REFINEMENTS OF THE FAN-TODD'S INEQUALITIES

K. K. CHONG*

Abstract

Refinements to inequalities on inner product spaces are presented. In this respect, inequalities dealt with in this paper are: Cauchy's inequality, Bessel's inequality, Fan-Todd's inequality and Fan-Todd's determinantal inequality. In each case, a strictly increasing function is put forward, which lies between the smaller and the larger quantities of each inequality. As a result, an improved condition for equality of the Fan-Todd's determinantal inequality is deduced.

Keywords Cauchy's inequality, Bessel's inequality, Fan-Todd's inequality, Fan-Todd's determinantal inequality, Refinements of inequalities
2000 MR Subject Classification Primary 26D15
Chinese Library Classification O174.1 Document Code A
Article ID 0252-9599(2002)01-0075-10

§1. Introduction

In recent years, refinements or interpolations have played an important role on several types of inequalities with new results deduced as a consequence. Please refer to the papers [2, 8, 9, 12], etc. The aim of this paper is to furnish refinements of the Cauchy's and Bessel's inequalties as shown in Section 2, and also refinements of the Fan-Todd's inequality and the Fan-Todd's determinantal inequality in Sections 3 and 4, with an improved condition for equality derived.

First of all, we give some basic terms and definitions. An inner product space on a complex vector space X is a function that associates a complex number $\langle u, v\rangle$ with each pair of vectors u and v in X, in such a way that the following axioms are satisfied for all vectors u, v and w in X and all scalars λ :
(1) $\langle u, v\rangle=\overline{\langle v, u\rangle}$;
(2) $\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle$;
(3) $\langle\lambda u, v\rangle=\lambda\langle u, v\rangle$;
(4) $\langle v, v\rangle \geq 0$ and $\langle v, v\rangle=0$ if and only if $v=0$.

Here, $\overline{\langle v, u\rangle}$ denotes the complex conjugate of $\langle v, u\rangle$. A complex vector space with an inner product is called a complex inner product space. Let $\|u\|=\sqrt{\langle u, u\rangle}$ denote the norm of u. The content of the paper will be organized as follows: In Section 2, refinements of the

[^0]Cauchy's and Bessel's inequalities will be presented. In Section 3, refinements of the FanTodd's inequality will be put forward. Finally, in Section 4, refinements of the Fan-Todd's determinantal inequality will be presented, with the condition for equality improved.

§2. Refinements of the Cauchy's Inequality

The well-known Cauchy's inequality states as follows:
Theorem 2.1. For any two vectors a and b in an inner product space X, we have

$$
\begin{equation*}
|\langle a, b\rangle| \leq\|a\|\|b\| . \tag{2.1}
\end{equation*}
$$

The equality holds if and only if a and b are linearly dependent.
We can have a refinement of the Cauchy's inequality as follows:
Theorem 2.2. Let a and b be two non-zero vectors in an inner product space (real or complex) X, such that $|\langle a, b\rangle|<\|a\|\|b\|$.

For any $t \in[0,1]$, we define

$$
\begin{equation*}
a_{t}=[(1-t)\langle a, b\rangle b] /\|b\|^{2}+t a \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
F(t)=\left\|a_{t}\right\| . \tag{2.3}
\end{equation*}
$$

Then we have
(1) $\left\|a_{t}\right\|<\|a\|$ for $t \in[0,1)$ and $|\langle a, b\rangle|<\left\|a_{t}\right\|\|b\|$ for $t \in(0,1]$;
(2) For $0 \leq s<t \leq 1$, we have $F(s)<F(t)$;
(3) $F(t)$ is a strictly increasing function for $t \in[0,1]$, with $F(0)=|\langle a, b\rangle| /\|b\|$ and $F(1)=\|a\|$ i.e. we have the refinement $|\langle a, b\rangle| /\|b\|<F(t)<\|a\|$ for $t \in(0,1)$.

Proof. (1) For $t \in[0,1)$, by (2.2), we have

$$
\begin{align*}
\left\|a_{t}\right\| & =\|[(1-t)\langle a, b\rangle b] /\| b\left\|^{2}+t a\right\| \tag{2.4}\\
& \leq[(1-t)|\langle a, b\rangle|] /\|b\|+t\|a\|<\|a\| . \tag{2.5}
\end{align*}
$$

Hence, $\left\|a_{t}\right\|<\|a\|$ for $t \in[0,1)$.
For $t \in(0,1]$,

$$
\begin{equation*}
\left\langle a_{t}, b\right\rangle=(1-t)\langle a, b\rangle+t\langle a, b\rangle=\langle a, b\rangle . \tag{2.6}
\end{equation*}
$$

As $|\langle a, b\rangle|<\left\|a_{t}\right\|\|b\|$ for $t \neq 0$, we have $|\langle a, b\rangle|<\left\|a_{t}\right\|\|b\|$ for $t \in(0,1]$. The proof of part (1) is complete.
(2) Suppose $0<s<t<1$. We have to set up the following identity first,

$$
\begin{equation*}
a_{s}=\left[(1-s / t)\left\langle a_{t}, b\right\rangle b\right] /\|b\|^{2}+(s / t) a_{t} . \tag{2.7}
\end{equation*}
$$

