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Abstract: In this paper we consider the boundedness of Riesz transform associated to
uniformly elliptic operators L = —div(4(z)V)+ V(z) with non-negative potentials V on
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1. Introduction

For Schrodinger operators —A + V(z) with non-negative polynomials V', several au-
thors (cf. Shen, Zhong etc.) studied the L? boundedness for 1 < p < oo of V(-A +
VY V2 (~A+V) VY, V(-A+ V)1V, V2Y(~A+V)7!, and VEH(-A + V). In par-
ticular, Zhong!'®) proved that if V is a non-negative polynomial, V2(—A + V)=, V(-A +
V) Y2, V(~A + V)7V are C-Z operators. It is well-known that C-Z operators are
bounded on L?, for 1 < p < oo. Shen!®9 generalized these results. He proved that
V(-A + V) V2 (A +V)~/? and V(-A + V)~'V are C-Z operators if V belongs to
reverse Holder class B,,. Recently, Kurata and Sugano[S] considered uniformly elliptic op-
erators L = —div(A(z)V) + V(z) with non-negative potentials V on R™(n > 3) which
belong to certain reverse Holder class and gave several estimates for VL1, V~1/2y 1
and V?L~?! on weighted L? spaces.

In this paper, we consider uniformly elliptic operators

L=- z": di(aij(2)0;) + V() := Lo + V(=)

with certain non-negative potentials V(z) on R™*(n > 3), where a;;(z) are measurable
functions satisfying the conditions:
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(A1) There exists a constant A € (0,1] such that

a;;(z) = ai(z), MEPP< Y ai(e)el; < ATUES, 2,6 € R

i,7=1
(A2) There exist constants a € (0,1] and K > 0 such that
llaijllcamny < K.

(A3) a;j(z + z) = aij(z), z€cR",zeZ™
Throughout this paper we use the following notation:

a n
8, =V;=V,, = —, V(@) =} IVsu(z)l.
=1

7 Oz

When A(z) satisfies (A1)-(A3), Alexopoulos got in [1] that Ty = \71351/2 is bounded
on LP(1 < p < oo) and weakly bounded on L!. When Ly associated with a complex
matrix A satisfying uniform elliptic condition, in [3] it was proved that the operator Tj
is bounded from Hardy space H}(R") to L'(R"), hence by interpolation, is bounded on
LP(1 < p < 2) under the following assumptions:

(i) The analytic semigroup e tL* generated by Ly has kernels which posses Gaussian
upper bounds and Hélder continuity bounds in their space variables;

(i) To = \7‘651/2 is bounded on LZ.

Later Duong and McIntosh(¥ considered the L?(Q) boundedness of Tj without the
assumption of Hélder continuity in the space variables of the kernels of the semigroup
e"tL, where Q is a domain of R™ without any assumptions on the smoothness of its
boundary.

The purpose of this paper is to show the boundedness of the operators VL~1/2 y1/2[~1/2
on L? spaces. Actually the pointwise estimate of V1/2L[~1/2 by the Hardy-Littlewood max-
imal function tells us more information about these operators. It extends the results in
[9] to uniformly elliptic operators with non-negative potentials.

Definition 1 Let V(z) > 0.
(i) For1 < ¢ < oo, wesay V € By, if V € L] (R™) and there exists a constant C such
that

R 2V dz )1/ e _(:_ z\dz
(57 [, Verane < o [ vizya &)

holds for every ball B € R"™.
(ii) We say V(z) € Bu, if V € L{°,(R") and there exists a constant C such that

C
Vilp=ig) < ——/ V(z)de
holds for every ball B € R™.
One remarkable feature about the B, class is that, if V € B, for some ¢ > 1, then there
exists ¢ > 0, which depends only on n and the constant C in (1), such that V ¢ Bgy.. For
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1 < g1 < g2 < o0,it is easy to see Bo C By, C By, . It’s well-known that V ¢ B, implies
V € A (Muckenhoupt weight class).

