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Abstract: In this paper, we study the averaging for measure functional differential equations

with infinite delay. By using the averaging theorem for generalized ordinary differential equations,

under the measure functional differential equations with infinite delay is equivalent to the general-

ized ordinary differential equations under some conditions, the periodic and non-periodic averaging

theorem for this class of retarded functional differential equations is obtained, which generalizes

some related results.
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1 Introduction

In paper [4], the authors stated very nice stability results of measure functional dif-
ferential equations with infinite delay, especially proved that measure functional differential
equations with infinite delay is equivalent to the generalized ordinary differential equations
under some conditions. In [5] and [8], the authors described the averaging methods for gen-
eralized ordinary differential equations and there were many sources described the averaging
methods for ordinary differential equation, such as [5, 8, 9].

In the present paper, we establish an averaging result for measure functional differential
equations with infinite delay. This theorems is based on the averaging method for ordi-
nary differential equations, then we consider the classical averaging theorems for ordinary
equations are concerned with the initial-value problem

x
′
(t) = εf(t, x(t)) + ε2g(t, x(t), ε), x(t0) = x0,

where ε > 0 is a small parameter. Assume that f is T -periodic in the first argument, then
we can obtain an approximate of this initial-value problem by neglecting the ε2-term and
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taking the averaging of f with respect to t, i.e, we consider the equation

y
′
(t) = εf(y(t)), y(t0) = x0,

where

f0(y) =
1
T

∫ t0+T

t0

f(t, y)dt.

The proof of periodic averaging theorem, which can be traced back to paper [1, 2] or [3].
Now, we consider the measure differential equations.
Have a system described by ordinary differential equation

dx

dt
= f(t, x) (1.1)

is acted upon by perturbation, the perturbed system is generally given by ordinary differ-
ential equation of the form dx

dt
= f(t, x) + G(t, x). Assume the perturbation term G(t(x)) is

continuous or integrable and as such the state of the system changes continuously with re-
spect to time. However some system one cannot expect the perturbations to be well-behaved.
Such as the perturbations are impulsive. So we have the following equations

Dx = f(t, x) + G(t, x)Du, (1.2)

where Du denotes the distributional derivative of function u. If u is a function of bounded
variation, Du can be identified with a Stieltjes measure and will have the effect of suddenly
changing the state of the system at the points of discontinuity of u. In [11], equations of form
(1.2) are called measure differential equations. Equation (1.2) have the special case when
G was considered by Schmaedeke [11]. In order to apply the methods of Riemann-Stieltjes
integrals in the subsequent analysis we assumed to be a continuous function of t. In [12],
the authors introduce the following functional differential equation

Dx = f(t, xt) + G(t, xt)Du, (1.3)

where xt represents the restriction of the function x(·) on the interval [m(t), n(t)], m and
n being functions with the property m(t) ≤ n(t) ≤ t. In this case, the methods of R.S.
integrals are unapplicable because of the possibility that G(t, xt) and u(t) may have common
discontinuities, and Lebsgue-Stieltjes integrals are therefor used.

Moreover, in [13], a important theorem which was considered as the main contents is as
following.

x(·) is a solution of (1.2) through (t0, x0) on an interval I with left end point t0, if and
only if x(·) satisfies the following equations

x(t) = x0 +
∫ t

t0

f(s, x(s))ds +
∫ t

t0

G(s, x(s))du(s).
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So according to the above contents we can arrival at a conclusion measure functional dif-
ferential equations with delay have the form Dx = G(s, xs)dg(s) is equivalent the following
form

x(t) = x(t0) +
∫ t

t0

G(s, xs)du(s).