The last equation can be verified as follows:

$$
\begin{align*}
& {[(1-s / t)\langle a, b\rangle b] /\|b\|^{2}+(s / t) a_{t} } \\
= & (1-s / t)\left[\langle a, b\rangle b /\|b\|^{2}+s / t\left[(1-t)\langle a, b\rangle b /\|b\|^{2}+t a\right]\right. \\
= & {[(1-s / t)+s / t(1-t)]\langle a, b\rangle b /\|b\|^{2}+s a } \\
= & {[(1-s)\langle a, b\rangle b] /\|b\|^{2}+s a=a_{s} . } \tag{2.8}
\end{align*}
$$

By (2.7) and part (1), we have $\left\|a_{s}\right\|<\left\|a_{t}\right\|$. Hence we have $F(s)<F(t)$ for $s<t$. The case for $s=0$ and $t=1$ can be shown easily. Hence the proof of part (2) is complete.
(3) From part (2), we have immediately the result that $F(t)$ is a strictly increasing function for $t \in[0,1]$. Obviously, $F(0)=|\langle a, b\rangle| /\|b\|$ and $F(1)=\|a\|$.

Remark 2.1. As the ℓ_{2} and L_{2} spaces are inner product spaces, the above refinements can be applied to the Hölder's inequalities in ℓ_{2} and L_{2} spaces respectively.

In analysis (please refer to [5]), Bessel's inequality states as follows:
Theorem 2.3. Let X be an inner product space (real or complex) and a $\in X$. Let $e_{1}, e_{2}, \cdots, e_{n}$ be any finite collection of distinct elements of an orthonormal set S in X. Then

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\left\langle a, e_{i}\right\rangle\right|^{2} \leq\|a\|^{2} \tag{2.9}
\end{equation*}
$$

A refinement of the Bessel's inequality can be presented as follows:
Theorem 2.4. Let X be an inner product space (real or complex) and a be a nonzero vector in X. Let $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ be an orthonormal set in X, such that

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\left\langle a, e_{i}\right\rangle\right|^{2}<\|a\|^{2} \tag{2.10}
\end{equation*}
$$

and $\left\langle a, e_{i}\right\rangle$ are not all zero. Let

$$
\begin{equation*}
p=\left\langle a, e_{1}\right\rangle e_{1}+\cdots+\left\langle a, e_{n}\right\rangle e_{n} \tag{2.11}
\end{equation*}
$$

For any real number $t \in[0,1]$, we define

$$
\begin{equation*}
a_{t}=[(1-t)\langle a, p\rangle p] /\|p\|^{2}+t a \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
F(t)=\left\|a_{t}\right\| . \tag{2.13}
\end{equation*}
$$

Then we have the following:
(1) $\left\|a_{t}\right\|<\|a\|$ for $t \in[0,1)$, and $\|p\|^{2}=\sum_{i=1}^{n}\left|\left\langle a, e_{i}\right\rangle\right|^{2}<\left\|a_{t}\right\|^{2}$ for $t \in(0,1]$;
(2) $F(s)<F(t)$ for $0 \leq s<t \leq 1$;
(3) $F(t)$ is a strictly increasing function for $t \in[0,1]$ with $F(0)=\sqrt{\sum_{i=1}^{n}\left|\left\langle a, e_{i}\right\rangle\right|^{2}}$ and $F(1)=\|a\|$, i.e. we have the refinement $\|p\|<F(t)<\|a\|$ for $t \in(0,1)$.

Proof. (1)

$$
\begin{align*}
|\langle a, p\rangle| & =\left|\left\langle a,\left\langle a, e_{1}\right\rangle e_{1}+\cdots+\left\langle a, e_{n}\right\rangle e_{n}\right\rangle\right| \\
& =\left|\left\langle a, e_{1}\right\rangle \overline{\left\langle a, e_{1}\right\rangle}+\cdots+\left\langle a, e_{n}\right\rangle \overline{\left\langle a, e_{n}\right\rangle}\right| \\
& =\sum_{i=1}^{n}\left|\left\langle a, e_{i}\right\rangle\right|^{2} \\
& =\langle p, p\rangle=\|p\|^{2} . \tag{2.14}
\end{align*}
$$

Hence we have $|\langle a, p\rangle|<\|a\|\|p\|$. By Theorem 2.2(1), we have

$$
\begin{equation*}
|\langle a, p\rangle|=\|p\|^{2}<\left\|a_{t}\right\|\|p\| \tag{2.15}
\end{equation*}
$$

The last inequality implies that $\|p\|^{2}<\left\|a_{t}\right\|^{2}$.
The remaining parts of the proof are similar to the proof of Theorem 2.2 with b replaced by p, and the proof is omitted here.

§3. Refinements of the Fan-Todd's Inequality

A. M. Ostrowski presented the following result (please refer to [4] or [5]):

Theorem 3.1. Let $a=\left(a_{1}, \cdots, a_{n}\right)$ and $b=\left(b_{1}, \cdots, b_{n}\right)$ be two sequences of nonproportional real numbers such that $\sum_{i=1}^{n} a_{i} x_{i}=0$, and $\sum_{i=1}^{n} b_{i} x_{i}=1$.