2. Main results
We give some fundamental properties of functions in the B, class.
Proposition 2 IfV(z) € B,(1 < ¢ < o), is a non-negative constant, then V(z) + X €

B,.
In fact, for all ball B € R™,if 1 < ¢ < o0

z) + A)4dez)l/e
(157 V(=) + Arae)
'B,/ V(z)%dz)"/1 + /,\de )/

< C(m/BV(z)d:c +2) = m/};(V(z)-f-)\)dz

The case ¢ = oo is similar.
Let V(z) € B,/ and V(z) # 0. Then the function m(z, V') is well-defined by

1 1
ey = el > 0 / L Va1 2)

If ro = m(z,V)™!, then r—o,%qu(m‘ro) V(y)dy = 1. It is not difficult to findif A > 0is a
constant, then m(z,)) = CV\.

Proposition 3 For V(z) € B,,/3,A > 0, we have m(z,V) < m(z,V + A).
In fact,

1 1

(r>0: — / V(dy <12 {r>0: —— / (V(y) + N)dy < 1}
r B(z.r) r B(z,r)

Lemma 48 Let k > 0 be an integer.
(i) Suppose (A1) for A(z). Under the assumption V(z) € B, /,, there exists a constant

C. such that
Cr

(1 +m(z,V)lz - y)z — y[*~*
(ii) Suppose (A1) and (A2) for A(z). Under the assumption V(z) € By, there exists a
constant Cy, such that

0<I(z,9) <

Ci
A S P [P P

where I'(z,y) is the fundamental solution of L.
Let T'(z,y; A),To(z,y; A) be the fundamental solution of L+ A and Lo+ A, respectively.
By Propositions 2 and 3, it is easily to find that Lemma 4 is still true when we replace
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I'(2,y) with T'(2,y; A) if A > 0. More precisely, we have

Proposition 5 Let k > 0 be an integer, A > 0.
(i) Suppose (A1) for A(z). Under the assumption V(z) € By, /,, there exists a constant
C). such that
Ck
+m(z,V)lz —yD)H(L+ A2z — y|)rlz — yIm=?
(i) Suppose (A1) and (A2) for A(z). Under the assumption V(z) € By, there exists a
constant Cy, such that

< : <
0 <z, y; M) < i

Ck
(1 +m(z,V)lz — y[)F(1 + MN/2z — y|)k|z -yt

[VI(z,y; A)] <

Lemma 6 Suppose V € B,,n/2 < ¢ < n, (L+V + A)u = 0 in B(29,2R). Then for
z € B(zo,R)

V(y)lu(y)l
Vu(@)l < /B(wo,ZR) |z —yln! dy + R+l /B(xo,zR) [u(y)idy-

Proof Let n € C{°(B(zo,2R)) such that = 1 on B(zo,3R/2),|V'n| < CR™7,j =1,2.
Note that

u(e)n(e) = [ To(e,33)(Lo + A)(wn)(w)dy
:/ To(z, 3 M)(=Vun)(y)dy - /R" Lo(z,y;A)AV7y - Vudy+
| AVyLo(2,43 ) Vudy.
For = € B(zo, R),

IVu(2)] = [ [V.Ta(z, i DIV (v)uly)n(o)idy+
J19Tol2 3 V1 AVy - Vauldy + [ 1AV, o2,y 0) Tnuldy.

By Proposition 5, we use Caccioppoli’s inequality (see [5], P.21) to estimate the second
term, and notice that |z —y| > R/2 on the region {3R/2 < |z — z¢| < 2R}. It follows that

Viy)|u®)l c
|Vu(:c)l§/ Te_gp1 ¥ / u(y)ldy. O
B(x¢,3/2R) |2 — y[*~! y Rn+l B(zo,ZR)l (y)ldy

Now we are in the position to give our main theorems.

Theorem 7 Suppose (A1)-(A3) for A(z) and V(z) € B, with n/2 < q < n. Then for
1< p S Do,

V(Lo + V) 2 fllagui-r) < Coll flliriur-s) if w € Ay,

Py
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where o = s = & And V(Lo + V)2 is bounded from H* to L'.
Proof By functional calculus, we may write
1 (e}
(Lo+ V)2 = / AV Lo 4V 4 A) 1A,
0

Thus
Tf(z) = V(Lo + V)2 f(z) = [ K(2,)f(0)d,

where 1 oo
' K(z,y) = —7;/ A28, (2, y; A)dA.
0

(3)

(4)

