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Abstract

Refinements to inequalities on inner product spaces are presented. In this respect, inequali-
ties dealt with in this paper are: Cauchy’s inequality, Bessel’s inequality, Fan-Todd’s inequality

and Fan-Todd’s determinantal inequality. In each case, a strictly increasing function is put for-
ward, which lies between the smaller and the larger quantities of each inequality. As a result,
an improved condition for equality of the Fan-Todd’s determinantal inequality is deduced.
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§1. Introduction

In recent years, refinements or interpolations have played an important role on several

types of inequalities with new results deduced as a consequence. Please refer to the papers
[2, 8, 9, 12], etc. The aim of this paper is to furnish refinements of the Cauchy’s and Bessel’s
inequalties as shown in Section 2, and also refinements of the Fan-Todd’s inequality and the

Fan-Todd’s determinantal inequality in Sections 3 and 4, with an improved condition for
equality derived.

First of all, we give some basic terms and definitions. An inner product space on a
complex vector space X is a function that associates a complex number ⟨u, v⟩ with each pair
of vectors u and v in X, in such a way that the following axioms are satisfied for all vectors

u, v and w in X and all scalars λ:

(1) ⟨u, v⟩ = ⟨v, u⟩;
(2) ⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩;
(3) ⟨λu, v⟩ = λ⟨u, v⟩;
(4) ⟨v, v⟩ ≥ 0 and ⟨v, v⟩ = 0 if and only if v = 0.

Here, ⟨v, u⟩ denotes the complex conjugate of ⟨v, u⟩. A complex vector space with an

inner product is called a complex inner product space. Let ∥u∥ =
√

⟨u, u⟩ denote the norm
of u. The content of the paper will be organized as follows: In Section 2, refinements of the

Manuscript received May 22, 2000.

∗Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China.

E-mail: makkchon@inet.polyu.edu.hk



76 CHIN. ANN. OF MATH. Vol.23 Ser.B

Cauchy’s and Bessel’s inequalities will be presented. In Section 3, refinements of the Fan-
Todd’s inequality will be put forward. Finally, in Section 4, refinements of the Fan-Todd’s

determinantal inequality will be presented, with the condition for equality improved.

§2. Refinements of the Cauchy’s Inequality

The well-known Cauchy’s inequality states as follows:

Theorem 2.1. For any two vectors a and b in an inner product space X, we have

|⟨a, b⟩| ≤ ∥a∥∥b∥. (2.1)

The equality holds if and only if a and b are linearly dependent.

We can have a refinement of the Cauchy’s inequality as follows:

Theorem 2.2. Let a and b be two non-zero vectors in an inner product space (real or

complex) X, such that |⟨a, b⟩| < ∥a∥∥b∥.
For any t ∈ [0, 1], we define

at = [(1− t)⟨a, b⟩b]/∥b∥2 + ta (2.2)

and

F (t) = ∥at∥. (2.3)

Then we have

(1) ∥at∥ < ∥a∥ for t ∈ [0, 1) and |⟨a, b⟩| < ∥at∥∥b∥ for t ∈ (0, 1] ;

(2) For 0 ≤ s < t ≤ 1, we have F (s) < F (t) ;

(3) F (t) is a strictly increasing function for t ∈ [0, 1], with F (0) = |⟨a, b⟩|/∥b∥ and
F (1) = ∥a∥ i.e. we have the refinement |⟨a, b⟩|/∥b∥ < F (t) < ∥a∥ for t ∈ (0, 1).

Proof. (1) For t ∈ [0, 1), by (2.2), we have

∥at∥ = ∥[(1− t)⟨a, b⟩b]/∥b∥2 + ta∥ (2.4)

≤ [(1− t)|⟨a, b⟩|]/∥b∥+ t∥a∥ < ∥a∥. (2.5)

Hence, ∥at∥ < ∥a∥ for t ∈ [0, 1).

For t ∈ (0, 1],

⟨at, b⟩ = (1− t)⟨a, b⟩+ t⟨a, b⟩ = ⟨a, b⟩. (2.6)

As |⟨a, b⟩| < ∥at∥∥b∥ for t ̸= 0, we have |⟨a, b⟩| < ∥at∥∥b∥ for t ∈ (0, 1]. The proof of part

(1) is complete.

