首页 | 官方网站   微博 | 高级检索  
     


A novel method to calculate the pressure interaction between dust and fluid using SPH
Authors:Jihoe Kwon  Heechan Cho
Affiliation:Department of Energy Resources Engineering, Seoul National University, Seoul, South Korea
Abstract:Unstable behavior of smoothed particle hydrodynamics (SPH) dust particles, such as clumping or fingering under certain conditions, has been reported by several researchers who have conducted studies on dusty fluid SPH. The simulation results in this study show that this instability is numerical, and the instability is mainly attributable to the ill‐interpolated pressure gradient in the interaction term between 2 phases. In this paper, we introduce a new method to calculate the pressure force interaction term between dust and fluid particles. The key idea is to first interpolate the pressure gradient at SPH fluid particles and then use the values to calculate the pressure gradient at SPH dust particles, in a consecutive manner. To compare the new method with the existing method, we first conducted an interpolation of pressure gradient at hydrostatic equilibrium under gravity to estimate any error. The results show that the new method is more accurate. We then conducted additional numerical tests, namely, dust‐liquid counterflow, sedimentation in a confined tank, and sedimentation in the presence of turbulence. The unphysical unstable behavior of SPH dust particles such as clumping or fingering was significantly reduced in the new method. The results also show that the instability becomes more significant when using the existing method especially for the case when simulating a flow with relatively high concentration of dust or for the case in which inertia dominates the dynamics of dust particles. Especially, in those cases, the existing method should be avoided, and the newly proposed method is highly recommended.
Keywords:consecutive interpolation  dust‐liquid flow  multiphase flows  particle method  pressure interaction  smoothed particle hydrodynamics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号