Let $A=\sum_{i=1}^{n} a_{i}^{2}, B=\sum_{i=1}^{n} b_{i}^{2}, C=\sum_{i=1}^{n} a_{i} b_{i}$. Then we have $\sum_{i=1}^{n} x_{i}^{2} \geq \frac{A}{A B-C^{2}}$ with equality if and only if $x_{i}=\frac{A b_{i}-C a_{i}}{A B-C^{2}}, 1 \leq i \leq n$.

Fan and Todd in [4] presented the following theorem:
Theorem 3.2. Let $a=\left(a_{1}, \cdots, a_{n}\right)$ and $b=\left(b_{1}, \cdots, b_{n}\right)$ with $n \geq 2$ be two sequences of real numbers such that $a_{i} b_{j} \neq a_{j} b_{i}$ for $i \neq j$. Then

$$
\begin{equation*}
\frac{\sum_{i=1}^{n} a_{i}^{2}}{\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)-\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}} \leq\binom{ n}{2}^{-2} \sum_{i=1}^{n}\left(\sum_{\substack{j=1 \\ j \neq i}}^{n} \frac{a_{j}}{a_{j} b_{i}-a_{i} b_{j}}\right)^{2} . \tag{3.1}
\end{equation*}
$$

Here, $\binom{n}{2}$ denotes the number of combinations of n distinct objects chosen 2 at a time.
M. Bjelica in [6, pp.445-448] put forward the following refinement of Fan-Todd's inequality:

Theorem 3.3. Let $a=\left(a_{1}, \cdots, a_{n}\right)$ and $b=\left(b_{1}, \cdots, b_{n}\right)$ with $n \geq 2$ be two sequences of real numbers such that $a_{i} b_{j} \neq a_{j} b_{i}$ for $i \neq j$. If $|\alpha| \leq 1$, then

$$
\begin{align*}
\frac{A}{A B-C^{2}} & \leq\binom{ n}{2}^{-2} \sum_{i=1}^{n}\left[\sum_{\substack{j=1 \\
j \neq i}}^{n} \alpha \frac{a_{j}}{a_{j} b_{i}-a_{i} b_{j}}+(1-\alpha) \frac{A b_{i}-C a_{i}}{A B-C^{2}}\right]^{2} \\
& \leq\binom{ n}{2}^{-2} \sum_{i=1}^{n}\left(\sum_{\substack{j=1 \\
j \neq i}}^{n} \frac{a_{j}}{a_{j} b_{i}-a_{i} b_{j}}\right)^{2} \tag{3.2}
\end{align*}
$$

Z. M. Mitrovic in [7] established the following theorem:

Theorem 3.4 Let a and b be two linearly independent vectors in a complex inner product space V and let x be a vector in V such that $\langle x, a\rangle=\alpha$ and $\langle x, b\rangle=\beta$. Then

$$
\begin{equation*}
G(a, b)\|x\|^{2} \geq\|\bar{\alpha} b-\bar{\beta} a\|^{2} \tag{3.3}
\end{equation*}
$$

with equality if and only if $x=\frac{\langle a, \bar{\beta} a-\bar{\alpha} b\rangle b-\langle b, \bar{\beta} a-\bar{\alpha} b\rangle a}{G(a, b)}$, where $G(a, b)$ denotes the Gram determinant of vectors a and b, i.e.

$$
G(a, b)=\left\|\begin{array}{ll}
\langle a, a\rangle & \langle a, b\rangle \tag{3.4}\\
\langle b, a\rangle & \langle b, b\rangle
\end{array}\right\| .
$$

The proofs of the above-mentioned four theorems can be found in [4-7]. It is natural to find some similar refinements for Theorem 3.4 in the complex inner product space. In fact, the following theorem is the answer to this problem.

Theorem 3.5. Let a and b be two linearly independent vectors in a complex inner product space V and let x be a vector in V such that $\langle x, a\rangle=\alpha$ and $\langle x, b\rangle=\beta$. Let

$$
\begin{equation*}
y=\frac{\langle a, \bar{\beta} a-\bar{\alpha} b\rangle b-\langle b, \bar{\beta} a-\bar{\alpha} b\rangle a}{G(a, b)} . \tag{3.5}
\end{equation*}
$$

Let $\mathbb{D}=\{t \in \mathbb{C}:|t| \leq 1\}$ be the closed unit disk in the complex plane \mathbb{C}. For any $t \in \mathbb{D}$, we define

$$
F(t)=\|t x+(1-t) y\|^{2} .
$$

Suppose $x \neq y$. Then $F(t)$ depends only on the modulus of t and is a strictly increasing function of $|t|$, with $F(0)=\|y\|^{2}$ and $F(t)=\|x\|^{2}$ for any $t \in \partial \mathbb{D}$, the boundary of \mathbb{D}, i.e. we have the refinement for $t \in \mathbb{D}$:

$$
\begin{equation*}
\|y\|^{2} \leq F(t) \leq\|x\|^{2} \tag{3.6}
\end{equation*}
$$

