0.

In view to comparison principles, for 0 < ε� 1, there exists T5 � 1 such that

a0 − ε ≤ v(x, t), if D > brm, (2.29)

for 0 < x < L and t > T5.
For D = brm, u(x, t) < ū(0) and the second equation of (2.8) yield

vt > d2vxx +Da0 − (ns +
rm
Ys
b)ū(0)−Dv.

Denote K̆ = (ns + rm
Ys
b)ū(0), and vt = d2vxx +Da0 − (ns + rm

Ys
b)ū(0)−Dv,

v(0) = inf
0<x<L

v0(x).
(2.30)

One can find that v = a0− K̆
D − (a0− K̆

D −v(0)e−Dt is one solution to (2.30). Hence

lim
t→∞

v = a0 − K̆
D .

Thus there exists T6 � 1 such that

a0 −
K̆

D
− ε ≤ v(x, t), if D = brm, (2.31)

for 0 < x < L and t > T6.
Let T = max{T5, T6}, then we get the results.
From Proposition 2.1 and Proposition 2.2, the following theorem can be deduced

directly.

Theorem 2.1. For Case I- III, the solution (u(x, t), v(x, t), w(x, t)) of (1.1) satis-
fies

(i) if D > brm, then (u(x, t), v(x, t), w(x, t)) → (0, a0, 0) uniformly on [0, L] as
t→∞.

(ii) if D = brm, then for 0 < ε � 1, there exists T � 1 such that 0 ≤ u(x, t) <

ū(0), a0 − K̆
D − ε < v(x, t) < a0 + ε, 0 ≤ w(x, t) < G

D + ε.
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3. Attractor

Theorem 3.1. Suppose (2.7) holds, then for any U0(x) ∈ 〈Θ,M〉, the solution
U(x, t) of (1.1) satisfies

U(∞) ≤ lim
t→∞

inf U(t, x) ≤ lim
t→∞

sup U(t, x) ≤ Ū(∞), (3.1)

if Case I, or Case III with d > (np + rmYp)
a0
ns

. U(∞) = (u(∞), v(∞), w(∞)) and

Ū(∞) = (ū(∞), v̄(∞), w̄(∞)) refer to (3.3) and satisfy (3.4), (3.5).

Proof. For Case I, by using (ū0, v̄0, w̄0) = (Da0ns
, a0, d) and (u0, v0, w0) = (0, 0, 0)

as a pair of coupled initial iterations in the iteration process

−d1ū
(m)
xx +K1ū

(m) = K1ū
(m−1) + f1(ū(m−1), v̄(m−1)),

−d2v̄
(m)
xx +K2v̄

(m) = K2v̄
(m−1) + f2(v̄(m−1), u(m−1)),

−d3w̄
(m)
xx +K3w̄

(m) = K3w̄
(m−1) + f3(w̄(m−1), ū(m−1), v̄(m−1)),

−d1u
(m)
xx +K1u

(m) = K1u
(m−1) + f1(u(m−1), v(m−1)),

−d2v
(m)
xx +K2v

(m) = K2v
(m−1) + f2(v(m−1), ū(m−1)),

−d3w
(m)
xx +K3w

(m) = K3w
(m−1) + f3(w(m−1), u(m−1), v(m−1)),

ū
((m))
x = v̄

((m))
x = w̄

((m))
x = 0,

u
((m))
x = v

((m))
x = w

((m))
x = 0,

(3.2)

where Ki is a Lipschitz constant of f(·,U) in 〈U, Ū〉.
It follows from [17, Lemma 8.10.1] that the corresponding sequences Ū(m) ≡

{ū(m), v̄(m), ū(w)} and U(m) ≡ {u(m), v(m), u(w)} possess the monotone property

U ≤ U(m) ≤ U(m+1) ≤ Ū(m+1) ≤ Ū(m) ≤ Ū,

and the limits

lim
m→∞

U(m) = U(∞), lim
m→∞

Ū(m) = Ū(∞), (3.3)

exist and satisfy 

d1uxx + f1(u, v(∞)) = 0, x ∈ (0, L),

d2vxx + f2(v, ū(∞)) = 0, x ∈ (0, L),

d3wxx + f3(w, u(∞), v(∞)) = 0, x ∈ (0, L),

ux = vx = wx = 0, x = 0, L,

(3.4)

and 

d1uxx + f1(u, v̄(∞)) = 0, x ∈ (0, L),

d2vxx + f2(v, u(∞)) = 0, x ∈ (0, L),

d3wxx + f3(w, ū(∞), v̄(∞)) = 0, x ∈ (0, L),

ux = vx = wx = 0 x = 0, L,

(3.5)
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respectively.

Thanks to Theorem 2.1 in [18], for any U0(x) ∈ 〈Θ,M〉, the solution U(x, t) of

(1.1) satisfies (3.1). That’s to say, 〈U(∞), Ū(∞)〉 is an attractor of (1.1) if U0(x) ∈
〈Θ, M̃〉.

