首页 | 本学科首页   官方微博 | 高级检索  
     


Small-time scale network traffic prediction based on a local support vector machine regression model
Authors:Meng Qing-Fang  Chen Yue-Hui  Peng Yu-Hua
Affiliation:School of Information Science and Engineering, University of Jinan, Jinan 250022, China; School of Information Science and Engineering, Shandong University, Jinan 250100, China
Abstract:In this paper we apply the nonlinear time series analysis method tosmall-time scale traffic measurement data. The prediction-basedmethod is used to determine the embedding dimension of the trafficdata. Based on the reconstructed phase space, the local supportvector machine prediction method is used to predict the trafficmeasurement data, and the BIC-based neighbouring point selectionmethod is used to choose the number of the nearest neighbouringpoints for the local support vector machine regression model. Theexperimental results show that the local support vector machineprediction method whose neighbouring points are optimized caneffectively predict the small-time scale traffic measurement dataand can reproduce the statistical features of real trafficmeasurements.
Keywords:network traffic   small-timescale   nonlinear time series analysis   support vector machine regression model
本文献已被 维普 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号