Proof. It is straight forward to verify that $\langle y, a\rangle=\alpha$ and $\langle y, b\rangle=\beta$. In fact,

$$
\begin{align*}
G(a, b)\langle y, a\rangle & =\langle a, \bar{\beta} a-\bar{\alpha} b\rangle\langle b, a\rangle-\langle b, \bar{\beta} a-\bar{\alpha} b\rangle\langle a, a\rangle \\
& =\left[\beta\|a\|^{2}-\alpha\langle a, b\rangle\right]\langle b, a\rangle-\left[\beta\langle b, a\rangle-\alpha\|b\|^{2}\right]\|a\|^{2} \\
& =\alpha\left[\|a\|^{2}\|b\|^{2}-|\langle a, b\rangle|^{2}\right] . \tag{3.7}
\end{align*}
$$

Hence, we have $\langle y, a\rangle=\alpha$. Also,

$$
\begin{align*}
G(a, b)\langle y, b\rangle & =\langle a, \bar{\beta} a-\bar{\alpha} b\rangle\langle b, b\rangle-\langle b, \bar{\beta} a-\bar{\alpha} b\rangle\langle a, b\rangle \\
& =\left[\beta\|a\|^{2}-\alpha\langle a, b\rangle\right]\|b\|^{2}-\left[\beta\langle b, a\rangle-\alpha\|b\|^{2}\right]\langle a, b\rangle \\
& =\beta\left[\|a\|^{2}\|b\|^{2}-|\langle a, b\rangle|^{2}\right] . \tag{3.8}
\end{align*}
$$

Hence, we have $\langle y, b\rangle=\beta$. As a result, we have

$$
\begin{align*}
\langle y, y\rangle & =\frac{1}{G(a, b)}[\langle a, \bar{\beta} a-\bar{\alpha} b\rangle\langle b, y\rangle-\langle b, \bar{\beta} a-\bar{\alpha} b\rangle\langle a, y\rangle] \\
& =\|\bar{\beta} a-\bar{\alpha} b\|^{2} / G(a, b) . \tag{3.9}
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
\langle y, x\rangle=\|\bar{\beta} a-\bar{\alpha} b\|^{2} / G(a, b)=\|y\|^{2} . \tag{3.10}
\end{equation*}
$$

Hence

$$
\begin{align*}
\langle x, y\rangle & =\overline{\langle y, x\rangle}=\|y\|^{2} . \tag{3.11}\\
F(t) & =\|t x+(1-t) y\|^{2}=\langle t x+(1-t) y, t x+(1-t) y\rangle \\
& =t \bar{t}\|x\|^{2}+t(1-\bar{t})\langle x, y\rangle+(1-t) \bar{t}\langle y, x\rangle+(1-t)(1-\bar{t})\|y\|^{2} \\
& =t \bar{t}\|x\|^{2}+(1-t \bar{t})\|y\|^{2}=|t|^{2}\left(\|x\|^{2}-\|y\|^{2}\right)+\|y\|^{2} . \tag{3.12}
\end{align*}
$$

By Theorem 3.4 and $x \neq y,\|x\|^{2}-\|y\|^{2}>0$. Hence, $F(t)$ is a strictly increasing function of $|t|$ on \mathbb{D}, depending only on $|t|$, with $F(0)=\|y\|^{2}$ and $F(t)=\|x\|^{2}$ for any $t \in \partial \mathbb{D}$.

§4. Refinement of the Fan-Todd's Determinantal Inequality

In [4], Fan and Todd presented the following celebrated theorem:
Theorem 4.1. Let n and m be two integers such that $2 \leq m \leq n$. Let $a_{i}=\left\{a_{i 1}, a_{i 2}, \cdots\right.$, $\left.a_{i n}\right\}(1 \leq i \leq m)$ be m vectors in the unitary n-space U^{n} such that every $m \times m$ submatrix of the $m \times n$ matrix

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{4.1}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

is nonsingular. Let $G\left(a_{1}, a_{2}, \cdots, a_{m-1}\right)$ denote the Gram determinant of the $m-1$ vectors $a_{1}, a_{2}, \cdots, a_{m-1} ;$ and let $G\left(a_{1}, a_{2}, \cdots, a_{m}\right)$ denote the Gram determinant of the m vectors $a_{1}, a_{2}, \cdots, a_{m}$. Let $M\left(j_{1}, j_{2}, \cdots, j_{m-1}\right)$ denote the determinant of order $m-1$ formed by the first $m-1$ rows of (4.1) and the columns of (4.1) with indices $j_{1}, j_{2}, \cdots, j_{m-1}$ taken
in this order. Let $N\left(j_{1}, j_{2}, \cdots, j_{m-1}, j_{m}\right)$ denote the determinant of order m formed by the columns of (4.1) with indices $j_{1}, j_{2}, \cdots, j_{m-1}, j_{m}$ taken in this order. Then

$$
\begin{equation*}
\frac{G\left(a_{1}, \cdots, a_{m-1}\right)}{G\left(a_{1}, \cdots, a_{m}\right)} \leq\binom{ n}{m}^{-2} \sum_{j_{m}=1}^{n}\left|\sum_{\substack{j_{1}<j_{2}<\cdots<j_{m-1} \\ j_{1}, \cdots, j_{m-1} \neq j_{m}}} \frac{M\left(j_{1}, j_{2}, \cdots, j_{m-1}\right)}{N\left(j_{1}, j_{2}, \cdots, j_{m}\right)}\right|^{2} \tag{4.2}
\end{equation*}
$$