In this paper, we shall consider the following initial value problem of measure differential
equations 




x(t) = x(t0) +
∫ t

t0

f(xs, s)dg(s), t ∈ [t0, t0 + σ],

xt0(v) = x0(λ), v ∈ (−∞, t0 + σ],
(1.4)

where x is an unknown function with values in Rn and the symbol xs denotes the function
xs(τ) = x(s + τ) defined on (−∞, 0], which corresponding to the length of the delay. The
integral on the right-hand side of (1.4) is the Kurzweil-Stieltjes integral with respect to a
nondecreasing function g, where the function f : P × [t0, t0 + σ] → Rn and a nondecreasing
function g : [t0, t0 + σ] → R, where

P = {xt : x ∈ O, t ∈ [t0, t0 + σ]} ⊂ H0, H0 ⊂ X((−∞, 0], Rn)

is a Banach space satisfying conditions (H1)–(H6), t0 ∈ R, σ > 0, O ⊂ Ht0+σ is a space
satisfying conditions (1)–(6) of Lemma 2.7, X((−∞, 0], Rn) be denoted the set of all regulated
functions f : X(−∞, 0] → Rn.

Our candidate for the phase space of a measure function differential equations with
infinite delay is a linear space H0 ⊂ X((−∞, 0], Rn) equipped with a norm denoted by
‖ · ‖?. We assume that this normed linear space H0 satisfies the following conditions

(H1) H0 is complete.
(H2) If x ∈ H0 and t < 0, then xt ∈ H0.
(H3) There exist a locally bounded function k1 : (−∞, 0] → R+ such that if x ∈ H0

and t ≤ 0, then ‖ x(t) ‖≤ k1(t) ‖ x ‖?.
(H4) There exist a function k2 : (0,∞) → [1,∞) such that if σ > 0 and x ∈ H0 is a

function whose support is contained in [−σ, 0], then

‖ x ‖?≤ k2(σ) sup
t∈[−σ,0]

‖ x(t) ‖ .

(H5) There exist a locally bounded function k3 : (−∞, 0] → R+ such that if x ∈ H0

and t ≤ 0, then

‖ xt ‖?≤ k3(t) ‖ x ‖? .

(H6) If x ∈ H0, then the function t 7→‖ xt ‖? is regulated on (−∞, 0].
Also, we assume that f : P × [t0, t0 + σ] → Rn satisfies the following conditions

(A) The integral
∫ t0+σ

t0

f(xt, g)dg(t) exists for every x ∈ O.
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(B) There exists a function M : [t0, to +σ] → R+, which is Kurzweil-Stieltjies integrable
with respect to g, such that

‖
∫ b

a

f(xt, t)dg(t) ‖≤
∫ b

a

M(t)dg(t),

whenever x ∈ O and [a, b] ⊆ [t0, to + σ].
(C) There exists a function L : [t0, to +σ] → R+, which is Kurzweil-Stieltjies integrable

with respect to g, such that

‖
∫ b

a

(f(xt, t)− f(yt, t))dg(t) ‖≤
∫ b

a

L(t) ‖ xt − yt ‖? dg(t),

whenever x, y ∈ O and [a, b] ⊆ [t0, to+σ] (we are assuming that the integral on the right-hand
side exists).

In this paper, we using measure functional differential equations with infinite delay can
translate into generalized oridinary differential equations, this prove is given in paper [4].
According to [5], the first we have a conclusion of periodic averaging theorem for generalized
ordinary differential equations. We then show that the classical periodic averaging theorem
about measure functional differential equations with infinite delay. The next part, according
to [8] we have a conclusion of Non-periodic averaging theorem about measure functional
differential equations with infinite delay.

2 Generalized Ordinary Differential Equations

We start this section with a short summary of Kurzweil integral, which plays a crucial
role in the theory of generalized ordinary differential equations.

A function δ : [a, b] → R+. A partition of interval [a, b] with division points a = α0 ≤
α1 ≤ · · · ≤ αk = b and tags τi ∈ [αi−1, αi] is called δ-fine if [αi−1, αi] ⊂ [τi − δ(τi), τi +
δ(τi)], i = 1, 2, · · · , k.

A matrix-valued function U : [a, b] × [a, b] → Rn×m is called Kurzweil integrable on
[a, b], if there is a matrix I ∈ Rn×m such that for every ε > 0, there is a gauge δ on [a, b]
such that ∥∥∥

k∑
i=1

(U(τi, αi)− U(τi, αi−1))− I
∥∥∥ ≤ ε (2.1)

for every δ-fine partition D. In this case, we define
∫ b

a

DtU(τ, t) = I.

