首页 | 本学科首页   官方微博 | 高级检索  
     

机器学习在储存环轨道校正中的应用研究
引用本文:李瑞淳, 张庆磊, 米清茹, 等. 机器学习在储存环轨道校正中的应用研究[J]. 强激光与粒子束, 2021, 33: 034007. doi: 10.11884/HPLPB202133.200318
作者姓名:李瑞淳  张庆磊  米清茹  姜伯承  王坤  李昌亮  赵振堂
作者单位:1.中国科学院 上海应用物理研究所,上海 201800;;2.上海科技大学,上海 201204;;3.中国科学院大学,北京 100049;;4.中国科学院上海高等研究院,上海 201204
基金项目:国家重点研发计划项目(2016YFA0402001);中国科学院青年创新促进会项目(2020287)
摘    要:X射线同步辐射光源,是现代科学研究中最强大的工具之一。位于中国上海的上海光源,是一台能量为3.5 GeV的先进的第三代中能同步辐射光源。第三代同步辐射光源要提供高亮度、高稳定性的同步辐射来满足实验条件要求苛刻的前沿研究,因此对束流的轨道稳定性有很高的要求。为此,采用机器学习算法进行电子束轨道的控制和反馈。这种基于神经网络的轨道校正方法不依赖于具体的响应矩阵,建立非线性映射关系,并且还可以进行连续的在线再训练,对上海光源的轨道校正和提高束流轨道稳定性有重要意义。

关 键 词:上海光源   储存环   轨道校正   轨道反馈   机器学习
收稿时间:2020-11-23
修稿时间:2021-01-19

Application of machine learning in orbital correction of storage ring
Li Ruichun, Zhang Qinglei, Mi Qingru, et al. Application of machine learning in orbital correction of storage ring[J]. High Power Laser and Particle Beams, 2021, 33: 034007. doi: 10.11884/HPLPB202133.200318
Authors:Li Ruichun  Zhang Qinglei  Mi Qingru  Jiang Bocheng  Wang Kun  Li Changliang  Zhao Zhentang
Affiliation:1. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;;2. ShanghaiTech University, Shanghai 201204, China;;3. University of Chinese Academy of Sciences, Beijing 100049, China;;4. Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
Abstract:Synchrotron light source is one of the most powerful tools in modern science and technology. Shanghai Synchrotron Radiation Facility (SSRF), located in Shanghai, China, is an advanced 3.5 GeV 3rd-generation medium energy light source. The 3rd-generation synchrotron radiation light source will provide high brilliance and high stability synchrotron radiation to fulfill the advanced experimental conditions in frontier researches. To achieve highly stable radiation, it is important to have highly stable beam orbit. Thus we adopted machine learning method to control and feedback the orbit. Using this neural network-based orbit correction method, which doesn’t rely on the response matrix, we can establish a nonlinear mapping relationship between correctors and the orbit distortions and perform continuous online retraining. This new method can significantly improve the orbit stability of SSRF.
Keywords:Shanghai Synchrotron Radiation Facility  storage ring  orbit correction  orbit feedback  machine learning
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《强激光与粒子束》浏览原始摘要信息
点击此处可从《强激光与粒子束》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号