Here, the Gram determinant is given by

$$
G\left(a_{1}, a_{2}, \cdots, a_{m}\right)=\left|\begin{array}{cccc}
\left\langle a_{1}, a_{1}\right\rangle & \left\langle a_{1}, a_{2}\right\rangle & \ldots & \left\langle a_{1}, a_{m}\right\rangle \tag{4.3}\\
\left\langle a_{2}, a_{1}\right\rangle & \left\langle a_{2}, a_{2}\right\rangle & \ldots & \left\langle a_{2}, a_{m}\right\rangle \\
\vdots & \vdots & & \vdots \\
\left\langle a_{m}, a_{1}\right\rangle & \left\langle a_{m}, a_{2}\right\rangle & \ldots & \left\langle a_{m}, a_{m}\right\rangle
\end{array}\right| .
$$

The proof of Theorem 4.1 can be found in [4].
In [1], Beesack presented the following theorem:
Theorem 4.2. Let $a_{1}, a_{2}, \cdots, a_{m}(m \geq 1)$ be linearly independent vectors in a Hilbert space H and let $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$ be given scalars. If $x \in H$ satisfies

$$
\begin{equation*}
\left\langle x, a_{i}\right\rangle=\alpha_{i}, \quad i=1,2, \cdots, m, \tag{4.4}
\end{equation*}
$$

then

$$
\begin{equation*}
G^{2}\|x\|^{2} \geq\left\|\sum_{i=1}^{m} \gamma_{i} a_{i}\right\|^{2} \tag{4.5}
\end{equation*}
$$

where $G=G\left(a_{1}, a_{2}, \cdots, a_{m}\right)$ is the Gram determinant of $a_{1}, a_{2}, \cdots, a_{m}$, and γ_{i} is the determinant obtained from G by replacing the elements of the ith row of G by $\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$. Moreover, equality holds in (4.5) if and only if $G x=\sum_{i=1}^{m} \gamma_{i} a_{i}$.

The proof of Theorem 4.2 can be found in [1].
Remark 4.1. The γ_{i} 's in Theorem 4.2 are the unique solution of the following system of equations:

$$
\begin{aligned}
&\left\langle a_{1}, a_{1}\right\rangle \gamma_{1}+\cdots+\left\langle a_{m}, a_{1}\right\rangle \gamma_{m}=G \alpha_{1} \\
& \cdots \\
&\left\langle a_{1}, a_{m}\right\rangle \gamma_{1}+\cdots+\left\langle a_{m}, a_{m}\right\rangle \gamma_{m}=G \alpha_{m}
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
\sum_{j=1}^{m}\left\langle a_{j}, a_{i}\right\rangle \gamma_{j}=G \alpha_{i}, \quad i=1,2, \cdots, m \tag{4.6}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{j=1}^{m} \overline{\gamma_{j}}\left\langle a_{i}, a_{j}\right\rangle=G \overline{\alpha_{i}}, \quad i=1,2, \cdots, m . \tag{4.7}
\end{equation*}
$$

Here $\bar{\alpha}$ denotes the complex conjugate of α.
The following theorem is a generalization of Theorem 4.1 and Theorem 4.2, in the form of refinements of inequalities.

Theorem 4.3. Let $a_{1}, a_{2}, \cdots, a_{m}(m \geq 2)$ be linearly independent vectors in a complex inner product space X and let $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$ be given scalars. Let $x \in X$ satisfy

$$
\begin{equation*}
\left\langle x, a_{i}\right\rangle=\alpha_{i}, \quad i=1,2, \cdots, m . \tag{4.8}
\end{equation*}
$$

Let $y \in X$ be defined by

$$
\begin{equation*}
G y=\sum_{i=1}^{m} \gamma_{i} a_{i}, \tag{4.9}
\end{equation*}
$$

where G and γ_{i} have the same meanings as in Theorem 4.2. Suppose $x \neq y$. For $t \in \mathbb{D}$, the closed unit disk in \mathbb{C}, we define $Q(t)$ as follows:

$$
\begin{equation*}
Q(t)=\|t x+(1-t) y\|^{2} . \tag{4.10}
\end{equation*}
$$

Then $Q(t)$ depends only on the modulus of t and is a strictly increasing function of $|t|$ for $t \in \mathbb{D}$, with $Q(0)=\|y\|^{2}$ and $Q(t)=\|x\|^{2}$ for $t \in \partial \mathbb{D}$ the boundary of \mathbb{D}. That is, for $t \in \mathbb{D}$, with $t \neq 0$ and $|t| \neq 1$, we have

$$
\begin{equation*}
\|y\|^{2}<Q(t)<\|x\|^{2} . \tag{4.11}
\end{equation*}
$$

Proof. By (4.8) and (4.9), we have

$$
\begin{align*}
G\langle y, x\rangle & =\sum_{i=1}^{m} \gamma_{i}\left\langle a_{i}, x\right\rangle=\sum_{i=1}^{m} \gamma_{i} \overline{\alpha_{i}}, \tag{4.12}\\
G\langle y, y\rangle & =\left\langle\sum_{i=1}^{m} \gamma_{i} a_{i},(1 / G) \sum_{j=1}^{m} \gamma_{j} a_{j}\right\rangle \\
& =(1 / G) \sum_{i=1}^{m} \sum_{j=1}^{m} \gamma_{i} \overline{\gamma_{j}}\left\langle a_{i}, a_{j}\right\rangle \\
& =\sum_{i=1}^{m} \gamma_{i} \overline{\alpha_{i}} . \tag{4.13}
\end{align*}
$$