(2) Suppose 0 < s < t < 1. We have to set up the following identity first,

as = [(1− s/t)⟨at, b⟩b]/∥b∥2 + (s/t)at. (2.7)

The last equation can be verified as follows:

[(1− s/t)⟨a, b⟩b]/∥b∥2 + (s/t)at

= (1− s/t)[⟨a, b⟩b/∥b∥2 + s/t[(1− t)⟨a, b⟩b/∥b∥2 + ta]

= [(1− s/t) + s/t(1− t)]⟨a, b⟩b/∥b∥2 + sa

= [(1− s)⟨a, b⟩b]/∥b∥2 + sa = as. (2.8)

By (2.7) and part (1), we have ∥as∥ < ∥at∥. Hence we have F (s) < F (t) for s < t. The
case for s = 0 and t = 1 can be shown easily. Hence the proof of part (2) is complete.

(3) From part (2), we have immediately the result that F (t) is a strictly increasing function

for t ∈ [0, 1]. Obviously, F (0) = |⟨a, b⟩|/∥b∥ and F (1) = ∥a∥.
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Remark 2.1. As the ℓ2 and L2 spaces are inner product spaces, the above refinements
can be applied to the Hölder’s inequalities in ℓ2 and L2 spaces respectively.

In analysis (please refer to [5]), Bessel’s inequality states as follows:
Theorem 2.3. Let X be an inner product space (real or complex) and a ∈ X. Let

e1, e2, · · · , en be any finite collection of distinct elements of an orthonormal set S in X.

Then
n∑

i=1

|⟨a, ei⟩|2 ≤ ∥a∥2. (2.9)

A refinement of the Bessel’s inequality can be presented as follows:

Theorem 2.4. Let X be an inner product space (real or complex) and a be a nonzero
vector in X. Let {e1, e2, · · · , en} be an orthonormal set in X, such that

n∑
i=1

|⟨a, ei⟩|2 < ∥a∥2 (2.10)

and ⟨a, ei⟩ are not all zero. Let

p = ⟨a, e1⟩e1 + · · ·+ ⟨a, en⟩en. (2.11)

For any real number t ∈ [0, 1], we define

at = [(1− t)⟨a, p⟩p]/∥p∥2 + ta (2.12)

and

F (t) = ∥at∥. (2.13)

Then we have the following :

(1) ∥at∥ < ∥a∥ for t ∈ [0, 1), and ∥p∥2 =
n∑

i=1

|⟨a, ei⟩|2 < ∥at∥2 for t ∈ (0, 1] ;

(2) F (s) < F (t) for 0 ≤ s < t ≤ 1 ;

(3) F (t) is a strictly increasing function for t ∈ [0, 1] with F (0) =

√
n∑

i=1

|⟨a, ei⟩|2 and

F (1) = ∥a∥, i.e. we have the refinement ∥p∥ < F (t) < ∥a∥ for t ∈ (0, 1).

Proof. (1)

|⟨a, p⟩| = |⟨a, ⟨a, e1⟩e1 + · · ·+ ⟨a, en⟩en⟩|

= |⟨a, e1⟩⟨a, e1⟩+ · · ·+ ⟨a, en⟩⟨a, en⟩|

=
n∑

i=1

|⟨a, ei⟩|2

= ⟨p, p⟩ = ∥p∥2. (2.14)

Hence we have |⟨a, p⟩| < ∥a∥∥p∥. By Theorem 2.2(1), we have

|⟨a, p⟩| = ∥p∥2 < ∥at∥∥p∥. (2.15)

The last inequality implies that ∥p∥2 < ∥at∥2.
The remaining parts of the proof are similar to the proof of Theorem 2.2 with b replaced

by p, and the proof is omitted here.

§3. Refinements of the Fan-Todd’s Inequality

A. M. Ostrowski presented the following result (please refer to [4] or [5]):
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Theorem 3.1. Let a = (a1, · · · , an) and b = (b1, · · · , bn) be two sequences of non-

proportional real numbers such that
n∑

i=1

aixi = 0, and
n∑

i=1

bixi = 1.

Let A =
n∑

i=1

a2i , B =
n∑

i=1

b2i , C =
n∑

i=1

aibi. Then we have
n∑

i=1

x2
i ≥ A

AB−C2 with equality if

and only if xi =
Abi−Cai

AB−C2 , 1 ≤ i ≤ n.

