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Abstract: In this paper, we mainly deal with the oscillation problems of nonlinear impulsive

hyperbolic equation with functional arguments. By using integral averaging method and a gener-

alized Riccati technique, a sufficient condition for oscillation of the solutions of nonlinear impulsive

hyperbolic equation with functional arguments is obtained. We can make better use of some exist-

ing conclusions about oscillation of the solutions of impulsive ordinary differential equations with

delay.
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1 Introduction

The theories of nonlinear partial functional differential equations are applied in many
fields. In recent years the research of oscillation to impulsive partial differential systems
caught more and more attention. In this paper, we study the oscillation properties of the
solutions to impulsive delay hyperbolic equation

∂

∂t
((r(t)

∂

∂t
u(x, t)) = a(t)h(u(x, t))4u(x, t)−

n∑
i=1

bi(t)hi(u(x, τi(t)))4u(x, τi(t))

+
m∑

j=1

qj(x, t)ϕj(u(x, t)), t 6= tk, (x, t) ∈ Ω ≡ G× (0,+∞),(1.1)

u(x, t+k )− u(x, t−k ) = αku(x, tk), t = tk, k = 1, 2, · · · , (1.2)

ut(x, t+k )− ut(x, t−k ) = βkut(x, tk), t = tk, k = 1, 2, · · · . (1.3)

The following is the boundary condition

∂u(x, t)
∂n

+ γ(x, t)u(x, t) = 0, (x, t) ∈ ∂G× [0,+∞). (1.4)
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where G is a bounded domain of Rn with the smooth boundary ∂G and n is the unit exterior
normal vector to ∂G.

Following are the basic hypothesis
(H1) r(t) ∈ C([0,+∞); (0,+∞)), a(t), bi(t) ∈ PC([0,+∞); [0,+∞)), i = 1, 2, · · · , n.

γ(x, t) ∈ C(R+ × ∂G, R+). qj(x, t) ∈ C(Ω̄; [0,+∞)), j = 1, 2, · · · ,m, where PC denotes the
class of functions which are piecewise continuous in t with discontinuities of the first kind
only at t = tk, k = 1, 2, · · ·.

(H2) τi(t) ∈ C([0,+∞);R), lim
t→+∞

τi(t) = +∞, i = 1, 2, · · · , n.

(H3) h(u), hi(u) ∈ C(R, R),uh(u) ≥ 0,uh′(u) ≥ 0, uh′i(u) ≥ 0, i = 1, 2, · · · , n; ϕj(s) ∈
C(R, R), ϕj(s)

s
≥ Cj = const. > 0 for s 6= 0. αk, βk = const. > −1, 0 < t1 < t2 < · · · < tk <

· · ·, lim
t→+∞

tk = +∞, k = 1, 2, · · ·.

We introduce the notations U(t) =
∫

G

u(x, t)dx and qj(t) = min
x∈Ḡ

qj(x, t).

Definition 1.1 The solution u(x, t) of the problems (1.1)–(1.4) is said to be nonoscil-
latory in domain Ω if it is either eventually positive or eventually negative. Otherwise, it is
called oscillatory.

Definition 1.2 We say that functions Hi, i = 1, 2, belong to a function class H, if
Hi ∈ C(D; [0,+∞)), i = 1, 2, satisfy

1. Hi(t, s) = 0, i = 1, 2 for t = s,

2. Hi(t, s) > 0, i = 1, 2 for t > s,

where D = {(t, s) : 0 < s ≤ t < +∞}. Moreover, the partial derivatives ∂H1/∂s and ∂H2/∂s

exist on D such that

∂H1

∂s
(t, s) = h1(t, s)H1(t, s) and

∂H2

∂s
(t, s) = −h2(t, s)H2(t, s),

where h1, h2 ∈ Cloc(D;R).
In recent years, there was much research activity concerning the oscillation theory of

nonlinear hyperbolic equations with functional arguments by employing Riccati technique.
Riccati techniques were used to obtain various oscillation results. Recently, Shoukaku and
Yoshida [2] derived oscillation criteria by using oscillation criteria of Riccati inequality. In
this work, we study the hyperbolic equation with impulsive.

2 Main Results

Theorem 2.1 If for each T ≥ 0, there exist (H1,H2) ∈ H and a, b, c ∈ R such that
T ≤ a < c < b and

1
H1(c, a)

∫ c

a

H1(s, a)
∏

t1≤tk<s

(
1 + βk

1 + αk

)−1(Clql(s)− 1
4
r(s)λ2

1(s, a))ψ(s)ds

+
1

H2(b, c)

∫ b

c

H2(b, s)
∏

t1≤tk<s

(
1 + βk

1 + αk

)−1(Clql(s)− 1
4
r(s)λ2

2(b, s))ψ(s)ds > 0,

(2.1)
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then every solution of the problems (1.1)–(1.4) oscillates in Ω, where

ψ(t) ∈ C1((T0,+∞); (0,+∞))

for some t1 > 0 and

λ1(s, t) =
ψ′(s)
ψ(s)

+ h1(s, t), λ2(t, s) =
ψ′(s)
ψ(s)

− h2(t, s).