Hence

$$
\begin{equation*}
\langle y, x\rangle=\langle y, y\rangle . \tag{4.14}
\end{equation*}
$$

Also, we have

$$
\begin{equation*}
\langle x, y\rangle=\overline{\langle y, x\rangle}=\langle y, y\rangle . \tag{4.15}
\end{equation*}
$$

For any $t \in \mathbb{D}$, we have

$$
\begin{align*}
Q(t) & =\|t x+(1-t) y\|^{2} \\
& =\langle t x+(1-t) y, t x+(1-t) y\rangle \\
& =t \bar{t}\|x\|^{2}+t(1-\bar{t})\langle x, y\rangle+(1-t) \bar{t}\langle y, x\rangle+(1-t)(1-\bar{t})\|y\|^{2} \\
& =|t|^{2}\|x\|^{2}+(1-t \bar{t})\|y\|^{2} \\
& =|t|^{2}\left(\|x\|^{2}-\|y\|^{2}\right)+\|y\|^{2} . \tag{4.16}
\end{align*}
$$

By Theorem 4.2 and $x \neq y$, we have $\|x\|^{2}-\|y\|^{2}>0$. Hence, $Q(t)$ is a strictly increasing function of $|t|$, depending only on the modulus of t with $Q(0)=\|y\|^{2}$ and $Q(t)=\|x\|^{2}$ for $t \in \partial \mathbb{D}$. This completes the proof of the theorem.

Corollary 4.1. Let n and m be two integers such that $2 \leq m \leq n$. Let $a_{i}=\left(a_{i 1}, a_{i 2}, \cdots\right.$, $\left.a_{i n}\right), i=1,2, \cdots, m$, be m vectors in U^{n}, the unitary n-space, such that every $m \times m$
submatrix of the matrix

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \tag{4.17}\\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

is nonsingular. Let $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ be the vector in U^{n} such that for $k=1,2, \cdots, n$,

$$
\begin{equation*}
\overline{x_{k}}=\binom{n}{m}^{-1} \sum_{\substack{j_{1}<j_{2}<\cdots<j_{m-1} \\ j_{1}, \cdots, j_{m-1} \neq k}} \frac{M\left(j_{1}, \cdots, j_{m-1}\right)}{N\left(j_{1}, \cdots, j_{m-1}, k\right)} . \tag{4.18}
\end{equation*}
$$

Let y be the vector in U^{n} defined as $y=(1 / G) \sum_{i=1}^{m} \gamma_{i} a_{i}$, where γ_{i} are the unique solution of the system of equations in (4.6). Then we have

$$
\|y\|^{2}=\frac{G\left(a_{1}, \cdots, a_{m-1}\right)}{G\left(a_{1}, \cdots, a_{m}\right)} \leq\binom{ n}{m}^{-2} \sum_{j_{m}=1}^{n}\left|\sum_{\substack{j_{1}<j_{2}<\cdots<j_{m-1} \\ j_{1}, \cdots, j_{m-1} \neq j_{m}}} \frac{M\left(j_{1}, j_{2}, \cdots, j_{m-1}\right)}{N\left(j_{1}, j_{2}, \cdots, j_{m}\right)}\right|^{2}
$$

Furthermore, equality holds if and only if $x=y$.
Proof. Similar to the proof in [4, Theorem 1] or as in the proof of Theorem 4.4 below, we can show that $\left\langle a_{i}, x\right\rangle=0, i=1,2, \cdots, m-1$, and $\left\langle a_{m}, x\right\rangle=1$. Hence, Theorem 4.3 is applicable with $X=U^{n}, \alpha_{1}=\alpha_{2}=\cdots=\alpha_{m-1}=0, \alpha_{m}=1$, and as $\gamma_{m}=G\left(a_{1}, \cdots, a_{m-1}\right)$

$$
\begin{equation*}
\|y\|^{2}=(1 / G) \sum_{i=1}^{m} \gamma_{i} \overline{\alpha_{i}}=\gamma_{m} \overline{\alpha_{m}} / G=\gamma_{m} / G=\frac{G\left(a_{1}, \cdots, a_{m-1}\right)}{G\left(a_{1}, \cdots, a_{m}\right)} . \tag{4.19}
\end{equation*}
$$

Hence, the Fan-Todd's determinantal inequality is deduced as a consequence of $\|y\|^{2} \leq$ $\|x\|^{2}$ in (4.11). By Theorem 4.2, we have, equality holds if and only if $x=y$.

Remark 4.2. It is clear that Theorem 4.3 is a generalization of Theorem 4.1 and Theorem 4.2 , providing us with a necessary and sufficient condition for equality of the Fan-Todd's determinantal inequality.

In an attempt to give a criterion on x, for which $\langle x, x\rangle$ will be the minimum, the following lemma was put forward by Fan and Todd in [4].