An important special case is the Kurzweil-Stieltjes integral of a function f : [a, b] → Rn

with respect to a function g : [a, b] → R, which corresponds to the choice U(τ, t) = f(τ)g(t)

and will be denoted by
∫ b

a

f(t)dg(t).

Consider a set G ⊂ Rn ×R, (x, t) ∈ G. A function x : [a, b] → B is called a solution of
the generalized ordinary differential equation

dx

dt
= DtF (x, t), (2.2)
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whenever

x(s) = x(a) +
∫ s

a

DtF (x, t), s ∈ [a, b].

Some basic knowledge in the theory of generalized ordinary differential equations is the
book [6]. It is known that an ordinary differential equation x

′
(t) = f(x(t), t) is equivalent

to the generalized equation
dx

dτ
= DF (x, t),

where F (x, t) =
∫ t

t0

f(x, s)ds. However, generalized equation include many other types of

equation such as measure functional differential equation.
Definition 2.1 [6] Let X be a Banach space. Consider a set O ⊂ X, a function

F : O × [t0, t0 + σ] → X belongs to the class F(O × [t0, t0 + σ], h, k), if the following
conditions is satisfied.

(F1) there exists a nondecreasing function h : [t0, t0 +σ] → R such that F : O× [t0, t0 +
σ] → X satisfies

‖F (x, s2)− F (x, s1)‖ ≤ |h(s2)− h(s1)| (2.3)

for every x ∈ O and s1, s2 ∈ [t0, t0 + σ],

h(t) = k2(σ)
∫ t

t0

M(s)dg(s), t ∈ [t0, t0 + σ];

(F2) there exists a nondecreasing function k : [t0, t0 +σ] → R such that F : O× [t0, t0 +
σ] → X satisfies

‖F (x, s2)− F (x, s1)− F (y, s2) + F (y, s1)‖ ≤ ‖x− y‖ · |k(s2)− k(s1)| (2.4)

for every x, y ∈ O and s1, s2 ∈ [t0, t0 + σ],

k(t) = k2(σ)( sup
s∈[−σ,0]

k3(s))
∫ t

t0

L(s)dg(s), t ∈ [t0, t0 + σ].

Theorem 2.2 [6] If f : [a, b] → Rn is a regulated function and g : [a, b] → R is a

nondecreasing function, then the integral
∫ b

a

f(s)dg(s) exists. Moreover,

‖
∫ b

a

f(s)dg(s) ‖≤
∫ b

a

‖ f(s) ‖ dg(s).

Lemma 2.3 [6] Let B ⊂ Rn,Ω = B × [a, b]. Assume that F : Ω → Rn belong to the

class F(Ω, h). If x, y : [a, b] → B is regulated functions, then the integral
∫ b

a

DF (x(t), t)

exists and

‖
∫ b

a

DF (x(τ), t) ‖≤ h(b)− h(a).
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Lemma 2.4 [6] Let B ⊂ Rn,Ω = B × [a, b]. Assume that F : Ω → Rn belong to the
class F(Ω, h). Then every solution x : [α, β] → B of the generalized ordinary differential
equation

dx

dτ
= DF (x, t)

is a regulated function.
Lemma 2.5 [5] Let B ⊂ Rn,Ω = B × [a, b]. Assume that F : Ω → Rn belong to the

class F(Ω, h). If x, y : [a, b] → B are regulated functions, then

‖
∫ b

a

D[F (x(τ), t)− F (y(τ), t)] ‖≤
∫ b

a

‖ x(t)− y(t) ‖ dh(t).