For Case III, just change (3.2), (3.4) and (3.5) as

−d1ū
(m)
xx +K1ū

(m) = K1ū
(m−1) + f1(ū(m−1), v̄(m−1), w(m−1)),

−d2v̄
(m)
xx +K2v̄

(m) = K2v̄
(m−1) + f2(v̄(m−1), u(m−1), w̄(m−1)),

−d3w̄
(m)
xx +K3w̄

(m) = K3w̄
(m−1) + f3(w̄(m−1), ū(m−1), v̄(m−1)),

−d1u
(m)
xx +K1u

(m) = K1u
(m−1) + f1(u(m−1), v(m−1), w̄(m−1)),

−d2v
(m)
xx +K2v

(m) = K2v
(m−1) + f2(v(m−1), ū(m−1), w(m−1)),

−d3w
(m)
xx +K3w

(m) = K3w
(m−1) + f3(w(m−1), u(m−1), v(m−1)),

ū
((m))
x = v̄

((m))
x = w̄

((m))
x = 0,

u
((m))
x = v

((m))
x = w

((m))
x = 0,

d1uxx + f1(u, v(∞), w̄(∞)) = 0, x ∈ (0, L),

d2vxx + f2(v, ū(∞), w(∞)) = 0, x ∈ (0, L),

d3wxx + f3(w, u(∞), v(∞)) = 0, x ∈ (0, L),

ux = vx = wx = 0, x = 0, L,

and 

d1uxx + f1(u, v̄(∞), w(∞)) = 0, x ∈ (0, L),

d2vxx + f2(v, u(∞), w̄(∞)) = 0, x ∈ (0, L),

d3wxx + f3(w, ū(∞), v̄(∞)) = 0, x ∈ (0, L),

ux = vx = wx = 0, x = 0, L,

respectively, we can get the desired results by the similar process.

Theorem 3.2. For Case II, the following statements are valid.

(i) Suppose either (H1) or (H2) holds, then there is an attractor for any any
U0(x) ∈ 〈Θ,S〉.

(ii) Suppose one of (H3)–(H5) holds, then for any U0(x) ∈ 〈M, M̃〉, the solution
U(x, t) of (1.1) satisfies

U(∞) ≤ lim
t→∞

inf U(t, x) ≤ lim
t→∞

sup U ≤ Ū(∞), (3.6)

where U(∞) = (u(∞), v(∞), w(∞)) and Ū(∞) = (ū(∞), v̄(∞), w̄(∞)) refer to (3.7)
and satisfy (3.8), (3.9).

Proof. Just choosing (ū0, v̄0, w̄0) = (Da0ns
, a0, (np + rmYp)

a0
ns

), one can verify part
(i) by the similar process to the proof of Theorem 3.1.
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Part (ii). By using (ū0,v̄0,w̄0)=(D a0−s
ns+

rm
Ys

,a0,
a0−s
ns+

rm
Ys

(np+Yprm)) and (u0,v0,w0)=

(0, s, 0), as a pair of coupled iterations in the iteration process



−d1ū
(m)
xx + K̃1ū

(m) = K̃1ū
(m−1) + f1(ū(m−1), v(m−1)),

−d2v̄
(m)
xx + K̃2v̄

(m) = K̃2v̄
(m−1) + f2(v̄(m−1), u(m−1)),

−d3w̄
(m)
xx + K̃3w̄

(m) = K̃3w̄
(m−1) + f3(w̄(m−1), ū(m−1), v(m−1)),

−d1u
(m)
xx + K̃1u

(m) = K̃1u
(m−1) + f1(u(m−1), v̄(m−1)),

−d2v
(m)
xx + K̃2v

(m) = K̃2v
(m−1) + f2(v(m−1), ū(m−1)),

−d3w
(m)
xx + K̃3w

(m) = K̃3w
(m−1) + f3(w(m−1), u(m−1), v̄(m−1)),

ū
((m))
x = v̄

((m))
x = w̄

((m))
x = 0,

u
((m))
x = v

((m))
x = w

((m))
x = 0,

where K̃i is a Lipschitz constant of fi(·,U) in 〈U, Ū〉. Then sequences Ū(m) ≡
{ū(m), v̄(m), ū(w)} and U(m) ≡ {u(m), v(m), u(w)} possess the monotone property

U ≤ U(m) ≤ U(m+1) ≤ Ū(m+1) ≤ Ū(m) ≤ Ū,

and the limits

lim
m→∞

U(m) = U(∞), lim
m→∞

Ū(m) = Ū(∞), (3.7)

exist and satisfy



d1uxx + f1(u, v̄(∞)) = 0, x ∈ (0, L),

d2vxx + f2(v, ū(∞)) = 0, x ∈ (0, L),

d3wxx + f3(w, u(∞), v̄(∞)) = 0, x ∈ (0, L),

ux = vx = wx = 0, x = 0, L,

(3.8)



d1uxx + f1(u, v(∞)) = 0, x ∈ (0, L),

d2vxx + f2(v, u(∞)) = 0, x ∈ (0, L),

d3wxx + f3(w, ū(∞), v(∞)) = 0, x ∈ (0, L),

ux = vx = wx = 0, x = 0, L,

(3.9)

respectively.