Lemma 4.1. Let $a_{1}, a_{2}, \cdots, a_{m}$ be m linearly independent vectors in $U^{n}(2 \leq m \leq n)$. If a vector x in U^{n} varies under the conditions:

$$
\begin{array}{ll}
\left\langle a_{i}, x\right\rangle=0 & \text { if } 1 \leq i \leq m-1, \\
\left\langle a_{i}, x\right\rangle=1 & \text { if } i=m,
\end{array}
$$

then the minimum of $\langle x, x\rangle$ is $\frac{G\left(a_{1}, \cdots, a_{m-1}\right)}{G\left(a_{1}, \cdots, a_{m}\right)}$. Furthermore, this minimum value is attained if and only if x is a linear combination of $a_{1}, a_{2}, \cdots, a_{m}$.

From Corollary 4.1, we have the improved result to Lemma 4.1, with a more explicit expression in the linear combination of $a_{1}, a_{2}, \cdots, a_{m}$ as follows.

Lemma 4.2. With the same assumptions and notations as in Theorem 4.1 and Lemma 4.1, we have
(i) The minimum of $\langle x, x\rangle$ is $\frac{G\left(a_{1}, \cdots, a_{m-1}\right)}{G\left(a_{1}, \cdots, a_{m}\right)}$.
(ii) The minimum value of $\langle x, x\rangle$ is attained if and only if

$$
x=(1 / G) \sum_{i=1}^{m} \gamma_{i} a_{i}
$$

where γ_{i} are the unique solution of the system of equations in (4.6):

$$
\sum_{j=1}^{m}\left\langle a_{j}, a_{i}\right\rangle \gamma_{j}=G \alpha_{i} \quad i=1,2, \cdots, m
$$

In the next theorem, a deduction of the weighted Fan-Todd's inequality will also be deduced as an application of our refinement Theorem 4.3. The original statement of Theorem 4.4 can be found in [4].

Theorem 4.4. In addition to the hypotheses of Theorem 4.1, let $p_{j_{1}, j_{2}, \cdots, j_{m}}$ be complex numbers defined for every set of m distinct positive integers $j_{1}, j_{2}, \cdots, j_{m} \leq n$ such that the following two conditions are fulfilled:
(i) $p_{j_{1}, j_{2}, \cdots, j_{m}}$ is independent of the arrangement of $j_{1}, j_{2}, \cdots, j_{m}$;
(ii) $P=\sum_{1 \leq j_{1}<j_{2}<\cdots<j_{m} \leq n} p_{j_{1}, j_{2}, \cdots, j_{m}} \neq 0$.

Then

$$
\begin{equation*}
\frac{G\left(a_{1}, \cdots, a_{m-1}\right)}{G\left(a_{1}, \cdots, a_{m}\right)} \leq \frac{1}{|P|^{2}} \sum_{j_{m}=1}^{n}\left|\sum_{\substack{j_{1}<j_{2}<\cdots<j_{m-1} \\ j_{1}, \cdots, j_{m-1} \neq j_{m}}}^{n} p_{j_{1} j_{2} \cdots j_{m-1} j_{m}} \frac{M\left(j_{1}, j_{2}, \cdots, j_{m-1}\right)}{N\left(j_{1}, j_{2}, \cdots, j_{m}\right)}\right|^{2} \tag{4.20}
\end{equation*}
$$

Proof. Define a vector $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in U^{n}$ by

$$
\begin{equation*}
\overline{x_{k}}=\frac{1}{P} \sum_{\substack{j_{1}<j_{2}<\cdots<j_{m-1} \\ j_{1}, \cdots, j_{m-1} \neq k}} p_{j_{1}, j_{2}, \cdots, j_{m-1} k} \frac{M\left(j_{1}, j_{2}, \cdots, j_{m-1}\right)}{N\left(j_{1}, j_{2}, \cdots, j_{m-1}, k\right)} . \tag{4.21}
\end{equation*}
$$

Let $y \in U^{n}$ be defined by

$$
\begin{equation*}
y=(1 / G) \sum_{i=1}^{m} \gamma_{i} a_{i} \tag{4.22}
\end{equation*}
$$

Following the proof of [4, Theorem 1], we show first that

$$
\begin{align*}
& \left\langle a_{i}, x\right\rangle=0, \quad i=1,2, \cdots, m-1 \text { and }\left\langle a_{m}, x\right\rangle=1 \tag{4.23}\\
& \left\langle a_{i}, x\right\rangle=\frac{1}{P} \sum_{k=1}^{n} a_{i k} \sum_{\substack{j_{1}<\cdots<j_{m-1} \\
j_{1}, \cdots, j_{m-1} \neq k}} p_{j_{1} j_{2} \cdots j_{m-1} k} \frac{M\left(j_{1}, j_{2}, \cdots, j_{m-1}\right)}{N\left(j_{1}, \cdots, j_{m-1}, k\right)} \tag{4.24}
\end{align*}
$$

For any ordered m-tuple $\left[h_{1}, h_{2}, \cdots, h_{m}\right]$ of integers such that

$$
\begin{equation*}
1 \leq h_{1}<h_{2}<\cdots<h_{m} \leq n \tag{4.25}
\end{equation*}
$$

the sum on the right side of (4.24) contains exactly m terms

$$
\begin{equation*}
a_{i k} \cdot \frac{M\left(j_{1}, j_{2}, \cdots, j_{m-1}\right)}{N\left(j_{1}, \cdots, j_{m-1}, k\right)} \tag{4.26}
\end{equation*}
$$