Fan and Todd in [4] presented the following theorem:

Theorem 3.2. Let a = (a1, · · · , an) and b = (b1, · · · , bn) with n ≥ 2 be two sequences of
real numbers such that aibj ̸= ajbi for i ̸= j. Then

n∑
i=1

a2i( n∑
i=1

a2i

)( n∑
i=1

b2i

)
−
( n∑

i=1

aibi

)2 ≤
(
n

2

)−2 n∑
i=1

( n∑
j=1
j ̸=i

aj
ajbi − aibj

)2

. (3.1)

Here,
(
n
2

)
denotes the number of combinations of n distinct objects chosen 2 at a time.

M. Bjelica in [6, pp.445–448] put forward the following refinement of Fan-Todd’s inequal-

ity:
Theorem 3.3. Let a = (a1, · · · , an) and b = (b1, · · · , bn) with n ≥ 2 be two sequences of

real numbers such that aibj ̸= ajbi for i ̸= j. If |α| ≤ 1, then

A

AB − C2
≤

(
n

2

)−2 n∑
i=1

[ n∑
j=1
j ̸=i

α
aj

ajbi − aibj
+ (1− α)

Abi − Cai
AB − C2

]2

≤
(
n

2

)−2 n∑
i=1

( n∑
j=1
j ̸=i

aj
ajbi − aibj

)2

. (3.2)

Z. M. Mitrovic in [7] established the following theorem:
Theorem 3.4 Let a and b be two linearly independent vectors in a complex inner product

space V and let x be a vector in V such that ⟨x, a⟩ = α and ⟨x, b⟩ = β. Then

G(a, b)∥x∥2 ≥ ∥αb− βa∥2 (3.3)

with equality if and only if x = ⟨a,βa−αb⟩b−⟨b,βa−αb⟩a
G(a,b) , where G(a, b) denotes the Gram de-

terminant of vectors a and b, i.e.

G(a, b) =

∥∥∥∥ ⟨a, a⟩ ⟨a, b⟩
⟨b, a⟩ ⟨b, b⟩

∥∥∥∥ . (3.4)

The proofs of the above-mentioned four theorems can be found in [4–7]. It is natural to
find some similar refinements for Theorem 3.4 in the complex inner product space. In fact,

the following theorem is the answer to this problem.
Theorem 3.5. Let a and b be two linearly independent vectors in a complex inner product

space V and let x be a vector in V such that ⟨x, a⟩ = α and ⟨x, b⟩ = β. Let

y =
⟨a, βa− αb⟩b− ⟨b, βa− αb⟩a

G(a, b)
. (3.5)

Let D = {t ∈ C : |t| ≤ 1} be the closed unit disk in the complex plane C. For any t ∈ D,
we define

F (t) = ∥tx+ (1− t)y∥2.
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Suppose x ̸= y. Then F (t) depends only on the modulus of t and is a strictly increasing
function of |t|, with F (0) = ∥y∥2 and F (t) = ∥x∥2 for any t ∈ ∂D, the boundary of D, i.e.
we have the refinement for t ∈ D:

∥y∥2 ≤ F (t) ≤ ∥x∥2. (3.6)

Proof. It is straight forward to verify that ⟨y, a⟩ = α and ⟨y, b⟩ = β. In fact,

G(a, b)⟨y, a⟩ = ⟨a, βa− αb⟩⟨b, a⟩ − ⟨b, βa− αb⟩⟨a, a⟩
= [β∥a∥2 − α⟨a, b⟩]⟨b, a⟩ − [β⟨b, a⟩ − α∥b∥2]∥a∥2

= α[∥a∥2∥b∥2 − |⟨a, b⟩|2]. (3.7)

Hence, we have ⟨y, a⟩ = α. Also,

G(a, b)⟨y, b⟩ = ⟨a, βa− αb⟩⟨b, b⟩ − ⟨b, βa− αb⟩⟨a, b⟩
= [β∥a∥2 − α⟨a, b⟩]∥b∥2 − [β⟨b, a⟩ − α∥b∥2]⟨a, b⟩
= β[∥a∥2∥b∥2 − |⟨a, b⟩|2]. (3.8)