This lemma was proved in [5] Lemma 5.
Lemma 2.6 [6] Let h : [a, b] → [0,+∞) be a nondecreasing left-continuous function,

k > 0, l ≥ 0. Assume that ψ : [a, b] → [0,+∞) is bounded and satisfies

ψ(ξ) ≤ k + l

∫ ξ

a

ψ(τ)dh(τ), ξ ∈ [a, b],

then ψ(ξ) ≤ kel(h(ξ)−h(a)) for every ξ ∈ [a, b].
The next Theorem is very important for prove periodic averaging of measure functional

differential equation with infinite delay. This theorem was proved in [5].
Theorem 2.7 [5] Let B ⊂ Rn,Ω = B × [0,∞], ε0 > 0, L > 0. Consider functions

F : Ω → Rn and G : Ω× (0, ε0] → Rn which satisfy the following conditions
(1) there exist nondecreasing left-continuous functions h1, h2 : [0,∞) → [0,∞) such that

F belongs to the class F(Ω, h1), and for every fixed ε ∈ (0, ε0], the function (x, t) → G(x, t, ε)
belongs to the class F(Ω, h2);

(2) F (x, 0) = 0 and G(x, 0, ε) = 0 for every x ∈ B, ε ∈ (0, ε0];
(3) there exist a number T > 0 and a bounded Lipschitz-continuous function M : B →

Rn such that F (x, t + T )− F (x, t) = M(x) for every x ∈ B and t ∈ [0,∞);
(4) there exist a constant α > 0 such that h1(iT )− h1((i− 1)T ) ≤ α for every i ∈ N ;
(5) there exist a constant β > 0 such that | h2(t)

t
|≤ β for every t ≥ L

ε0
. Let

F0 =
F (x, T )

T
, x ∈ B.

Suppose that for every ε ∈ (0, ε0]. The initial-value problems

dx

dτ
= D[εF (x, t) + ε2G(x, t, ε)], x(0) = x0(ε),

y
′
(t) = εF0(y(t)), y(0) = y0(ε)

have solution xε, yε : [0, L
ε
] → B. If there is a constant J > 0 such that ‖ x0(ε)−y0(ε) ‖≤ Jε

for every ε ∈ (0, ε0), then there exist a constant K > 0 such that ‖ xε(t)− yε(t) ‖≤ Kε for
every ε ∈ (0, ε0] and t ∈ [0, L

ε
].
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To establish the correspondence between measure functional differential equations and
generalized ordinary differential equations, we also need a suitable space Ha of regulated
functions defined on (−∞, a], where a ∈ R, the next lemma shows that the spaces Ha

inherit all important properties of H0.
Lemma 2.8 [5] If H0 ⊂ G((−∞, 0], Rn) is a space satisfying conditions (H1)–(H6),

then the following statements are true for every a ∈ R,
(1) Ha is complete.
(2) If x ∈ Ha and t ≤ a, then xt ∈ H0.
(3) If t ≤ a and x ∈ Ha, then ‖ x(t) ‖≤ k1(t− a) ‖ x ‖?.
(4) If σ > 0 and x ∈ Ha+σ is a function whose support is contained in [a, a + σ], then

‖ x ‖?≤ k2(σ) sup
t∈[a,a+σ]

‖ x(t) ‖ .

(5) If x ∈ Ha+σ and t ≤ a + σ, then‖ xt ‖?≤ k3(t− a− σ) ‖ x ‖?.
(6) If x ∈ Ha+σ, then the function t 7→‖ xt ‖? is regulated on (−∞, a + σ].

3 Periodic Averaging

In this section, we use Theorem 2.7 to derive a periodic averaging theorem for measure
functional differential equations with infinite delay.

Theorem 3.1 Given a set H0 ⊂ G((−∞, 0], Rn) be a Banach space satisfying conditions
(H1)–(H6) t0 ∈ R, σ > 0, O ⊂ Ht0+σ and P = {yt : y ∈ O, t ∈ [t0, t0 + σ]} ⊂ H0 Consider
a nondecreasing function u : [t0, t0 + σ] → Rn and a function f : P × [t0, t0 + σ] → Rn,

assume that f is T -periodic and Lipschitz continuous in this argument. Then the measure
functional differential equation of the form

y(t) = y(t0) +
∫ t

t0

f(ys, s)du(s), t ∈ [t0, t0 + σ]

is equivalent to a generalized ordinary differential equation of the form

dx

dτ
= DF (x, t), t ∈ [t0, t0 + σ],

where x takes values in O, and f : O × [t0, t0 + σ] → G[−∞, t0 + σ] → Rn is given by