Proof Suppose to the contrary that there is a nonoscillatory solution u(x, t) of the
problems (1.1)–(1.4). Without loss of generality we may assume that u(x, t) > 0 in G ×
[t0,+∞) for some t0 > 0 because the case where u(x, t) < 0 can be treated similarly. Since
(H2) holds, we see that u(x, τi(t)) > 0 (i = 1, 2, · · ·n) in G× [t1,+∞) for some t1 ≥ t0.

(1) For t ≥ t1, t 6= tk, k = 1, 2, · · ·, integrating (1) with respect to x over G, we obtain

d

dt
(r(t)

∫

G

∂

∂t
u(x, t)dx) = a(t)

∫

G

h(u(x, t))4u(x, t)dx−
m∑

j=1

∫

G

qj(x, t)ϕj(u(x, t))

+
n∑

i=1

bi(t)
∫

G

hi(u(x, τi(t)))4u(x, τi(t))dx.

By Green’s formula and the boundary condition, we have
∫

G

h(u(x, t))∆u(x, t)dx =
∫

∂G

h(u(x, t))
∂u(x, t)

∂n
ds−

∫

G

h′(u)|gradu|2dx

= −
∫

G

γ(x, t)u(x, t)h(u(x, t))ds−
∫

G

h′(u)|gradu|2dx ≤ 0,

∫

G

hi(u(x, τi(t)))∆u(x, τi(t))dx ≤ 0.

For condition (H3) we can easily obtain
∫

G

qj(x, t)ϕj(u(x, t))dx ≥ Cjqj(t)
∫

G

u(x, t)dx,

then U(t) > 0, and it follows that

(r(t)U ′(t))′ +
m∑

i=1

Ci(t)qi(t)U(t) ≤ 0.

For some l ∈ {1, 2, · · · ,m}, we can get

(r(t)U ′(t))′ + Clql(t)U(t) ≤ 0, t ≥ t1, t 6= tk.

(2) For t = tk, k = 1, 2, · · ·. From (1.2)–(1.3), we have that
∫

G

u(x, t+k )dx−
∫

G

u(x, t−k )dx = αk

∫

G

u(x, tk),
∫

G

ut(x, t+k )dx−
∫

G

ut(x, t−k )dx = βk

∫

G

ut(x, tk),
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that is
U(t+k ) = (1 + αk)U(tk), U ′(t+k ) = (1 + βk)U ′(tk).

Thus we obtain that the functions U(t) is a eventually positive solution of the impulsive
differential inequality

(r(t)y′(t))′ + Clql(t)y(t) ≤ 0,

y(t+k ) = (1 + αk)y(tk),

y′(t+k ) = (1 + βk)y′(tk).

(2.2)

Set w(t) = r(t)U ′(t)
U(t)

for t ≥ t1. From (2.2), we obtain that

w′(t) +
1

r(t)
w2(t) ≤ −Clql(t), w(t+k ) =

1 + βk

1 + αk

w(tk).

Define v(t) = (
∏

t1≤tk<t

( 1+βk

1+αk
)−1)w(t). In fact, w(t) is continuous on each interval (tk, tk+1],

and in view of w(t+k ) = ( 1+βk

1+αk
)w(tk), it follows that for t ≥ t1,

v(t+k ) =
∏

t1≤tj≤tk

(
1 + βk

1 + αk

)−1w(t+k ) =
∏

t1≤tj<tk

(
1 + βk

1 + αk

)−1w(tk) = v(tk),

and for all t ≥ t1,

v(t−k ) =
∏

t1≤tj≤tk−1

(
1 + βk

1 + αk

)−1w(t−k ) =
∏

t1≤tj<tk

(
1 + βk

1 + αk

)−1w(tk) = v(tk),

which implies that v(t) is continuous on [t1,+∞),

v′(t) + (
∏

t1≤tk<t

1 + βk

1 + αk

)
1

r(t)
v2(t) + (

∏
t1≤tk<t

(
1 + βk

1 + αk

)−1)Clql(t)

= (
∏

t1≤tk<t

(
1 + βk

1 + αk

)−1)w′(t) +
1

r(t)
(

∏
t1≤tk<t

1 + βk

1 + αk

)(
∏

t1≤tk<t

(
1 + βk

1 + αk

)−1)2w2(t)

+(
∏

t1≤tk<t

(
1 + βk

1 + αk

)−1)Clql(t)

=
∏

t1≤tk<t

(
1 + βk

1 + αk

)−1[w′(t) +
1

r(t)
w2(t) + Clql(t)] ≤ 0.