Hence, we have ⟨y, b⟩ = β. As a result, we have

⟨y, y⟩ = 1

G(a, b)
[⟨a, βa− αb⟩⟨b, y⟩ − ⟨b, βa− αb⟩⟨a, y⟩]

= ∥βa− αb∥2/G(a, b). (3.9)

Similarly, we have

⟨y, x⟩ = ∥βa− αb∥2/G(a, b) = ∥y∥2. (3.10)

Hence

⟨x, y⟩ = ⟨y, x⟩ = ∥y∥2. (3.11)

F (t) = ∥tx+ (1− t)y∥2 = ⟨tx+ (1− t)y, tx+ (1− t)y⟩
= tt∥x∥2 + t(1− t)⟨x, y⟩+ (1− t)t⟨y, x⟩+ (1− t)(1− t)∥y∥2

= tt∥x∥2 + (1− tt)∥y∥2 = |t|2(∥x∥2 − ∥y∥2) + ∥y∥2. (3.12)

By Theorem 3.4 and x ̸= y, ∥x∥2−∥y∥2 > 0. Hence, F (t) is a strictly increasing function
of |t| on D, depending only on |t|, with F (0) = ∥y∥2 and F (t) = ∥x∥2 for any t ∈ ∂D.

§4. Refinement of the Fan-Todd’s Determinantal Inequality

In [4], Fan and Todd presented the following celebrated theorem:

Theorem 4.1. Let n and m be two integers such that 2 ≤ m ≤ n. Let ai = {ai1, ai2, · · · ,
ain} (1 ≤ i ≤ m) be m vectors in the unitary n-space Un such that every m×m submatrix
of the m× n matrix 

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 (4.1)

is nonsingular. Let G(a1, a2, · · · , am−1) denote the Gram determinant of the m− 1 vectors
a1, a2, · · · , am−1; and let G(a1, a2, · · · , am) denote the Gram determinant of the m vectors
a1, a2, · · · , am. Let M(j1, j2, · · · , jm−1) denote the determinant of order m − 1 formed by

the first m − 1 rows of (4.1) and the columns of (4.1) with indices j1, j2, · · · , jm−1 taken
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in this order. Let N(j1, j2, · · · , jm−1, jm) denote the determinant of order m formed by the
columns of (4.1) with indices j1, j2, · · · , jm−1, jm taken in this order. Then

G(a1, · · · , am−1)

G(a1, · · · , am)
≤

(
n

m

)−2 n∑
jm=1

∣∣∣ ∑
j1<j2<···<jm−1

j1,··· ,jm−1 ̸=jm

M(j1, j2, · · · , jm−1)

N(j1, j2, · · · , jm)

∣∣∣2. (4.2)

Here, the Gram determinant is given by

G(a1, a2, · · · , am) =

∣∣∣∣∣∣∣∣
⟨a1, a1⟩ ⟨a1, a2⟩ · · · ⟨a1, am⟩
⟨a2, a1⟩ ⟨a2, a2⟩ · · · ⟨a2, am⟩

...
...

...
⟨am, a1⟩ ⟨am, a2⟩ . . . ⟨am, am⟩

∣∣∣∣∣∣∣∣ . (4.3)

The proof of Theorem 4.1 can be found in [4].

In [1], Beesack presented the following theorem:

Theorem 4.2. Let a1, a2, · · · , am(m ≥ 1) be linearly independent vectors in a Hilbert

space H and let α1, α2, · · · , αm be given scalars. If x ∈ H satisfies

⟨x, ai⟩ = αi, i = 1, 2, · · · ,m, (4.4)

then

G2∥x∥2 ≥
∥∥∥ m∑

i=1

γiai

∥∥∥2, (4.5)

where G = G(a1, a2, · · · , am) is the Gram determinant of a1, a2, · · · , am, and γi is the deter-
minant obtained from G by replacing the elements of the ith row of G by (α1, α2, · · · , αm).

Moreover, equality holds in (4.5) if and only if Gx =
m∑
i=1

γiai.

The proof of Theorem 4.2 can be found in [1].

Remark 4.1. The γi’s in Theorem 4.2 are the unique solution of the following system
of equations:

⟨a1, a1⟩γ1 + · · ·+ ⟨am, a1⟩γm = Gα1,

· · ·
⟨a1, am⟩γ1 + · · ·+ ⟨am, am⟩γm = Gαm.