Again by Theorem 2.1 in [18], for any U0(x) ∈ 〈M, M̃〉, the solution U(x, t) of
(1.1) satisfies (3.6).
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4. Stability and bifurcation analysis

This section is devoted to the stability and bifurcation analysis at the steady states.
The steady state problem corresponding to (1.1) is considered as follows

d1uxx + u(r −D) = 0, x ∈ (0, L),

d2vxx +D(a0 − v)− u(ns + r
Ys

) = 0, x ∈ (0, L),

d3wxx + u(np + Ypr)−Dw = 0, x ∈ (0, L),

ux = vx = wx = 0, x = 0, L.

(4.1)

As noted in [9], the nonnegative solutions to (4.1) are classified by four types:

(i) trivial nonnegative solution: (0, 0, 0), which is a trivial steady state of (1.1);
(ii) weak semitrivial solutions: (ũ, 0, 0), (0, ṽ, 0), (0, 0, w̃), which are known as
weak semitrivial steady states of (1.1);
(iii) strong semitrivial solutions: (ŭ, v̆, 0), (û, 0, ŵ), (0, v̀, ẁ), which are referred
to strong semitrivial steady states of (1.1);
(iv) positive solutions: (u∗, v∗, w∗), which is a positive steady state of (1.1).

The second and third types are collectively called semitrivial solutions. We stress
that all of ũ, ṽ, w̃, ŭ, v̆, u∗, v∗, w∗ are nonnegative and not identically zero.

For semitrivial steady states, the following statements hold true.

Theorem 4.1. For Case I- III, system (1.1) has no trivial steady state and admits
the unique semitrivial steady state E = (0, a0, 0).

Proof. It is clear that (1.1) has no trivial steady state, and easy to see that there
are no such weak semitrivial solutions as (0, 0, w̃) and (ũ, 0, 0). So we only determine
the solution (0, ṽ, 0), which satisfiesd2vxx +D(a0 − v) = 0, x ∈ (0, L),

vx(0) = vx(L) = 0.
(4.2)

Simple calculations yield that only ṽ = a0 solves (4.2), which indicates that (0, a0, 0)
is one solution to (4.1). To determine the strong semitrivial solutions, we solve

d1uxx + rm
uv
v+k −Du = 0, x ∈ (0, L),

d2vxx +D(a0 − v)− nsu− rm
Ys

uv
v+K = 0, x ∈ (0, L),

npu+ rmYp
uv
v+k = 0, x ∈ (0, L),

ux = vx = 0, x = 0, L,

(4.3)


d2vxx +D(a0 − v) = 0, x ∈ (0, L),

d3wxx −Dw = 0, x ∈ (0, L),

vx = wx = 0, x = 0, L,

(4.4)
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and 

d1uxx −Du = 0, x ∈ (0, L),

Da0 − nsu = 0, x ∈ (0, L),

d3wxx + npu−Dw = 0, x ∈ (0, L),

ux = wx = 0, x = 0, L,

(4.5)

respectively.
By some simple calculations, we get none of (4.3)–(4.5) has solution, which

indicates that there is no strong semitrivial solution to (4.1). Therefore, system
(1.1) has one and only one semitrivial steady state E = (0, a0, 0).

Theorem 4.2. For Case I or III, the following statements hold true.

(i) Suppose D > rm
a0

a0+K , then E is locally asymptotically stable.

(ii) Suppose D < rm
a0

a0+K , then

(a) E is unstable if d1µ1 > rm
a0

a0+K −D;

(b) let N1 be the largest integer such that d1µn ≤ rm a0
a0+K −D, then for n ≥

N1, (1.1) undergoes the steady state bifurcation at E if d1µ1 ≤ rm a0
a0+K −

D.

(iii) Suppose D = rm
a0

a0+K , then for n = 0, system (1.1) undergoes the steady state
bifurcation at E.

Proof. The linearized operator of the steady state system (4.1) evaluated at E is

L(E) =


d1

∂2

∂x2 + f1u(E) f1v(E) f1w(E)

f2u(E) d2
∂2

∂x2 + f2v(E) f2w(E)

f3u(E) f3v(E) d3
∂2

∂x2 + f3w(E)

 , (4.6)

where

f1u(E) = rm
a0

a0+K −D, f1v(E) = 0, f1w(E) = 0,

f2u(E) = −ns − rm
Ys

a0
a0+K , f2v(E) = −D, f2w(E) = 0,

f3u(E) = np + Yprm
a0

a0+K , f3v(E) = 0, f3w(E) = −D.

It is known that the eigenvalue problemϕxx = −µϕ, x ∈ (0, L),

ϕx = 0, x = 0, L,
(4.7)

has eigenvalues µn = (nπL )2 and ϕn(x) = cos nπL x are the corresponding eigenfunc-
tions, n = 0, 1, 2, 3, . . .