That is to say

v′(t) + (
∏

t1≤tk≤t

1 + βk

1 + αk

)
1

r(t)
v2(t) ≤ −(

∏
t1≤tk<t

(
1 + βk

1 + αk

)−1)Clql(t). (2.3)

Multiplying (2.3) by ψ(s), we obtain

(
∏

t1≤tk<s

(
1 + βk

1 + αk

)−1)ψ(s)Clql(s) ≤ −ψ(s)v′(s)− (
∏

t1≤tk<s

1 + βk

1 + αk

)
ψ(s)
r(s)

v2(s). (2.4)
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Multiplying (2.4) by H2(t, s) and integrating over [c, t] for t ∈ [c, b), we have
∫ t

c

(
∏

t1≤tk<s

(
1 + βk

1 + αk

)−1)H2(t, s)ψ(s)Clql(s)ds

≤ −
∫ t

c

H2(t, s)ψ(s)v′(s)ds−
∫ t

c

H2(t, s)(
∏

t1≤tk<s

1 + βk

1 + αk

)
ψ(s)
r(s)

v2(s)ds

= H2(t, c)v(c)ψ(c)−
∫ t

c

H2(t, s)(

√√√√
∏

t1≤tk<s

1+βk

1+αk

r(s)
v(s)− 1

2
λ2(t, s)

√√√√ r(s)∏
t1≤tk<s

( 1+βk

1+αk

)2ψ(s)ds

+
1
4

∫ t

c

∏
t1≤tk<s

(
1 + βk

1 + αk

)H2(t, s)r(s)ψ(s)λ2
2(t, s)ds

≤ H2(t, c)v(c)ψ(c) +
1
4

∫ t

c

∏
t1≤tk<s

(
1 + βk

1 + αk

)H2(t, s)r(s)ψ(s)λ2
2(t, s)ds,

and so

1
H2(t, c)

∫ t

c

H2(t, s)
∏

t1≤tk<s

(
1 + βk

1 + αk

)−1(Clql(s)− 1
4
r(s)λ2

2(t, s))ψ(s)ds ≤ v(c)ψ(c).

Let t → b− in the above, we obtain

1
H2(b, c)

∫ b

c

H2(b, s)
∏

t1≤tk<s

(
1 + βk

1 + αk

)−1(Clql(s)− 1
4
r(s)λ2

2(b, s))ψ(s)ds ≤ v(c)ψ(c). (2.5)

On the other hand, multiplying (2.4) by H1(s, t) and integrating over [t, c] for t ∈ (a, c],
we obtain

∫ c

t

(
∏

t1≤tk<s

(
1 + βk

1 + αk

)−1)H1(s, t)ψ(s)Clql(s)ds

≤ −
∫ c

t

H1(s, t)ψ(s)v′(s)ds−
∫ c

t

H1(s, t)(
∏

t1≤tk<s

1 + βk

1 + αk

)
ψ(s)
r(s)

v2(s)ds

= −H1(c, t)v(c)ψ(c)−
∫ c

t

H1(s, t)(

√√√√
∏

t1≤tk<s

1+βk

1+αk

r(s)
v(s)− 1

2
λ1(s, t)

√√√√ r(s)∏
t1≤tk<s

1+βk

1+αk

)2ψ(s)ds

+
1
4

∫ c

t

∏
t1≤tk<s

(
1 + βk

1 + αk

)H1(s, t)r(s)ψ(s)λ2
1(s, t)ds

≤ −H1(c, t)v(c)ψ(c) +
1
4

∫ c

t

∏
t1≤tk<s

(
1 + βk

1 + αk

)H1(s, t)r(s)ψ(s)λ2
1(s, t)ds,

and so

1
H1(c, t)

∫ c

t

H1(s, t)
∏

t1≤tk<s

(
1 + βk

1 + αk

)−1(Clql(s)− 1
4
r(s)λ2

1(s, t))ψ(s)ds ≤ −v(c)ψ(c).
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Let t → a+ in the above, we get

1
H1(c, a)

∫ c

a

H1(s, a)
∏

t1≤tk<s

(
1 + βk

1 + αk

)−1(Clql(s)− 1
4
r(s)λ2

1(s, a))ψ(s)ds ≤ −v(c)ψ(c). (2.6)

Adding (2.5) and (2.6), we easily obtain the following

1
H1(c, a)

∫ c

a

H1(s, a)
∏

t1≤tk<s

(
1 + βk

1 + αk

)−1(Clql(s)− 1
4
r(s)λ2

1(s, a))ψ(s)ds

+
1

H2(b, c)

∫ b

c

H2(b, s)
∏

t1≤tk<s

(
1 + βk

1 + αk

)−1(Clql(s)− 1
4
r(s)λ2

2(b, s))ψ(s)ds ≤ 0,

which contradicts condition (2.1).
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里卡蒂方法研究带泛函参数的非线性脉冲时滞双曲方程的振动性

邹 敏,陈荣三,刘安平

(中国地质大学(武汉)数学与物理学院, 湖北武汉 430074)

摘要: 本文研究了带泛函参数的非线性脉冲时滞双曲方程的振动性问题. 利用积分平均法和里卡蒂方

法得到了这类方程解的振动性的一个充分条件, 对非线性时滞双曲方程解的震动性进行了推广, 能更好地利

用一些现有的脉冲时滞常微分方程解的振动性的结论.
关键词: 振动; 脉冲; 时滞; 双曲方程; Riccati不等式
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