Therefore, we have
m∑
j=1

⟨aj , ai⟩γj = Gαi, i = 1, 2, · · · ,m, (4.6)

or
m∑
j=1

γj⟨ai, aj⟩ = Gαi, i = 1, 2, · · · ,m. (4.7)

Here α denotes the complex conjugate of α.

The following theorem is a generalization of Theorem 4.1 and Theorem 4.2, in the form

of refinements of inequalities.

Theorem 4.3. Let a1, a2, · · · , am(m ≥ 2) be linearly independent vectors in a complex

inner product space X and let α1, α2, · · · , αm be given scalars. Let x ∈ X satisfy

⟨x, ai⟩ = αi, i = 1, 2, · · · ,m. (4.8)
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Let y ∈ X be defined by

Gy =

m∑
i=1

γiai, (4.9)

where G and γi have the same meanings as in Theorem 4.2. Suppose x ̸= y. For t ∈ D, the
closed unit disk in C, we define Q(t) as follows :

Q(t) = ∥tx+ (1− t)y∥2. (4.10)

Then Q(t) depends only on the modulus of t and is a strictly increasing function of |t| for
t ∈ D, with Q(0) = ∥y∥2 and Q(t) = ∥x∥2 for t ∈ ∂D the boundary of D. That is, for t ∈ D,
with t ̸= 0 and |t| ̸= 1, we have

∥y∥2 < Q(t) < ∥x∥2. (4.11)

Proof. By (4.8) and (4.9), we have

G⟨y, x⟩ =
m∑
i=1

γi⟨ai, x⟩ =
m∑
i=1

γiαi, (4.12)

G⟨y, y⟩ =
⟨ m∑

i=1

γiai, (1/G)
m∑
j=1

γjaj

⟩
= (1/G)

m∑
i=1

m∑
j=1

γiγj⟨ai, aj⟩

=
m∑
i=1

γiαi. (4.13)

Hence

⟨y, x⟩ = ⟨y, y⟩. (4.14)

Also, we have

⟨x, y⟩ = ⟨y, x⟩ = ⟨y, y⟩. (4.15)

For any t ∈ D, we have

Q(t) = ∥tx+ (1− t)y∥2

= ⟨tx+ (1− t)y, tx+ (1− t)y⟩
= tt∥x∥2 + t(1− t)⟨x, y⟩+ (1− t)t⟨y, x⟩+ (1− t)(1− t)∥y∥2

= |t|2∥x∥2 + (1− tt)∥y∥2

= |t|2(∥x∥2 − ∥y∥2) + ∥y∥2. (4.16)

By Theorem 4.2 and x ̸= y, we have ∥x∥2 −∥y∥2 > 0. Hence, Q(t) is a strictly increasing
function of |t|, depending only on the modulus of t with Q(0) = ∥y∥2 and Q(t) = ∥x∥2 for

t ∈ ∂D. This completes the proof of the theorem.

Corollary 4.1. Let n and m be two integers such that 2 ≤ m ≤ n. Let ai = (ai1, ai2, · · · ,
ain), i = 1, 2, · · · ,m, be m vectors in Un, the unitary n-space, such that every m × m
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submatrix of the matrix 
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

 (4.17)

is nonsingular. Let x = (x1, x2, · · · , xn) be the vector in Un such that for k = 1, 2, · · · , n,

xk =

(
n

m

)−1 ∑
j1<j2<···<jm−1

j1,··· ,jm−1 ̸=k

M(j1, · · · , jm−1)

N(j1, · · · , jm−1, k)
. (4.18)

Let y be the vector in Un defined as y = (1/G)
m∑
i=1

γiai, where γi are the unique solution

of the system of equations in (4.6). Then we have

∥y∥2 =
G(a1, · · · , am−1)

G(a1, · · · , am)
≤

(
n

m

)−2 n∑
jm=1

∣∣∣ ∑
j1<j2<···<jm−1

j1,··· ,jm−1 ̸=jm

M(j1, j2, · · · , jm−1)

N(j1, j2, · · · , jm)