Let 
φ

ψ

ζ

 =

n=∞∑
n=0

cos
nπ

L
x


an

bn

cn

 , (4.8)
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be the eigenvalue function for L with eigenvalue λ, that is

L


φ

ψ

ζ

 = λ


φ

ψ

ζ

 . (4.9)

Employing some straightforward analysis, one can get

Ln


an

bn

cn

 = λ


an

bn

cn

 , (4.10)

where

Ln(E) =


−d1µn + rm

a0
a0+K −D 0 0

ns + rm
Ys

a0
a0+K −d2µn −D 0

np + Yprm
a0

a0+K 0 −d3µn −D

 . (4.11)

Thus the eigenvalues of L(E) are given by the eigenvalues of Ln(E), and the
characteristic matrix of Ln(E) is

λI − Ln(E) =


λ+ d1µn − rm a0

a0+K +D 0 0

−(ns + rm
Ys

a0
a0+K ) λ+ d2µn +D 0

−(np + Yprm
a0

a0+K ) 0 λ+ d3µn +D

 , (4.12)

where I is the identity matrix. Then the corresponding characteristic equation is

(λ+ d3µn +D)(λ+ d1µn − rm
a0

a0 +K
+D)(λ+ d2µn +D) = 0. (4.13)

It is easy to find λ1 = −(d2µn +D) < 0, λ2 = −(d3µn +D) < 0 for n ≥ 0. We
discuss λ3 = −d1µn + rm

a0
a0+K −D in the following three cases.

(I) D > rm
a0

a0+K , it is clear that λ3 < 0 for any n ≥ 0.
(II) D < rm

a0
a0+K , if d1µ1 > rm

a0
a0+K − D, then λ3 < 0 for any n ≥ 1, but

λ3 > 0 for n = 0; if d1µ1 ≤ rm
a0

a0+K − D, let N1 be the largest integer such that
d1µn ≤ rm a0

a0+K −D, then for n ≥ N1, one can well define

dn1 =
rm

a0
a0+K −D
µn

,

such that λ3 = 0 for d1 = dn1 .
(III) D = rm

a0
a0+K , it is obvious λ3 = 0 for n = 0.

Finally we get the desired results by [25] and Theorem 5.1.1 in [13].
According to the similar process to Theorem 4.2, the following statements can

be achieved.

Theorem 4.3. For Case II, the following statements hold true.
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(i) Suppose D > rm
a0

a0+K (1− a0
c ), then E is locally asymptotically stable.

(ii) Suppose D < rm
a0

a0+K (1− a0
c ), then

(a) E is unstable if d1µ1 > rm
a0

a0+K (1− a0
c )−D;

(b) let N2 be the largest integer such that d1µn ≤ rm a0
a0+K (1− a0

c )−D, then
for n ≥ N2, system (1.1) undergoes the steady state bifurcation at E if
d1µ1 ≤ rm a0

a0+K (1− a0
c )−D.

(iii) Suppose D = rm
a0

a0+K (1 − a0
c ), for n = 0, system (1.1) undergoes the steady

state bifurcation at E.

Next we concentrate on the constant positive steady states of (1.1). It is obvious
that rm > D and v < a0 are necessary if (1.1) has constant positive steady states.

4.1. Case I

Theorem 4.4. If rm > D and a0 > DK
rm−D , then (1.1) has only one constant

positive steady state E0 = (u∗, v∗, w∗), and E0 is locally asymptotically stable, where

u∗ =
D(a0 − v∗)
ns + D

Ys

, v∗ =
DK

rm −D
,w∗ = (

np
D

+ Yp)u
∗. (4.14)

Proof. Solving the following equations
rm

v
v+k −D = 0,

D(a0 − v)− nsu− rm
Ys

uv
v+K = 0,

npu+ Yprm
uv
v+k −Dw = 0,

(4.15)

we can get E0 = (u∗, v∗, w∗) is the only constant positive solution to (4.1) if rm > D
and a0 >

DK
rm−D .

Now we show the stability of E0. The linearized operator of the steady state
system (4.1) evaluated at E0 is

L(E0) =


d1

∂2

∂x2 + f1u(E0) f1v(E0) f1w(E0)

f2u(E0) d2
∂2

∂x2 + f2v(E0) f2w(E0)

f3u(E0) f3v(E0) d3
∂2

∂x2 + f3w(E0)

 , (4.16)

where

f1u(E0) = 0, f1v(E0) = rmK
u∗

(v∗+K)2 , f1w(E0) = 0,

f2u(E0) = −ns − D
Ys
, f2v(E0) = −D − f1v(E0)

Ys
, f2w(E0) = 0,

f3u(E0) = np + YpD, f3v(E0) = Ypf1v(E0), f3w(E0) = −D.

By the proof of Theorem 4.2, one can see the eigenvalues of L(E0) can be given
by the eigenvalues of the following matrix

Ln(E0) =


−d1µn rmK

u∗

(v∗+K)2 0

−ns − D
Ys

− d2µn −D − rmK u∗

Ys(v∗+K)2 0

np + YpD YprmK
u∗

(v∗+K)2 −d3µn −D

 .
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Some calculations yield the characteristic equation

(λ+ d3µn +D)(λ2 +An(E)λ+Bn(E)) = 0, (4.17)

whereAn(E) = d1µn + d2µn +D + rmK
u∗

Ys(v∗+K)2 ,

Bn(E) = d1µn(d2µn +D + rmK
u∗

Ys(v∗+K)2 ) + rmK
u∗

(v∗+K)2 (ns + D
Ys

).
(4.18)

One can find λ1 = −(d3µn +D) < 0 , and the other two eigenvalues of Ln(E0) are
the roots of λ2 +An(E)λ+Bn(E) = 0. It follows from µn ≥ 0 that

An(E) > 0, Bn(E) > 0,

if rm > D and a0 >
DK
rm−D . Therefore, three eigenvalues all have negative real parts,

which leads to the desired results by Theorem 5.1.1 in [13].