F (x, t)(v) =





0, −∞ < v ≤ t0,
∫ v

t0

f(xs, s)dg(s), t0 ≤ v ≤ t ≤ t0 + σ,

∫ t

t0

f(xs, s)dg(s), t ≤ v ≤ t0 + σ

for every x ∈ O and t ∈ [t0, t0 + σ]. It will turn out that between the solution x and the
solution y is described by

x(t)(v) =

{
y(v), v ∈ (−∞, t],
y(t), v ∈ [t, t0 + σ],
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where t ∈ [t0, t0 + σ].
This theorem was proved in [4, Theorem 3.6].
Theorem 3.2 Assume that B ⊂ Rn, we use the symbol X([a, b], B) to denote the set

of all regulated functions f : [a, b] → B. Let ε0 > 0, L > 0,Ω = X((−∞, 0), B) × [t0,∞)
consider a pair of bounded Lipschitz-continuous f : Ω → Rn, g : Ω × (0, ε0] → Rn. Assume
that f is T -periodic in the second argument. Define f0 : X → Rn by

f0(ys) =
1
T

∫ t0+T

t0

f(ys, s)du(s), ys ∈ X.

Suppose that for every ε ∈ (0, ε0], the measure equation

y
′
(t) = εf(ys, s) + ε2g(ys, s, ε), y(t0) = y0(ε),

and the ordinary differential equation

x
′
(t) = εf0(x(t)), x(t0) = x0(ε)

have solution yε, xε : [t0, t0+L
ε
] → X. If there is a constant C > 0, such that ‖ y0(ε)−x0(ε) ‖≤

Cε, for every ε ∈ (0, ε0], then there exist a constant A > 0, such that

‖ yε(t)− xε(t) ‖≤ Aε

for every ε ∈ (0, ε0], t ∈ [t0, t0 + L
ε
].

Proof According to the assumptions, there exist constants m, l > 0, such that

‖ f(ys, s) ‖≤ m, ‖ g(ys, s, ε) ‖≤ m,

‖ f(ys, s)− f(xs, s) ‖≤ l ‖ ys − xs ‖,
‖ g(ys, s, ε)− g(xs, s, ε) ‖≤ l ‖ ys − xs ‖

for every ys, xs ∈ X, t ∈ [t0,∞), ε ∈ (0, ε0]. The function h1(t) = h2(t) : [0,∞) → R given
by

h1(t) = h2(t) = (m + l)u(t)

is left-continuous and nondecreasing

F (y, t) =
∫ t

t0

f(ys, s)du(s), y ∈ X, t ∈ [t0,∞),

G(y, t, ε) =
∫ t

t0

g(ys, s, ε)du(s), y ∈ X, t ∈ [t0,∞).

If 0 ≤ s1 ≤ s2 and ys, xs ∈ X. Then

‖ F (y, s2)− F (y, s1) ‖=‖
∫ s2

s1

f(ys, s)du(s) ‖≤ m(u(s2)− u(s1)) ≤ h1(s2)− h1(s1),

‖ F (y, s2)− F (y, s1)− F (x, s2) + F (x, s1) ‖=‖
∫ s2

s1

(f(ys, s)− f(xs, s))du(s) ‖

≤ l ‖ ys − xs ‖ (u(s2)− u(s1)) ≤‖ ys − xs ‖ (h1(s2)− h1(s1)).
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It follows that F belongs to the class F(X, h1). Similarly, if 0 ≤ s1 ≤ s2 and ys, xs ∈ X that

‖ G(y, s2, ε)−G(y, s1, ε) ‖=‖
∫ s2

s1

g(ys, s, ε)du(s) ‖≤ m(u(s2)− u(s1)) ≤ h2(s2)− h2(s1),

‖ G(y, s2, ε)−G(y, s1, ε)−G(x, s2, ε) + G(x, s1, ε) ‖=‖
∫ s2

s1

g(ys, s, ε)− g(xs, s, ε)du(s) ‖

≤ l ‖ ys − xs ‖ (u(s2)− u(s1)) ≤‖ ys − xs ‖ (h2(s2)− h2(s1)).