∣∣∣2.
Furthermore, equality holds if and only if x = y.
Proof. Similar to the proof in [4, Theorem 1] or as in the proof of Theorem 4.4 below,

we can show that ⟨ai, x⟩ = 0, i = 1, 2, · · · ,m − 1, and ⟨am, x⟩ = 1. Hence, Theorem 4.3 is
applicable with X = Un, α1 = α2 = · · · = αm−1 = 0, αm = 1, and as γm = G(a1, · · · , am−1)

∥y∥2 = (1/G)
m∑
i=1

γiαi = γmαm/G = γm/G =
G(a1, · · · , am−1)

G(a1, · · · , am)
. (4.19)

Hence, the Fan-Todd’s determinantal inequality is deduced as a consequence of ∥y∥2 ≤
∥x∥2 in (4.11). By Theorem 4.2, we have, equality holds if and only if x = y.

Remark 4.2. It is clear that Theorem 4.3 is a generalization of Theorem 4.1 and Theorem
4.2, providing us with a necessary and sufficient condition for equality of the Fan-Todd’s

determinantal inequality.
In an attempt to give a criterion on x, for which ⟨x, x⟩ will be the minimum, the following

lemma was put forward by Fan and Todd in [4].

Lemma 4.1. Let a1, a2, · · · , am be m linearly independent vectors in Un (2 ≤ m ≤ n).
If a vector x in Un varies under the conditions :

⟨ai, x⟩ = 0 if 1 ≤ i ≤ m− 1,

⟨ai, x⟩ = 1 if i = m,

then the minimum of ⟨x, x⟩ is G(a1,··· ,am−1)
G(a1,··· ,am) . Furthermore, this minimum value is attained

if and only if x is a linear combination of a1, a2, · · · , am.
From Corollary 4.1, we have the improved result to Lemma 4.1, with a more explicit

expression in the linear combination of a1, a2, · · · , am as follows.

Lemma 4.2. With the same assumptions and notations as in Theorem 4.1 and Lemma
4.1, we have

(i) The minimum of ⟨x, x⟩ is G(a1,··· ,am−1)
G(a1,··· ,am) .

(ii) The minimum value of ⟨x, x⟩ is attained if and only if

x = (1/G)
m∑
i=1

γiai,
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where γi are the unique solution of the system of equations in (4.6) :

m∑
j=1

⟨aj , ai⟩γj = Gαi i = 1, 2, · · · ,m.

In the next theorem, a deduction of the weighted Fan-Todd’s inequality will also be
deduced as an application of our refinement Theorem 4.3. The original statement of Theorem
4.4 can be found in [4].

Theorem 4.4. In addition to the hypotheses of Theorem 4.1, let pj1,j2,··· ,jm be complex

numbers defined for every set of m distinct positive integers j1, j2, · · · , jm ≤ n such that the
following two conditions are fulfilled :

(i) pj1,j2,··· ,jm is independent of the arrangement of j1, j2, · · · , jm ;

(ii) P =
∑

1≤j1<j2<···<jm≤n

pj1,j2,··· ,jm ̸= 0.

Then

G(a1, · · · , am−1)

G(a1, · · · , am)
≤ 1

|P |2
n∑

jm=1

∣∣∣ n∑
j1<j2<···<jm−1

j1,··· ,jm−1 ̸=jm

pj1j2···jm−1jm

M(j1, j2, · · · , jm−1)

N(j1, j2, · · · , jm)

∣∣∣2. (4.20)

Proof. Define a vector x = (x1, x2, · · · , xn) ∈ Un by

xk =
1

P

∑
j1<j2<···<jm−1

j1,··· ,jm−1 ̸=k

pj1,j2,··· ,jm−1k
M(j1, j2, · · · , jm−1)

N(j1, j2, · · · , jm−1, k)
. (4.21)

Let y ∈ Un be defined by

y = (1/G)

m∑
i=1

γiai. (4.22)

Following the proof of [4, Theorem 1], we show first that

⟨ai, x⟩ = 0, i = 1, 2, · · · ,m− 1 and ⟨am, x⟩ = 1, (4.23)

⟨ai, x⟩ =
1

P

n∑
k=1

aik
∑

j1<···<jm−1

j1,··· ,jm−1 ̸=k

pj1j2···jm−1k
M(j1, j2, · · · , jm−1)

N(j1, · · · , jm−1, k)
. (4.24)