4.2. Case II

Lemma 4.1. System (1.1) has two constant positive steady states E1 = (u∗1, v
∗
1 , w

∗
1)

and E2 = (u∗2, v
∗
2 , w

∗
2) if rm > D, a0 > max{v∗1 , v∗2} and

(rm −D)2 ≥ 4rmDK

c
, (4.19)

where

u∗1 =
D(a0 − v∗1)

ns + D
Ys

, v∗1 =
c(rm −D +

√
∆)

2rm
, w∗1 = (np + YpD)

a0 − v∗1
ns + D

Ys

, (4.20)

u∗2 =
D(a0 − v∗2)

ns + D
Ys

, v∗2 =
c(rm −D −

√
∆)

2rm
, w∗2 = (np + YpD)

a0 − v∗2
ns + D

Ys

, (4.21)

∆ = (rm −D)2 − 4rmDK

c
.

Particularly, E1 = E2 for (rm −D)2 = 4rmDK
c .

Proof. Suppose (u∗, v∗, w∗) is a constant positive solution of (4.1), then it satisfies
rm

v
v+K (1− v

c ) = D,

D(a0 − v)− u(ns + D
Ys

) = 0,

u(np + YpD)−Dw = 0.

(4.22)

It follows from straightforward calculations that, for rm > D and (rm − D)2 ≥
4rmDK

c , the first equation of (4.22) has two positive solutions

v1,2 =
c(rm −D ±

√
∆)

2rm
, (4.23)

where ∆ = (rm −D)2 − 4rmDK
c .
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Combining (4.23) with (4.22), one get the constant positive solution Ei =
(u∗, v∗, w∗) to (4.1) if a0 > v∗i , where

u∗i =
D(a0 − v∗i )

ns + D
Ys

, v∗i =
c(rm −D ±

√
∆)

2rm
, w∗i = (np + YpD)

a0 − v∗i
ns + D

Ys

, i = 1, 2,

which completes the proof of part (ii) in Lemma 4.1.

Lemma 4.2. rv is monotone decrease strictly with respect to v, and
0 < rv <

rm
K , 0 < v < s,

rv = 0, v = s,

rv < 0, v > s,

(4.24)

where s is in the form of (2.1).

Proof. It follows from r = rm
v

v+K (1− v
c ) that

rv =
rm

c(v +K)2
(−v2 − 2vK + cK), (4.25)

and

rvv = −2rm(cK +K2)

c(v +K)3
< 0. (4.26)

Therefore, rv is monotone decrease strictly for v ≥ 0, and (4.24) can be verified
directly.

Theorem 4.5. For i = 1, 2, the following statements are valid.

(i) If 0 < v∗i < s, then Ei is locally asymptotically stable.

(ii) If v∗i > s, choosing d2 as the bifurcation parameter, then

(a) for any d2 ≥ 0, system (1.1) doesn’t undergo Hopf bifurcation at Ei,

(b) for YsD > −u∗i rv(Ei), let N be the largest positive integer such that

d1[YsD + u∗i rv(Ei)]µn < −u∗i rv(Ei)(Ysns +D). (4.27)

Assume dn1
2 6= dn2

2 whenever n1 6= n2, 1 ≤ n1, n2 ≤ N , then for 1 ≤ n ≤
N , system (1.1) undergoes the steady state bifurcation at Ei, where

dn2 =
−u∗i rv(Ei)(Ysns +D)− [YsD + u∗i rv(Ei)]d1µn

Ysd1µ2
n

, (4.28)

(c) for YsD ≤ −u∗i rv(Ei), assume dn1
2 6= dn2

2 whenever n1 6= n2, n1, n2 ≥ 1,
then for n ≥ 1, system (1.1) undergoes the steady state bifurcation at Ei,
where dn2 is given by (4.28),

(iii) If v∗i = s, then the steady state bifurcation occurs for n = 0.

Proof. Part (i). Since r = rm
v

v+K (1− v
c ), the linearized operator of system (4.1)

evaluated at Ei = (u∗i , v
∗
i , w

∗
i ) is

L(Ei) =


d1

∂2

∂x2 + f1u(Ei) f1v(Ei) f1w(Ei)

f2u(Ei) d2
∂2

∂x2 + f2v(Ei) f2w(Ei)

f3u(Ei) f3v(Ei) d3
∂2

∂x2 + f3w(Ei)

 , (4.29)
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where

f1u(Ei) = 0, f1v(Ei) = u∗i rv(Ei), f1w(Ei) = 0,

f2u(Ei) = −ns − D
Ys
, f2v(Ei) = −D − u∗i

rv(Ei)
Ys

, f2w(E∗i ) = 0,

f3u(Ei) = np + YpD, f3v(Ei) = u∗i Yprv(Ei), f3w(Ei) = −D,

rv(Ei) = rm
(−(v∗i )2−2v∗iK+cK)

c(v∗i +K)2 .