$\left(j_{1}<j_{2}<\cdots<j_{m-1}\right)$ such that $\left[j_{1}, j_{2}, \cdots, j_{m-1}, k\right]$ is merely a rearrangement of $\left[h_{1}, h_{2}\right.$, $\left.\cdots, h_{m}\right]$. The sum of these m terms is denoted by $S_{i}\left(h_{1}, h_{2}, \cdots, h_{m}\right)$, which can be written as:

$$
\begin{align*}
S_{i}\left(h_{1}, h_{2}, \cdots, h_{m}\right) & =\sum_{\nu=1}^{m} a_{i h_{\nu}} \frac{M\left(h_{1}, \cdots, h_{\nu-1}, h_{\nu+1}, \cdots, h_{m}\right)}{N\left(h_{1}, \cdots, h_{\nu-1}, h_{\nu+1}, \cdots, h_{m}, h_{\nu}\right)} \tag{4.27}\\
& =\frac{\sum_{\nu=1}^{m}(-1)^{m+\nu} a_{i h_{\nu}} \cdot M\left(h_{1}, \cdots, h_{\nu-1}, h_{\nu+1}, \cdots, h_{m}\right)}{N\left(h_{1}, \cdots, h_{m-1}, h_{m}\right)} \\
& = \begin{cases}0 & \text { if } 1 \leq i \leq m-1, \\
1 & \text { if } i=m .\end{cases} \tag{4.28}
\end{align*}
$$

Then (4.24) becomes

$$
\begin{align*}
\left\langle a_{i}, x\right\rangle & =\frac{1}{P} \sum_{1 \leq h_{1}<h_{2}<\cdots<h_{m} \leq n} p_{h_{1} h_{2} \cdots, h_{m}} S_{i}\left(h_{1}, h_{2}, \cdots, h_{m}\right) \\
& = \begin{cases}0 & \text { if } 1 \leq i \leq m-1, \\
1 & \text { if } i=m .\end{cases} \tag{4.29}
\end{align*}
$$

This completes the proof of (4.23). By Theorem 4.3, we have $\|y\|^{2} \leq\|x\|^{2}$. As in Corollary 4.1, we have

$$
\begin{align*}
\|y\|^{2} & =(1 / G) \sum_{i=1}^{m} \gamma_{i} \overline{\alpha_{i}}=\frac{G\left(a_{1}, a_{2}, \cdots, a_{m-1}\right)}{G\left(a_{1}, \cdots, a_{m-1}, a_{m}\right)} \\
& \leq \frac{1}{|P|^{2}} \sum_{k=1}^{n}\left|\sum_{\substack{j_{1}<j_{2}<\cdots<j_{m-1} \\
j_{1}, \cdots, j_{m-1} \neq k}} p_{j_{1} j_{2} \cdots j_{m-1} k} \frac{M\left(j_{1}, j_{2}, \cdots, j_{m-1}\right)}{N\left(j_{1}, j_{2}, \cdots, j_{m-1} k\right)}\right|^{2} . \tag{4.30}
\end{align*}
$$

This completes the proof of Theorem 4.4.
Finally, we would remark that we have a similar statement for equality to hold in (4.30) as in Corollary 4.1.

References

[1] Beesack, P., On Bessel's inequality and Ostrowski [M], Univ. Beograd. Publ. Elecktrotehn. Fak. Ser. Mat. Fiz. No.498-No.541, 1975, 69-71.
[2] Chong, K. K., On some generalizations and refinements of a Ky Fan's inequality [J], Southeast Asian Blletin of Math., 24(2000), 355-364.
[3] Dragomir, S. S. \& Sandor, J., Some inequalities in prehilbertian spaces [J], Studia Univ. Babes-Bolyai, Math., 32:1(1987), 71-78.
[4] Fan, K. \& Todd, J., A determinantal inequality [J], J. London Math. Soc., 30(1955), 58-64.
[5] Fink, A. M., Pecaric, J. E. \& Mitrinovic, D. S., Classical and new inequalities in analysis [M], Dordrecht, Kluwer Academic Publishers, 1993.
[6] Milovanovic, G. V., Recent progress in inequalities [M], Dordrecht, Kluwer Academic Publishers, 1998.
[7] Mitrovic, Z. M., On a generalization of Fan-Todd's inequality [M], Univ.Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No.412-No.460, 1973, 151-154.
[8] Pecaric, J. E. \& Svtan, D., New refinements of the Jensen inequalities based on samples with repetitions [J], J. Math. Anal. Appl., 222(1998), 366-373.
[9] Pecaric, J. E. \& Volenec, V., Interpolation of the Jensen inequality with some applications [J], Oesterreich. Akad. Wiss. Math.-Natur. Kl. Sonderdruck Sitzungsber, 197(1988), 463-467.
[10] Wang, C. L., Gramian expansions and their applications [J], Utilitas Math., 15(1979), 97-111.
[11] Wang, C. L., Convexity and inequalities [J], J. Math. Anal. Appl., 72(1979), 355-361.
[12] Wang, C. S. \& Yang, G. S., Refinements on an inequality of Ky Fan [J], J. Math. Anal. Appl., 201 (1996), 955-965.

[^0]: Manuscript received May 22, 2000.
 *Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China.
 E-mail: makkchon@inet.polyu.edu.hk