Therefore for every fixed ε ∈ (0, ε0], the function (y, s) 7→ G(y, s, ε) belongs to the class
F(X, h2). It is clear that F (y, 0) = 0 and G(y, 0, ε) = 0, since u is T -periodic. The function
f is T -period in this argument and it follows that difference

F (y, t + T )− F (y, t) =
∫ t+T

t

f(ys, s)du(s) =
∫ T

0

f(ys, s)du(s)

does not depend on t, we can define M(x) = F (y, t+T )−F (y, t). The following calculations
show that M is bounded and Lipschitz-continuous

‖ M(y) ‖=‖ F (y, T )− F (y, 0) ‖=‖
∫ T

0

f(ys, s)du(s) ‖≤ m(u(T )− u(0)) = mT,

‖ M(y)−M(x) ‖=‖ F (y, T )− F (y, 0)− F (x, T ) + F (x, 0) ‖

= ‖
∫ T

0

f(ys, s)− f(xs, s)du(s) ‖≤ l ‖ ys − xs ‖ (u(T )− u(0)) ≤ l ‖ ys − xs ‖ T.

For every j ∈ N , we have

h1(jT )− h1((j − 1)T ) = (m + l)(u(jT )− u(j − 1)T ) = (m + l)(jT − (j − 1)T ) = (m + l)T.

If t ≥ L
ε0

, then

| h2(t)
t

|= (m + l)
u(t)

t
≤ (m + l)

t + T

t
= (m + l)(1 +

T

t
) ≤ (m + l)(1 +

Tε0

L
).

Thus we have checked that all assumptions of Theorem 2.7 are satisfied. To conclude the
proof, it is now sufficient to define

F0(y) =
F (y, T )

T
=

1
T

∫ T

0

f(ys, s)du(s) = f0(ys).

By Theorem 3.1, for every ε ∈ (0, ε0], the function yε : [t0, t0 + L
ε
] → X satisfies

dyε

dτ
= D[εF (yε, s) + ε2G(yε, s, ε), yε(0) = y0(ε).

According to Theorem 2.7, there exists a constant A > 0 such that ‖ yε(t)−xε(t) ‖≤ Aε for
every s ∈ [t0, t0 + L

ε
]. which proves the theorem.

4 Non-Periodic Averaging



996 Journal of Mathematics Vol. 37

Now we derive non-periodic averaging for measure functional differential equations with
infinite delay.

Theorem 4.1 Consider a number r > 0 and a function F : X × [0,∞] → Rn such that
the following conditions are satisfied.

1. there exists a nondecreasing function h : [0,∞] → R such that

‖ F (x, s2)− F (x, s1) ‖≤ |h(s2)− h(s1)

for every x ∈ X and s1, s2 ∈ [0,∞];
2. there exists a continuous increasing function ω : [0,∞] → R such that ω(0) = 0 and

‖ F (x, s2)− F (x, s1)− F (y, s2) + F (y, s1) ‖≤ ω ‖ x− y ‖ · | h(s2)− h(s1) |

for every x, y ∈ X and s1, s2 ∈ [0,∞);
3. there exists a number C ∈ R such that for every a ∈ [0,∞],

lim sup
r→∞

h(a + r)− h(a)
r

≤ C;

4. there exists a function F0 : X → Rn such that

lim sup
r→∞

F (x, r)
r

= F0(x), x ∈ X.

Assume that the equation y
′
(t) = F0(y(t)), y(0) = x0 has a unique solution y : [0,∞) → Rn,

which is contained in an interior subset of X. Then for every µ > 0 and d > 0 there is
an ε0 > 0 such that for every ε ∈ (0, ε0), the generalized ordinary differential equation
dx
dτ

= D(εF (x, t)), x(0) = x0 have a solutionxε : [0, d
ε
] → Rn, and the ordinary differential

equation
y
′
(t) = εF0(y(t)), y(0) = x0

have a solution yε : [0, d
ε
] → Rn, and ‖ xε(t) − yε(t) ‖< µ for every t ∈ [0, d

ε
]. This theorem

was proved in [10].
Theorem 4.2 Assume that B ⊂ Rn. Let ε0 > 0, T > 0, L > 0, r > 0,

Ω = X((−∞, 0), B)× [t0,∞), lim sup
r→∞

u(t)
t

< ∞,

consider a bounded Lipschitz-continuous f : Ω → Rn. Assume that f is T -periodic in this
argument. Define f0 : X → Rn by

f0(ys) = lim sup
T→∞

1
T

∫ t0+T

t0

f(ys, s)du(s), ys ∈ X.