By the similar process to the proof of Theorem 4.2, the eigenvalues of L(Ei) are
given by the eigenvalues of the following matrix

Ln(Ei) =


−d1µn u∗i rv(Ei) 0

−ns − D
Ys

− d2µn −D − u∗i
rv(Ei)
Ys

0

np + YpD u∗i Yprv(Ei) −d3µn −D

 , (4.30)

and the characteristic equation is

(λ+ d3µn +D)(λ2 +An(E∗i )λ+Bn(Ei)) = 0, (4.31)

where An(Ei) = d1µn + d2µn +D +
u∗
i rv(Ei)
Ys

,

Bn(Ei) = d1µn(d2µn +D) + u∗i rv(Ei)(
d1µn

Ys
+ ns + D

Ys
).

(4.32)

It is easy to see λ1 = −(d3µn+D) < 0, and the other two eigenvalues are determined
by λ2 +An(Ei)λ+Bn(Ei) = 0. Then for n ≥ 0, in view to part (ii) of Lemma 4.2,
it is clear that

An(Ei) > 0, Bn(Ei) > 0,

if 0 < v∗i < s, which ends the proof of Part (i).
Part (ii). (a). By an indirect argument, we suppose there exists some dH2 ≥ 0

such that system (1.1) undergoes the Hopf bifurcation at (dH2 , Ei). Then we have

An(dH2 , Ei) = d1µn + dH2 µn +D +
u∗i rv(Ei)

Ys
= 0, (4.33)

Bn(dH2 , Ei) = d1µn(dH2 µn +D +
u∗i rv(Ei)

Ys
) + u∗i rv(Ei)(ns +

D

Ys
) > 0. (4.34)

It directly follows from (4.33) that

dH2 =
u∗i (−rv(Ei))− YsD − d1Ysµn

Ysµn
. (4.35)

Now we continue the proof in the following two cases.
I. −u∗i rv(Ei) ≤ YsD; II. −u∗i rv(Ei) > YsD.
For −u∗i rv(Ei) ≤ YsD, one can find dH2 < 0 from (4.35), which results in a

contradiction with dH2 ≥ 0.
For −u∗i rv(Ei) > YsD, we show the contradict in the either case

µ1 ≥
−u∗i rv(E1)− YsD

d1Ys
or µ1 <

−u∗i rv(E1)− YsD
d1Ys

.
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If µ1 ≥ −u
∗
i rv(Ei)−YsD

d1Ys
, then dH2 ≤ 0 from (4.35), contradicting dH2 > 0.

If µ1 <
−u∗

i rv(Ei)−YsD
d1Ys

, denote N3 as the largest integer such that

µn ≤
−u∗i rv(Ei)− YsD

d1Ys
,

which implies dH2 ≥ 0. Then according to (4.33), for 1 ≤ n ≤ N3, (4.34) is equivalent
to

Ys[(d1 + dH2 )µn +D] <
Ysd1µn(dH2 µn +D)

d1µn + Ysns +D
,

that is
d1µn(d1µn + Ysns +D) + (dH2 µn +D)(Ysns +D) < 0. (4.36)

It is clear that (4.36) contradicts the assumptions.
Consequently, for any d2 > 0, system (1.1) doesn’t undergo Hopf bifurcation at

Ei.
(b). Since YsD > −u∗i rv(Ei), there must exist the largest integer N such that

(4.27) holds. Hence, for any 1 ≤ n ≤ N , dn2 > 0 is well defined as (4.28), which
directly deduces

Bn(dn2 , Ei) = 0. (4.37)

According to the assumption, dn1
2 6= dn2

2 whenever n1 6= n2, 1 ≤ n1, n2 ≤ N ,
one get

Bm(dn2 , Ei) 6= 0, for m,n ≥ 1, m 6= n. (4.38)

Moreover, for 1 ≤ n ≤ N , there holds

B′n(dn2 ) = d1µ
2
n. (4.39)

Therefore, by (4.37), (4.38) and (4.39), we deduce that system (1.1) undergoes the
steady state bifurcation at (dn2 , Ei).

(c). For any n ≥ 1, (4.27) holds if YsD ≤ −u∗1rv(E1). Then by the similar
process to part (b), one can verify part (c).

Part (iii). Suppose v∗i = s, we get B0(Ei) = 0 and Bn(Ei) 6= 0 for n ≥ 1, which
leads to Part (iii) by [25] and Theorem 5.1.1 in [13].

4.3. Case III

Lemma 4.3. System (1.1) only has one constant positive steady state E3=(u∗3,v
∗
3 ,w
∗
3)

if rm > D, where E3 = (u∗3, v
∗
3 , w

∗
3) will be given in the proof.

Proof. Again suppose (u∗, v∗, w∗) is a constant positive solution of (4.1), then it
satisfies 

rm
v

v+K (1− w
d ) = D,

D(a0 − v)− u(ns + D
Ys

) = 0,

u(np + YpD)−Dw = 0.