To prove Theorem 7, by duality it’s equivalent to prove that T* f(z) = [ga K(y,2)f(y)dy

is bounded on L?(w) with pj < p < oo.
Let
Tofz) = VL5 f(x) = [ Koz, ) f(w)ay

where Ko(z,y) = L [ A"12V,To(=, y; \)dX.
We write

T*f(z) =T f(=) + | K(y,=)f(y)dy+

y—x|>T
[ K@) - Ko@)y - [ Ko(we)fl)y
ly—z|<r ly—z|>r
=L+ I+ I3+ 1a,

1
where r = eV

(5)

First we estimate I, fix g,y € R™. Let u(y) = I'(y,2z0;A) and R = |zo — yo|/4. It

follows from Lemma 2 that

V(y)lu(y)| C
v <C dy + / u(y)|dy.
(Vulyoll < Blyw2R) [Wo — g"1 | RAHI B(yo,zR)' (w)ldy

Hence, by Proposition 5,
'Vyr(y07 L0, A),

= (14 A2R)*(1 4+ Rm(z0,V))* "JB(yo,2R) |y — %oI" ! |y — 2o|"~2

1 / 1
. —  dy
R JB(ye2R) |y — zo|"2 }

Cy 1 / V(y) 1
< | dy + .
T (L4 X/2R)(1 + Rm(zo,V))* (7 Blwo,2R) [V — Yol" T~ 1)
Thus, by (4)
K (30, 20)| < c/ XYV, T (o, 20; A)|dA
0

1
<
< C i mizo VIR B2 /B<yo,zR) ly —yol*=* = E"
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By the assumption V(z) € B, for some ¢,n/2 < ¢ < n, we know that there exists
¢1,4 < g1 < n, such that V(z) € B,,. We can get by the same strategy as [10] that

Ll < CLM( P ()},

where 51’— =1-S=1- Elf + %, M is Hardy -Littlewood maximal function. Similarly, we
1

have
Is] < C{M(|f[" ()}"1.

In [1], using homogenization theory, Alexopoulos obtained that the Riesz transforms asso-
ciated to Lo are C-Z operators when A(z) has real-valued Hélder continuous coeflicients
that are periodic with common period. Hence by the standard C-Z theory,

“T*f”LP(w) < C“f“Ll'(w) if we A_ﬁ_
)

for pj, < p < c0. And T f is bounded from L™ to BM O. Therefore the proof is completed
by duality. O

Theorem 8 Suppose (Al) and (A2) for A(z),V(z) € Bo. Then there exists constant
C > 0 such that

[V (2)/?(Lo + V)2 f(z)] < CMf(z), feCT(R™).

Proof We write

Sf(z) =V Lo+ V) V2 f(z)
V1/2

1 o
:;/ V@Y AT,y A (y)dy
Let r = H(_;—V_) By Proposition 5,
si < V=) Al
= Re (T (e, V)lz — gl)He — g1 Y
m(z, V)| f(y)|
<Cp
<O e Viz ~ e — g
e ()
kjez /2f*‘r<lz—y|<zir (L4 m(z, V)lz - y))¥lz = g1

(21 !
Cl Z (14 29-1)k(2s-1)n- 1(2ip)n /!m_ylgzjrlf(y)ldy

<O D o 1+2 Mf(z) < CM f(z),

JjeZ
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where we choose k > 2. O

Corollary 9 Let A(z),V(z) be as in Theorem 8. Then V*?(Ly 4+ V)~1/2 are bounded
on LP(w) if w € A,.

The corollary extends the result in [9,Theorem 5.10] to uniformly elliptic operators
with general potentials V' € By. For V(z) € B, with ¢ > n/2, we have the following
result,

Theorem 10 Suppose (A1) and (A2) for A(z), V(z) € B;,n/2 < q < oo. Then, for
1< p<2g
V(@) /(Lo + V)72 (@)l|zrw) < Cllflzoen,

fuwl P ecAd .
G’

From the proof of Theorem 8, we have

V(2)"1f(3)l
o (T m(z, V)le = yl)Hle — g

IV (z)(Lo + V)™2f(=)] < Ci /R dy.

Then the proof of this theorem is the same as that of Theorem 5.10 in [9].
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H Schrodinger HFFE M Y Riesz THAY L7 &1t

x A #
(REJTEEBE R R, LA R 226007)

B OE AXFEWRTHIEAMNS V(e) JBFFY Holder 258, H—BWEAT L =
—div(A(2)V) + V(=) Fri€ X#J Riesz Z5HAE LP Z[a]fyH Rk

X§18: Riesz ZFHf; Schrodinger $IF.
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