Suppose that for every ε ∈ (0, ε0], the measure equation

y
′
(s) = εf0(ys, s), y(t0) = y0(ε),
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and the ordinary differential equation

x
′
(t) = εf0(x(t)), x(t0) = x0(ε)

have solution yε, xε : [t0, t0+ L
ε
] → X for every ε ∈ (0, ε0], ξ > 0, such that ‖ yε(t)−xε(t) ‖< ξ

for every t ∈ [t0, t0 + L
ε
].

Proof According to the assume of Theorem 3.2, there exist constants m, l > 0 such
that

‖ f(ys, s) ‖≤ m, ys ∈ X,

‖ f(ys, s)− f(xs, s) ‖≤ l ‖ ys − xs ‖, ys, xs ∈ X.

Let h(s) = m · u(s) for t ∈ [t0,∞), ω(r) = l
m
· r for every r ∈ [0,∞), and

F (y, t) =
∫ t

t0

f(ys, s)du(s), ys ∈ X, t ∈ [t0,∞),

when 0 ≤ s1 ≤ s2 and y ∈ X. We have

‖ F (y, s2)− F (y, s1) ‖=‖
∫ s2

s1

f(ys, s)du(s) ‖≤ m(u(s2)− u(s1)) = h(s2)− h(s1),

‖ F (y, s2)− F (y, s1)− F (x, s2) + F (x, s1) ‖=‖
∫ s2

s1

f(ys, s)− f(xs, s)du(s) ‖

≤ l ‖ ys − xs ‖ (u(s2)− u(s1)) = l ‖ ys − xs ‖ ·h(s2)− h(s1)
m

ω ‖ ys − xs ‖ h(s2 − h(s1)).

Since lim sup
r→∞

u(t)
t

< ∞, there exist number N > 0 such thatu(t)
t
≤ N for every t ∈ [t0,∞),

then
lim sup

r→∞

h(a + r)− h(a)
r

< lim sup
r→∞

m · (u(a + r)− u(a))
r

< m ·N.

Moreover,

lim sup
r→∞

F (y, r)
r

= f0(y), y ∈ X

and thus we see that F satisfies all four assumptions of Theorem 4.1. According to this
theorem, given a ξ > 0 this is an ε0 > such that for every ε ∈ (0, ε0), the generalized ordinary
differential equation dy

dτ
= D(εF (y, t)) have a solution yε : [t0, t0 + L

ε
] → Rn, the ordinary

differential equation x
′
(t) = εf0(x(t)), x(t0) = y0 has a solution xε : [t0, t0 + L

ε
] → Rn and

‖ yε(t)− xε(t) ‖< ξ for every t ∈ [t0, t0 + L
ε
].

According to Theorem 3.1 the solution yε : [t0, t0 + L
ε
] → Rn, coincides with the solution

of the measure functional differential equations with infinite delay

y
′
(s) = εf0(ys(s), s), y(t) = y0(ε).
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无限滞后测度泛函微分方程的平均化

李宝麟,王保弟

(西北师范大学数学与统计学院,甘肃兰州 730070)

摘要: 本文研究了无限滞后测度泛函微分方程的平均化. 利用广义常微分方程的平均化方法, 在无限

滞后测度泛函微分方程可以转化为广义常微分方程的基础上, 获得了这类方程的周期和非周期平均化定理,

推广了一些相关的结果.
关键词: 平均化方法; 测度泛函微分方程; 广义常微分方程; Kurzweil-Stieltjes 积分
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