(4.40)

Some direct calculations yiled,

rm(np+YpD)(v∗)2 +[d(ns+
D

Ys
)(rm−D)−rm(np+YpD)a0]v∗−DdK(ns+

D

Ys
) = 0.

(4.41)
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It is easy to check (4.41) has one positive root

v∗3 =
a0

2
−
d(ns + D

Ys
)(rm −D)

2rm(np + YpD)
+

√
∆

2rm(np + YpD)
,

where ∆ = [d(ns+ D
Ys

)(rm−D)−rm(np+YpD)a0]2 +4rm(np+YpD)DdK(ns+ D
Ys

).
Due to (4.40), there holds

u∗3 =
D(a0 − v∗3)

ns + D
Ys

, w∗3 = (np + YpD)
a0 − v∗3
ns + D

Ys

,

which finishes the proof.

Theorem 4.6. For rm > D, E3 is locally asymptotically stable.

Proof. Since r = rm
v

v+K (1 − w
d ), then the linearized operator of system (4.1)

evaluated at E3 = (u∗3, v
∗
3 , w

∗
3) is

L(E3) =


d1

∂2

∂x2 + f1u(E3) f1v(E3) f1w(E3)

f2u(E3) d2
∂2

∂x2 + f2v(E3) f2w(E3)

f3u(E3) f3v(E3) d3
∂2

∂x2 + f3w(E3)

 , (4.42)

where

f1u(E3) = 0, f1v(E3) = u∗3rv(E3), f1w(E3) = u∗3rw(E3),

f2u(E3) = −ns −
D

Ys
, f2v(E3) = −D − u∗3

rv(E3)

Ys
, f2w(E3) = −u∗3

rw(E3)

Ys
,

f3u(E3) = np + YpD, f3v(E3) = u∗3Yprv(E3), f3w(E3) = −D + u∗3Yprw(E3),

rv(E3) = rm(1− w∗

d
)

K

(v∗ +K)2
, rw(E3) = − rmv

∗

d(v∗ +K)
.

Similarly, the eigenvalues of L(E3) are given by the eigenvalues of the following
matrix

Ln(E3) =


−d1µn u∗3rv(E3) u∗3rw(E3)

−ns − D
Ys

− d2µn −D − u∗3
rv(E3)
Ys

−u∗3
rw(E3)
Ys

np + YpD u∗3Yprv(E3) −d3µn −D + u∗3Yprw(E3)

 .

(4.43)
Then the characteristic equation is

λ3 +Bn2(E3)λ2 +Bn1(E3)λ+Bn0(E3) = 0, (4.44)

where

Bn2(E3) = d3µn +D + d1µn + d2µn +D +
u∗3rv(E3)

Ys
− u∗3Yprw(E3), (4.45)

Bn1(E3) = (d3µn +D)(d1µn + d2µn +D +
u∗3rv(E3)

Ys
)

+ d1µn(d2µn +D) + u∗3rv(E
∗
3 )(ns +

D + d1µn
Ys

)

− u∗3rw(E3)[Yp(d2µ+D) + np + YpD + Ypd1µn],

(4.46)
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Bn0(E3) = (d3µn +D)[d1µn(d2µn +D) + u∗3rv(E3)(ns +
D + d1µn

Ys
)]

− (d2µn +D)u∗3rw(E3)(np + YpD + Ypd1µn).

(4.47)

It follows from r = rm
v

v+K (1− w
d ) that

rv(E3) = rm(1− w∗3
d

)
K

(v∗3 +K)2
> 0, rw(E3) = −rm

d

v∗3
v∗3 +K

< 0.

Some direct calculations deduce

Bni > 0, Bn1Bn2 −Bn3 > 0, i = 0, 1, 2.

According to Routh-Hurwitz criterion, three eigenvalues of L(E3) all have negative
real parts, which leads to Theorem 4.6.

5. Numerical simulations

In this section, some numerical simulations are given to show our results above.
Furthermore, it is illustrated that lager a0 can induce system (1.1) to stabilize to the
weak semitrivial steady state (0, a0, 0) as time proceeds, and the spatialtemporal
patterns of u(x, t), v(x, t) and w(x, t) are provided to exhibit the microorganism
culture process.

Throughout this part, the following initial functions are used.

u0(x) = 0.1− 0.1 cos
2πx

L
, v0(x) = 1− 0.1 cos

2πx

L
,w0(x) = 2− 0.1 cos

2πx

L
, (5.1)

u0(x) = 0.1− 0.1 cos
2πx

L
, v0(x) = 6, w0(x) = 2− 0.1 cos

2πx

L
. (5.2)

Figure 1. The asymptotic behaviors of u(x, t) in (a), v(x, t) in (b) and w(x, t) in (c). Here rm = 0.01,
D = 0.55, a0 = 6, d1 = 0.3, d2 = 1.1, d3 = 1, ns = 1, Ys = 0.4, K = 0.28, np = 0.8, Yp = 50; initial
function (5.1) is chosen.