For any ordered m-tuple [h1, h2, · · · , hm] of integers such that

1 ≤ h1 < h2 < · · · < hm ≤ n, (4.25)

the sum on the right side of (4.24) contains exactly m terms

aik · M(j1, j2, · · · , jm−1)

N(j1, · · · , jm−1, k)
(4.26)

(j1 < j2 < · · · < jm−1) such that [j1, j2, · · · , jm−1, k] is merely a rearrangement of [h1, h2,
· · · , hm]. The sum of these m terms is denoted by Si(h1, h2, · · · , hm), which can be written

as:
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Si(h1, h2, · · · , hm) =

m∑
ν=1

aihν

M(h1, · · · , hν−1, hν+1, · · · , hm)

N(h1, · · · , hν−1, hν+1, · · · , hm, hν)
(4.27)

=

m∑
ν=1

(−1)m+νaihν ·M(h1, · · · , hν−1, hν+1, · · · , hm)

N(h1, · · · , hm−1, hm)

=

{
0 if 1 ≤ i ≤ m− 1,

1 if i = m.
(4.28)

Then (4.24) becomes

⟨ai, x⟩ =
1

P

∑
1≤h1<h2<···<hm≤n

ph1h2··· ,hmSi(h1, h2, · · · , hm)

=

{
0 if 1 ≤ i ≤ m− 1,

1 if i = m.
(4.29)

This completes the proof of (4.23). By Theorem 4.3, we have ∥y∥2 ≤ ∥x∥2. As in Corollary
4.1, we have

∥y∥2 = (1/G)
m∑
i=1

γiαi =
G(a1, a2, · · · , am−1)

G(a1, · · · , am−1, am)

≤ 1

|P |2
n∑

k=1

∣∣∣ ∑
j1<j2<···<jm−1

j1,··· ,jm−1 ̸=k

pj1j2···jm−1k
M(j1, j2, · · · , jm−1)

N(j1, j2, · · · , jm−1k)

∣∣∣2. (4.30)

This completes the proof of Theorem 4.4.

Finally, we would remark that we have a similar statement for equality to hold in (4.30)
as in Corollary 4.1.

References

[ 1 ] Beesack, P., On Bessel’s inequality and Ostrowski [M], Univ. Beograd. Publ. Elecktrotehn. Fak. Ser.
Mat. Fiz. No.498–No.541, 1975, 69–71.

[ 2 ] Chong, K. K., On some generalizations and refinements of a Ky Fan’s inequality [J],Southeast Asian
Blletin of Math., 24(2000), 355–364.

[ 3 ] Dragomir, S. S. & Sandor, J., Some inequalities in prehilbertian spaces [J], Studia Univ. Babes-Bolyai,
Math., 32:1(1987), 71–78.

[ 4 ] Fan, K. & Todd, J., A determinantal inequality [J], J. London Math. Soc., 30(1955), 58–64.
[ 5 ] Fink, A. M., Pecaric, J. E. & Mitrinovic, D. S., Classical and new inequalities in analysis [M], Dordrecht,

Kluwer Academic Publishers, 1993.
[ 6 ] Milovanovic, G. V., Recent progress in inequalities [M], Dordrecht, Kluwer Academic Publishers, 1998.

[ 7 ] Mitrovic, Z. M., On a generalization of Fan-Todd’s inequality [M], Univ.Beograd. Publ. Elektrotehn.
Fak. Ser. Mat. Fiz. No.412–No.460, 1973, 151–154.

[ 8 ] Pecaric, J. E. & Svtan, D., New refinements of the Jensen inequalities based on samples with repetitions
[J], J. Math. Anal. Appl., 222(1998), 366–373.

[ 9 ] Pecaric, J. E. & Volenec, V., Interpolation of the Jensen inequality with some applications [J], Oester-
reich. Akad. Wiss. Math.-Natur. Kl. Sonderdruck Sitzungsber, 197(1988), 463–467.

[10] Wang, C. L., Gramian expansions and their applications [J], Utilitas Math., 15(1979), 97–111.
[11] Wang, C. L., Convexity and inequalities [J], J. Math. Anal. Appl., 72(1979), 355–361.

[12] Wang, C. S. & Yang, G. S., Refinements on an inequality of Ky Fan [J], J. Math. Anal. Appl., 201
(1996), 955–965.