Figure 2. The asymptotic behaviors of u(x, t) in (a), v(x, t) in (b) and w(x, t) in (c). Here rm = 0.6,
D = 0.35, a0 = 6, d1 = 0.3, d2 = 1.1, d3 = 1.1, ns = 1, Ys = 0.2, rm = 0.6, K = 0.28, np = 0.05,
Yp = 0.8; initial function (5.1) is used.
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Figure 3. The spatiotemporal patterns of u(x, t) in (a, d, g), v(x, t) in (b, e, h) and w(x, t) in (c, f, i).
Here, L = 6, all the other parameters take the same values as them in Figure 2; initial function (5.2) is
used.

Example 5.1. Under the the conditions in part (i) of Theorem 2.1, for Case I, the
asymptotic behaviors of u(x, t), v(x, t), w(x, t) are described in Figure 1. Further let
c = 30 (resp. d = 20), the numerical results for Case II (resp. Case III) are similar
to Figure 1, where u(x, t) in (a) and w(x, t) in (b) decay to zero and v(x, t) stabilizes
to a0 in the long run. In addition, if we choose initial function (5.2), Figure 1 can
still show the tendency of u(x, t), v(x, t), w(x, t).

Example 5.2. For Case I, the numerical solution to system (1.1) is illustrated by
Figure 2. We obtain that (u(x, t), v(x, t), w(x, t)) stabilizes to the constant positive
state (0.7167, 0.3964, 0.6149), which is close to (0.7137, 0.3920, 0.6730) computed
by (4.14). Furthermore, the spatiotemporal patterns of u(x, t), v(x, t), w(x, t) are
given in Figure 3 to exhibit the microorganism culture process. In the initial stage,
culture time T = 3, see (a − c): the concentration of substrate on the both ends
of the tubular vessel is higher than that in the center, while the concentrations of
biomass and product on the ends are lower than those in the middle; after a while,
T = 10, concentrations of biomass, substrate and product are still heterogeneous in
general, see (d− f); as time goes on, T = 40, they all tend to homogeneous states,
see (g − i).

Example 5.3. For Case II and Case III, let c = 30, d = 20, keeping the other
parameters same as them in Figure 2, and fix the initial function as (5.1), we get
similar figures to Figure 2. Therefore, system (1.1) can stabilize to constant positive
steady state under three cases. However, for Case II, if we only change a0 = 6 as
a0 = 20, keeping all other parameters the same, then the numerical results can be
illustrated by Figure 4. It is observed that u(x, t) decays to zero in Figure 4 as time
goes on but it stabilizes to a positive state in Figure 2. This implies that the lager
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a0 induce microorganisms to be extinct due to substrate inhibition, and the system
stabilizes to (0, a0, 0) as time goes on, which is agree with Theorem 4.3.

Figure 4. The asymptotic behaviors of u(x, t) in (a), v(x, t) in (b) and w(x, t) in (c). Here a0 = 20,
c = 30 and all the other parameters take the same values as them in Figure 2; initial function (5.1) is
chosen.

Figure 5. The graphs of v∗1 , s and v∗2 with respect to parameters c and D in (a), K and D in (b), rm
and D in (c), c and K in (d), c and rm in (e), rm and K in (f).

6. Discussion

A diffusive microbial continuous culture model is presented and studied under three
growth conditions– Case I no inhibition, Case II only substrate inhibition and Case
III only product inhibition. It shows that the proposed system with any growth
function can finally stabilize to constant positive steady state, i.e., homogeneous
state. But the dynamics of the microorganism culture process varies with different
growth functions. The outcome of the system with Case I is similar to that for
Case III: there is one positive constant steady state which is stable. Whereas the
system subject to Case II have two positive constant steady states E1 and E2

with conditions of rm > D, a0 > v∗i and (4.19). Ei is stable if v∗i < s, and
there undergoes the steady state bifurcation if v∗i ≥ s, i = 1, 2. However, based
on rm > D, a0 > v∗i and (4.19), it is observed that v∗2 < s < v∗1 from Figure
5. Thus we conjecture that E2 is stable and the steady state bifurcation occurs
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at E1. Particularly in the absence of diffusion, we find that E2 is stable but E1

is unstable, which is an agreement with some arguments in [22]. In addition, it
is illustrated that larger a0 can induce system (1.1) with substrate inhibition to
stabilize to the washout state E = (0, a0, 0). Then we may conclude that a0 plays
an important role in the outcome of the proposed system, which is in accordance
with some results in [8]. Consequently, our results may be helpful in choosing
appropriate experimental operating conditions to avoid the stability of washout
state and something else unexpected in the actual microbial culture.

Example 6.1. Based on rm > D and (rm −D)2 − 4rmDK
c > 0, the graphs of v∗1 ,

s and v∗2 are presented in Figure 5. Let rm = 0.32,K = 2 , one get the surfaces of
v∗1(c,D), s(c,D) and v∗2(c,D) in Figure 5 (a), where the multi-colored one at the
top, the blue one in the middle and the red one at the bottom display the trends
of v∗1 , s and v∗2 , respectively. In turn, fix rm = 0.32, c = 80; K = 2.5, c = 80;
D = 0.2, rm = 0.32; D = 0.2,K = 2.5; D = 0.2, c = 80, one can obtain the surfaces
of v∗1 , v∗2 and s with respect to parameters K and D; rm and D; c and K; c and
rm; rm and K in Figure 5 (b− f), respectively.
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